Tierney commited on
Commit
bc3c686
·
verified ·
1 Parent(s): 34b73ed

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +41 -192
README.md CHANGED
@@ -1,207 +1,56 @@
1
- ---
2
- library_name: transformers
3
- tags:
4
- - unsloth
5
- license: apache-2.0
6
- datasets:
7
- - FreedomIntelligence/medical-o1-reasoning-SFT
8
- language:
9
- - zh
10
- base_model:
11
- - deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
12
- ---
13
-
14
- # Model Card for Model ID
15
-
16
- <!-- Provide a quick summary of what the model is/does. -->
17
-
18
-
19
-
20
- ## Model Details
21
-
22
- ### Model Description
23
-
24
- <!-- Provide a longer summary of what this model is. -->
25
-
26
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
27
-
28
- - **Developed by:** [More Information Needed]
29
- - **Funded by [optional]:** [More Information Needed]
30
- - **Shared by [optional]:** [More Information Needed]
31
- - **Model type:** [More Information Needed]
32
- - **Language(s) (NLP):** [More Information Needed]
33
- - **License:** [More Information Needed]
34
- - **Finetuned from model [optional]:** [More Information Needed]
35
-
36
- ### Model Sources [optional]
37
-
38
- <!-- Provide the basic links for the model. -->
39
-
40
- - **Repository:** [More Information Needed]
41
- - **Paper [optional]:** [More Information Needed]
42
- - **Demo [optional]:** [More Information Needed]
43
-
44
- ## Uses
45
-
46
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
47
-
48
- ### Direct Use
49
-
50
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
51
-
52
- [More Information Needed]
53
-
54
- ### Downstream Use [optional]
55
-
56
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
57
-
58
- [More Information Needed]
59
-
60
- ### Out-of-Scope Use
61
-
62
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
63
-
64
- [More Information Needed]
65
-
66
- ## Bias, Risks, and Limitations
67
-
68
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
69
-
70
- [More Information Needed]
71
-
72
- ### Recommendations
73
-
74
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
75
-
76
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
77
-
78
- ## How to Get Started with the Model
79
-
80
- Use the code below to get started with the model.
81
-
82
- [More Information Needed]
83
-
84
- ## Training Details
85
-
86
- ### Training Data
87
-
88
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
89
-
90
- [More Information Needed]
91
-
92
- ### Training Procedure
93
-
94
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
95
-
96
- #### Preprocessing [optional]
97
-
98
- [More Information Needed]
99
-
100
 
101
- #### Training Hyperparameters
 
102
 
103
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
104
 
105
- #### Speeds, Sizes, Times [optional]
106
-
107
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
108
-
109
- [More Information Needed]
110
-
111
- ## Evaluation
112
-
113
- <!-- This section describes the evaluation protocols and provides the results. -->
114
-
115
- ### Testing Data, Factors & Metrics
116
-
117
- #### Testing Data
118
-
119
- <!-- This should link to a Dataset Card if possible. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Factors
124
-
125
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
126
-
127
- [More Information Needed]
128
-
129
- #### Metrics
130
-
131
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
132
-
133
- [More Information Needed]
134
-
135
- ### Results
136
-
137
- [More Information Needed]
138
-
139
- #### Summary
140
-
141
-
142
-
143
- ## Model Examination [optional]
144
-
145
- <!-- Relevant interpretability work for the model goes here -->
146
-
147
- [More Information Needed]
148
-
149
- ## Environmental Impact
150
-
151
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
152
-
153
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
154
-
155
- - **Hardware Type:** [More Information Needed]
156
- - **Hours used:** [More Information Needed]
157
- - **Cloud Provider:** [More Information Needed]
158
- - **Compute Region:** [More Information Needed]
159
- - **Carbon Emitted:** [More Information Needed]
160
-
161
- ## Technical Specifications [optional]
162
-
163
- ### Model Architecture and Objective
164
-
165
- [More Information Needed]
166
-
167
- ### Compute Infrastructure
168
-
169
- [More Information Needed]
170
-
171
- #### Hardware
172
-
173
- [More Information Needed]
174
-
175
- #### Software
176
-
177
- [More Information Needed]
178
-
179
- ## Citation [optional]
180
-
181
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
182
-
183
- **BibTeX:**
184
 
185
- [More Information Needed]
186
 
187
- **APA:**
 
 
 
 
188
 
189
- [More Information Needed]
 
190
 
191
- ## Glossary [optional]
 
 
 
192
 
193
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
 
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## More Information [optional]
 
 
 
 
 
 
 
198
 
199
- [More Information Needed]
200
 
201
- ## Model Card Authors [optional]
 
202
 
203
- [More Information Needed]
204
 
205
- ## Model Card Contact
 
206
 
207
- [More Information Needed]
 
1
+ # DeepSeek-R1-Distill-Qwen-14B LoRA Adapter
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ ## 📌 模型简介
4
+ 本 LoRA 适配器基于 **DeepSeek-R1-Distill-Qwen-14B** 进行微调,主要优化医学领域的问答和推理能力。
5
 
6
+ - 🔹 **基座模型**: [deepseek-ai/DeepSeek-R1-Distill-Qwen-14B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B)
7
+ - 🔹 **微调方法**: LoRA(使用 [Unsloth](https://github.com/unslothai/unsloth) 进行优化)
8
+ - 🔹 **适用场景**: 医学文本问答、医学知识增强
9
 
10
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
+ ## 📂 使用方法
13
 
14
+ ### 🔄 加载 LoRA 适配器
15
+ 要使用本 LoRA 适配器,你需要加载原始 DeepSeek-R1-14B 模型,并应用 LoRA 权重:
16
+ ```python
17
+ from transformers import AutoModelForCausalLM, AutoTokenizer
18
+ from peft import PeftModel
19
 
20
+ base_model = "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B"
21
+ lora_model = "your-huggingface-username/DeepSeek-R1-Distill-Qwen-14B-lora-med"
22
 
23
+ tokenizer = AutoTokenizer.from_pretrained(base_model)
24
+ model = AutoModelForCausalLM.from_pretrained(base_model, torch_dtype="auto", device_map="auto")
25
+ model = PeftModel.from_pretrained(model, lora_model)
26
+ ```
27
 
28
+ ### 🚀 推理示例
29
+ ```python
30
+ input_text = "请问阿司匹林的主要适应症是什么?"
31
+ inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
32
+ outputs = model.generate(**inputs, max_length=200)
33
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
34
+ ```
35
 
36
+ ---
37
 
38
+ ## 🏗️ 训练信息
39
+ - **训练环境**: RTX 4090, CUDA 12.6, WSL Ubuntu
40
+ - **训练框架**: `transformers` + `peft` + `unsloth`
41
+ - **训练参数**:
42
+ - LoRA Rank: 16
43
+ - Alpha: 32
44
+ - Dropout: 0.05
45
+ - Max Seq Length: 4096
46
 
47
+ ---
48
 
49
+ ## 📜 许可证
50
+ 本 LoRA 适配器基于 **DeepSeek-R1-Distill-Qwen-14B**,请遵守其[官方许可证](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B)。
51
 
52
+ ---
53
 
54
+ ## 📞 联系方式
55
+ 如果你有任何问题或建议,可以在讨论区留言,或者联系我!
56