Upload 10 files
Browse files- .gitattributes +3 -0
- config_dereverb-echo_mel_band_roformer.yaml +77 -0
- dereverb-echo_mel_band_roformer_sdr_10.0169.ckpt +3 -0
- examples/README.md +5 -0
- examples/example_dry.wav +3 -0
- examples/example_other.wav +3 -0
- examples/example_raw.wav +3 -0
- scripts/create_reverb_delay.py +76 -0
- scripts/start_tensorboard.py +89 -0
- tensorboard.png +0 -0
- train.log +2431 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
examples/example_dry.wav filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
examples/example_other.wav filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
examples/example_raw.wav filter=lfs diff=lfs merge=lfs -text
|
config_dereverb-echo_mel_band_roformer.yaml
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
audio:
|
| 2 |
+
chunk_size: 352800
|
| 3 |
+
dim_f: 1024
|
| 4 |
+
dim_t: 801 # don't work (use in model)
|
| 5 |
+
hop_length: 441 # don't work (use in model)
|
| 6 |
+
n_fft: 2048
|
| 7 |
+
num_channels: 2
|
| 8 |
+
sample_rate: 44100
|
| 9 |
+
min_mean_abs: 0.000
|
| 10 |
+
|
| 11 |
+
model:
|
| 12 |
+
dim: 256
|
| 13 |
+
depth: 8
|
| 14 |
+
stereo: true
|
| 15 |
+
num_stems: 2
|
| 16 |
+
time_transformer_depth: 1
|
| 17 |
+
freq_transformer_depth: 1
|
| 18 |
+
linear_transformer_depth: 0
|
| 19 |
+
num_bands: 60
|
| 20 |
+
dim_head: 64
|
| 21 |
+
heads: 8
|
| 22 |
+
attn_dropout: 0.1
|
| 23 |
+
ff_dropout: 0.1
|
| 24 |
+
flash_attn: True
|
| 25 |
+
dim_freqs_in: 1025
|
| 26 |
+
sample_rate: 44100 # needed for mel filter bank from librosa
|
| 27 |
+
stft_n_fft: 2048
|
| 28 |
+
stft_hop_length: 441
|
| 29 |
+
stft_win_length: 2048
|
| 30 |
+
stft_normalized: False
|
| 31 |
+
mask_estimator_depth: 2
|
| 32 |
+
multi_stft_resolution_loss_weight: 1.0
|
| 33 |
+
multi_stft_resolutions_window_sizes: !!python/tuple
|
| 34 |
+
- 4096
|
| 35 |
+
- 2048
|
| 36 |
+
- 1024
|
| 37 |
+
- 512
|
| 38 |
+
- 256
|
| 39 |
+
multi_stft_hop_size: 147
|
| 40 |
+
multi_stft_normalized: False
|
| 41 |
+
|
| 42 |
+
training:
|
| 43 |
+
batch_size: 1
|
| 44 |
+
gradient_accumulation_steps: 8
|
| 45 |
+
grad_clip: 0
|
| 46 |
+
instruments:
|
| 47 |
+
- dry
|
| 48 |
+
- other
|
| 49 |
+
lr: 4.0e-05
|
| 50 |
+
patience: 2
|
| 51 |
+
reduce_factor: 0.95
|
| 52 |
+
target_instrument: null
|
| 53 |
+
num_epochs: 1000
|
| 54 |
+
num_steps: 1000
|
| 55 |
+
q: 0.95
|
| 56 |
+
coarse_loss_clip: true
|
| 57 |
+
ema_momentum: 0.999
|
| 58 |
+
optimizer: adam
|
| 59 |
+
other_fix: false # it's needed for checking on multisong dataset if other is actually instrumental
|
| 60 |
+
use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true
|
| 61 |
+
|
| 62 |
+
augmentations:
|
| 63 |
+
enable: true # enable or disable all augmentations (to fast disable if needed)
|
| 64 |
+
loudness: true # randomly change loudness of each stem on the range (loudness_min; loudness_max)
|
| 65 |
+
loudness_min: 0.5
|
| 66 |
+
loudness_max: 1.5
|
| 67 |
+
mixup: false # mix several stems of same type with some probability (only works for dataset types: 1, 2, 3)
|
| 68 |
+
mixup_probs: !!python/tuple # 2 additional stems of the same type (1st with prob 0.2, 2nd with prob 0.02)
|
| 69 |
+
- 0.2
|
| 70 |
+
- 0.02
|
| 71 |
+
mixup_loudness_min: 0.5
|
| 72 |
+
mixup_loudness_max: 1.5
|
| 73 |
+
|
| 74 |
+
inference:
|
| 75 |
+
batch_size: 4
|
| 76 |
+
dim_t: 801
|
| 77 |
+
num_overlap: 4
|
dereverb-echo_mel_band_roformer_sdr_10.0169.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cd2b737a394cfb80cd48cc9fcbaf89f5f4062f6b93066c2911617a06d8b7860a
|
| 3 |
+
size 835997896
|
examples/README.md
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
license: [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)
|
| 2 |
+
|
| 3 |
+
Example audios are from [TestableFred](https://space.bilibili.com/258080618)'s video: https://www.bilibili.com/video/BV1UZUpYGEwM
|
| 4 |
+
|
| 5 |
+
Before inputting it into the model for inference, the original audio was separated from the vocal and instrument using the `model_bs_roformer_ep_368_sdr_12.9628.ckpt` model.
|
examples/example_dry.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fd4336e1aa539279591b8c59a4367cef6adc72a46c6356e93f8b572e80a0132c
|
| 3 |
+
size 3218824
|
examples/example_other.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cb7f0787014754c0a08397ef6773143aa34653316276c51402b3fc442905eef0
|
| 3 |
+
size 3218824
|
examples/example_raw.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:21d6b5f935dea3f3765539205e4fc5fd781fe17ed001b192ee45bf293771ab49
|
| 3 |
+
size 3508968
|
scripts/create_reverb_delay.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import argparse
|
| 3 |
+
import librosa
|
| 4 |
+
import numpy as np
|
| 5 |
+
import soundfile as sf
|
| 6 |
+
from pedalboard import Pedalboard, Reverb, Delay, HighpassFilter, LowpassFilter
|
| 7 |
+
from random import uniform
|
| 8 |
+
from tqdm import tqdm
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def random_effect(audio, sr):
|
| 12 |
+
reverb = Pedalboard([
|
| 13 |
+
Delay(
|
| 14 |
+
delay_seconds=uniform(0.001, 0.100),
|
| 15 |
+
feedback=0.0,
|
| 16 |
+
mix=1.0
|
| 17 |
+
),
|
| 18 |
+
Reverb(
|
| 19 |
+
room_size=uniform(0.1, 0.8),
|
| 20 |
+
damping=uniform(0.1, 0.8),
|
| 21 |
+
wet_level=1.0,
|
| 22 |
+
dry_level=0.0,
|
| 23 |
+
width=uniform(0.6, 1.0)
|
| 24 |
+
),
|
| 25 |
+
HighpassFilter(cutoff_frequency_hz=uniform(100, 1000)),
|
| 26 |
+
LowpassFilter(cutoff_frequency_hz=uniform(4000, 12000))
|
| 27 |
+
])
|
| 28 |
+
|
| 29 |
+
delay = Pedalboard([
|
| 30 |
+
Delay(
|
| 31 |
+
delay_seconds=uniform(0.05, 0.500),
|
| 32 |
+
feedback=uniform(0.1, 0.5),
|
| 33 |
+
mix=1.0
|
| 34 |
+
),
|
| 35 |
+
Reverb(
|
| 36 |
+
room_size=uniform(0.05, 0.3),
|
| 37 |
+
damping=uniform(0.1, 0.8),
|
| 38 |
+
wet_level=0.2,
|
| 39 |
+
dry_level=0.8,
|
| 40 |
+
width=uniform(0.6, 1.0)
|
| 41 |
+
),
|
| 42 |
+
HighpassFilter(cutoff_frequency_hz=uniform(100, 1000)),
|
| 43 |
+
LowpassFilter(cutoff_frequency_hz=uniform(3000, 10000))
|
| 44 |
+
])
|
| 45 |
+
|
| 46 |
+
effect = uniform(0.1, 0.4) * reverb(audio, sr) + uniform(0.1, 0.4) * delay(audio, sr)
|
| 47 |
+
mix = effect + audio
|
| 48 |
+
|
| 49 |
+
return mix, effect
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
if __name__ == '__main__':
|
| 53 |
+
argparser = argparse.ArgumentParser(description='Add random reverb and delay effects to an audio file.')
|
| 54 |
+
argparser.add_argument('-i', '--input_folder', type=str, default="train", help='Path to the input audio file.')
|
| 55 |
+
argparser.add_argument('-o', '--output_folder', type=str, default="dataset_train", help='Path to the output audio file.')
|
| 56 |
+
args = argparser.parse_args()
|
| 57 |
+
|
| 58 |
+
index = 1
|
| 59 |
+
sr = 44100
|
| 60 |
+
for file in tqdm(os.listdir(args.input_folder)):
|
| 61 |
+
try:
|
| 62 |
+
audio, _ = librosa.load(os.path.join(args.input_folder, file), sr=sr)
|
| 63 |
+
if len(audio.shape) == 1:
|
| 64 |
+
audio = np.stack([audio, audio], axis=1)
|
| 65 |
+
effect = random_effect(audio.T, sr)
|
| 66 |
+
except:
|
| 67 |
+
print(f"Failed to process file: {file}")
|
| 68 |
+
continue
|
| 69 |
+
|
| 70 |
+
os.makedirs(os.path.join(args.output_folder, str(index)), exist_ok=True)
|
| 71 |
+
|
| 72 |
+
sf.write(os.path.join(args.output_folder, str(index), "mixture.wav"), effect[0].T, sr, subtype='PCM_16')
|
| 73 |
+
sf.write(os.path.join(args.output_folder, str(index), "other.wav"), effect[1].T, sr, subtype='PCM_16')
|
| 74 |
+
sf.write(os.path.join(args.output_folder, str(index), "dry.wav"), audio, sr, subtype='PCM_16')
|
| 75 |
+
|
| 76 |
+
index += 1
|
scripts/start_tensorboard.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import os
|
| 3 |
+
import numpy as np
|
| 4 |
+
from tensorboardX import SummaryWriter
|
| 5 |
+
|
| 6 |
+
writer = SummaryWriter('runs/metrics_visualization')
|
| 7 |
+
|
| 8 |
+
epoch_pattern = re.compile(r'Train epoch: (\d+) Learning rate: ([\d.eE+-]+)')
|
| 9 |
+
training_loss_pattern = re.compile(r'Training loss: ([\d.]+)')
|
| 10 |
+
metric_pattern = re.compile(r'(\w+ \w+ \w+): ([\d.]+) \(Std: ([\d.]+)\)')
|
| 11 |
+
avg_metric_pattern = re.compile(r'Metric avg (\w+)\s+: ([\d.]+)')
|
| 12 |
+
|
| 13 |
+
data = {
|
| 14 |
+
'common': {
|
| 15 |
+
'learning_rate': [],
|
| 16 |
+
'training_loss': []
|
| 17 |
+
},
|
| 18 |
+
'dry': {
|
| 19 |
+
'Instr dry sdr': [],
|
| 20 |
+
'Instr dry l1_freq': [],
|
| 21 |
+
'Instr dry si_sdr': []
|
| 22 |
+
},
|
| 23 |
+
'other': {
|
| 24 |
+
'Instr other sdr': [],
|
| 25 |
+
'Instr other l1_freq': [],
|
| 26 |
+
'Instr other si_sdr': []
|
| 27 |
+
},
|
| 28 |
+
'avg': {
|
| 29 |
+
'Metric avg sdr': [],
|
| 30 |
+
'Metric avg l1_freq': [],
|
| 31 |
+
'Metric avg si_sdr': []
|
| 32 |
+
}
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
std_data = {
|
| 36 |
+
'dry': {key: [] for key in data['dry'].keys()},
|
| 37 |
+
'other': {key: [] for key in data['other'].keys()}
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
with open(r'E:\AI\datasets\msst\train.log', 'r') as f:
|
| 41 |
+
epoch = -1
|
| 42 |
+
for line in f:
|
| 43 |
+
epoch_match = epoch_pattern.match(line)
|
| 44 |
+
if epoch_match:
|
| 45 |
+
epoch = int(epoch_match.group(1))
|
| 46 |
+
learning_rate = float(epoch_match.group(2))
|
| 47 |
+
data['common']['learning_rate'].append((epoch, learning_rate))
|
| 48 |
+
continue
|
| 49 |
+
|
| 50 |
+
training_loss_match = training_loss_pattern.match(line)
|
| 51 |
+
if training_loss_match:
|
| 52 |
+
training_loss = float(training_loss_match.group(1))
|
| 53 |
+
data['common']['training_loss'].append((epoch, training_loss))
|
| 54 |
+
continue
|
| 55 |
+
|
| 56 |
+
metric_match = metric_pattern.match(line)
|
| 57 |
+
if metric_match:
|
| 58 |
+
metric_name = metric_match.group(1)
|
| 59 |
+
metric_value = float(metric_match.group(2))
|
| 60 |
+
std_value = float(metric_match.group(3))
|
| 61 |
+
|
| 62 |
+
if metric_name in data['dry']:
|
| 63 |
+
data['dry'][metric_name].append((epoch, metric_value))
|
| 64 |
+
std_data['dry'][metric_name].append((epoch, std_value))
|
| 65 |
+
elif metric_name in data['other']:
|
| 66 |
+
data['other'][metric_name].append((epoch, metric_value))
|
| 67 |
+
std_data['other'][metric_name].append((epoch, std_value))
|
| 68 |
+
continue
|
| 69 |
+
|
| 70 |
+
avg_metric_match = avg_metric_pattern.match(line)
|
| 71 |
+
if avg_metric_match:
|
| 72 |
+
avg_metric_name = f'Metric avg {avg_metric_match.group(1)}'
|
| 73 |
+
avg_metric_value = float(avg_metric_match.group(2))
|
| 74 |
+
data['avg'][avg_metric_name].append((epoch, avg_metric_value))
|
| 75 |
+
|
| 76 |
+
for category, metrics in data.items():
|
| 77 |
+
for key, values in metrics.items():
|
| 78 |
+
category_path = f'{category}/{key.replace(" ", "_").lower()}'
|
| 79 |
+
for epoch, value in values:
|
| 80 |
+
writer.add_scalar(f'{category_path}', value, epoch)
|
| 81 |
+
|
| 82 |
+
for category, metrics in std_data.items():
|
| 83 |
+
for key, values in metrics.items():
|
| 84 |
+
category_path = f'{category}/{key.replace(" ", "_").lower()}_std'
|
| 85 |
+
for epoch, std in values:
|
| 86 |
+
writer.add_scalar(f'{category_path}', std, epoch)
|
| 87 |
+
|
| 88 |
+
writer.close()
|
| 89 |
+
os.system('tensorboard --logdir=runs')
|
tensorboard.png
ADDED
|
train.log
ADDED
|
@@ -0,0 +1,2431 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Train epoch: 0 Learning rate: 4e-05
|
| 2 |
+
Training loss: 0.112203
|
| 3 |
+
Instr dry sdr: 9.1842 (Std: 5.0694)
|
| 4 |
+
Instr dry l1_freq: 43.0502 (Std: 16.4433)
|
| 5 |
+
Instr dry si_sdr: 6.6879 (Std: 9.3848)
|
| 6 |
+
Instr other sdr: 2.7113 (Std: 2.9820)
|
| 7 |
+
Instr other l1_freq: 42.2600 (Std: 13.8038)
|
| 8 |
+
Instr other si_sdr: 0.9734 (Std: 2.9438)
|
| 9 |
+
Metric avg sdr : 5.9478
|
| 10 |
+
Metric avg l1_freq : 42.6551
|
| 11 |
+
Metric avg si_sdr : 3.8307
|
| 12 |
+
Train epoch: 1 Learning rate: 4e-05
|
| 13 |
+
Training loss: 0.108346
|
| 14 |
+
Instr dry sdr: 9.8077 (Std: 5.0427)
|
| 15 |
+
Instr dry l1_freq: 45.2016 (Std: 16.0011)
|
| 16 |
+
Instr dry si_sdr: 7.8796 (Std: 8.4374)
|
| 17 |
+
Instr other sdr: 3.2853 (Std: 3.0210)
|
| 18 |
+
Instr other l1_freq: 44.2322 (Std: 13.4866)
|
| 19 |
+
Instr other si_sdr: 1.6467 (Std: 3.0609)
|
| 20 |
+
Metric avg sdr : 6.5465
|
| 21 |
+
Metric avg l1_freq : 44.7169
|
| 22 |
+
Metric avg si_sdr : 4.7632
|
| 23 |
+
Train epoch: 2 Learning rate: 4e-05
|
| 24 |
+
Training loss: 0.111557
|
| 25 |
+
Instr dry sdr: 8.6600 (Std: 5.2673)
|
| 26 |
+
Instr dry l1_freq: 40.4967 (Std: 16.3782)
|
| 27 |
+
Instr dry si_sdr: 5.1406 (Std: 11.2339)
|
| 28 |
+
Instr other sdr: 2.2686 (Std: 3.3155)
|
| 29 |
+
Instr other l1_freq: 40.7998 (Std: 14.0537)
|
| 30 |
+
Instr other si_sdr: 0.5386 (Std: 3.2345)
|
| 31 |
+
Metric avg sdr : 5.4643
|
| 32 |
+
Metric avg l1_freq : 40.6482
|
| 33 |
+
Metric avg si_sdr : 2.8396
|
| 34 |
+
Train epoch: 3 Learning rate: 4e-05
|
| 35 |
+
Training loss: 0.104671
|
| 36 |
+
Instr dry sdr: 10.5112 (Std: 4.7450)
|
| 37 |
+
Instr dry l1_freq: 47.0243 (Std: 15.3385)
|
| 38 |
+
Instr dry si_sdr: 9.2583 (Std: 7.0059)
|
| 39 |
+
Instr other sdr: 3.9533 (Std: 2.9623)
|
| 40 |
+
Instr other l1_freq: 45.7660 (Std: 13.4354)
|
| 41 |
+
Instr other si_sdr: 2.4055 (Std: 3.0344)
|
| 42 |
+
Metric avg sdr : 7.2322
|
| 43 |
+
Metric avg l1_freq : 46.3951
|
| 44 |
+
Metric avg si_sdr : 5.8319
|
| 45 |
+
Train epoch: 4 Learning rate: 4e-05
|
| 46 |
+
Training loss: 0.108527
|
| 47 |
+
Instr dry sdr: 10.6624 (Std: 4.7885)
|
| 48 |
+
Instr dry l1_freq: 47.5591 (Std: 15.3929)
|
| 49 |
+
Instr dry si_sdr: 9.3465 (Std: 7.2948)
|
| 50 |
+
Instr other sdr: 4.1154 (Std: 3.0104)
|
| 51 |
+
Instr other l1_freq: 45.9004 (Std: 13.4133)
|
| 52 |
+
Instr other si_sdr: 2.6202 (Std: 3.0885)
|
| 53 |
+
Metric avg sdr : 7.3889
|
| 54 |
+
Metric avg l1_freq : 46.7298
|
| 55 |
+
Metric avg si_sdr : 5.9833
|
| 56 |
+
Train epoch: 5 Learning rate: 4e-05
|
| 57 |
+
Training loss: 0.107057
|
| 58 |
+
Instr dry sdr: 11.0292 (Std: 4.6336)
|
| 59 |
+
Instr dry l1_freq: 48.4740 (Std: 15.0574)
|
| 60 |
+
Instr dry si_sdr: 9.9518 (Std: 6.6424)
|
| 61 |
+
Instr other sdr: 4.4880 (Std: 2.9169)
|
| 62 |
+
Instr other l1_freq: 46.8940 (Std: 13.1882)
|
| 63 |
+
Instr other si_sdr: 3.0556 (Std: 3.0106)
|
| 64 |
+
Metric avg sdr : 7.7586
|
| 65 |
+
Metric avg l1_freq : 47.6840
|
| 66 |
+
Metric avg si_sdr : 6.5037
|
| 67 |
+
Train epoch: 6 Learning rate: 4e-05
|
| 68 |
+
Training loss: 0.102628
|
| 69 |
+
Instr dry sdr: 10.4956 (Std: 5.0565)
|
| 70 |
+
Instr dry l1_freq: 47.0258 (Std: 15.6716)
|
| 71 |
+
Instr dry si_sdr: 8.7730 (Std: 8.3461)
|
| 72 |
+
Instr other sdr: 4.0236 (Std: 3.1916)
|
| 73 |
+
Instr other l1_freq: 45.9433 (Std: 13.4968)
|
| 74 |
+
Instr other si_sdr: 2.6168 (Std: 3.2038)
|
| 75 |
+
Metric avg sdr : 7.2596
|
| 76 |
+
Metric avg l1_freq : 46.4846
|
| 77 |
+
Metric avg si_sdr : 5.6949
|
| 78 |
+
Train epoch: 7 Learning rate: 4e-05
|
| 79 |
+
Training loss: 0.102433
|
| 80 |
+
Instr dry sdr: 10.4234 (Std: 5.2507)
|
| 81 |
+
Instr dry l1_freq: 46.5551 (Std: 16.1208)
|
| 82 |
+
Instr dry si_sdr: 8.2495 (Std: 9.4586)
|
| 83 |
+
Instr other sdr: 3.9662 (Std: 3.3640)
|
| 84 |
+
Instr other l1_freq: 45.5177 (Std: 13.8393)
|
| 85 |
+
Instr other si_sdr: 2.6240 (Std: 3.3432)
|
| 86 |
+
Metric avg sdr : 7.1948
|
| 87 |
+
Metric avg l1_freq : 46.0364
|
| 88 |
+
Metric avg si_sdr : 5.4368
|
| 89 |
+
Train epoch: 8 Learning rate: 4e-05
|
| 90 |
+
Training loss: 0.102206
|
| 91 |
+
Instr dry sdr: 11.2823 (Std: 4.6485)
|
| 92 |
+
Instr dry l1_freq: 49.1632 (Std: 14.9530)
|
| 93 |
+
Instr dry si_sdr: 10.2208 (Std: 6.6984)
|
| 94 |
+
Instr other sdr: 4.7831 (Std: 2.9732)
|
| 95 |
+
Instr other l1_freq: 47.7291 (Std: 13.1676)
|
| 96 |
+
Instr other si_sdr: 3.4409 (Std: 3.0674)
|
| 97 |
+
Metric avg sdr : 8.0327
|
| 98 |
+
Metric avg l1_freq : 48.4461
|
| 99 |
+
Metric avg si_sdr : 6.8308
|
| 100 |
+
Train epoch: 9 Learning rate: 4e-05
|
| 101 |
+
Training loss: 0.102105
|
| 102 |
+
Instr dry sdr: 9.8860 (Std: 5.7882)
|
| 103 |
+
Instr dry l1_freq: 44.9209 (Std: 17.4682)
|
| 104 |
+
Instr dry si_sdr: 6.8763 (Std: 10.9794)
|
| 105 |
+
Instr other sdr: 3.4941 (Std: 3.7512)
|
| 106 |
+
Instr other l1_freq: 44.9048 (Std: 14.8870)
|
| 107 |
+
Instr other si_sdr: 2.3025 (Std: 3.5580)
|
| 108 |
+
Metric avg sdr : 6.6900
|
| 109 |
+
Metric avg l1_freq : 44.9128
|
| 110 |
+
Metric avg si_sdr : 4.5894
|
| 111 |
+
Train epoch: 10 Learning rate: 4e-05
|
| 112 |
+
Training loss: 0.105466
|
| 113 |
+
Instr dry sdr: 10.6825 (Std: 5.4309)
|
| 114 |
+
Instr dry l1_freq: 47.1887 (Std: 16.3474)
|
| 115 |
+
Instr dry si_sdr: 8.5463 (Std: 9.5558)
|
| 116 |
+
Instr other sdr: 4.2599 (Std: 3.5437)
|
| 117 |
+
Instr other l1_freq: 46.4425 (Std: 13.9931)
|
| 118 |
+
Instr other si_sdr: 3.0562 (Std: 3.5099)
|
| 119 |
+
Metric avg sdr : 7.4712
|
| 120 |
+
Metric avg l1_freq : 46.8156
|
| 121 |
+
Metric avg si_sdr : 5.8013
|
| 122 |
+
Train epoch: 11 Learning rate: 4e-05
|
| 123 |
+
Training loss: 0.102414
|
| 124 |
+
Instr dry sdr: 9.6486 (Std: 5.9472)
|
| 125 |
+
Instr dry l1_freq: 44.1544 (Std: 18.0469)
|
| 126 |
+
Instr dry si_sdr: 6.1325 (Std: 11.8517)
|
| 127 |
+
Instr other sdr: 3.3058 (Std: 3.8984)
|
| 128 |
+
Instr other l1_freq: 43.9748 (Std: 15.1864)
|
| 129 |
+
Instr other si_sdr: 2.1583 (Std: 3.6656)
|
| 130 |
+
Metric avg sdr : 6.4772
|
| 131 |
+
Metric avg l1_freq : 44.0646
|
| 132 |
+
Metric avg si_sdr : 4.1454
|
| 133 |
+
Train epoch: 12 Learning rate: 3.8e-05
|
| 134 |
+
Training loss: 0.102746
|
| 135 |
+
Instr dry sdr: 11.2203 (Std: 4.7064)
|
| 136 |
+
Instr dry l1_freq: 49.1167 (Std: 15.4703)
|
| 137 |
+
Instr dry si_sdr: 9.9747 (Std: 7.3762)
|
| 138 |
+
Instr other sdr: 4.8413 (Std: 3.0495)
|
| 139 |
+
Instr other l1_freq: 47.1270 (Std: 13.4432)
|
| 140 |
+
Instr other si_sdr: 3.5202 (Std: 3.1601)
|
| 141 |
+
Metric avg sdr : 8.0308
|
| 142 |
+
Metric avg l1_freq : 48.1219
|
| 143 |
+
Metric avg si_sdr : 6.7475
|
| 144 |
+
Train epoch: 13 Learning rate: 3.8e-05
|
| 145 |
+
Training loss: 0.098055
|
| 146 |
+
Instr dry sdr: 11.4479 (Std: 4.6584)
|
| 147 |
+
Instr dry l1_freq: 49.8237 (Std: 15.2150)
|
| 148 |
+
Instr dry si_sdr: 10.2828 (Std: 7.2318)
|
| 149 |
+
Instr other sdr: 5.0567 (Std: 3.0666)
|
| 150 |
+
Instr other l1_freq: 47.9391 (Std: 13.2528)
|
| 151 |
+
Instr other si_sdr: 3.8100 (Std: 3.1556)
|
| 152 |
+
Metric avg sdr : 8.2523
|
| 153 |
+
Metric avg l1_freq : 48.8814
|
| 154 |
+
Metric avg si_sdr : 7.0464
|
| 155 |
+
Train epoch: 14 Learning rate: 3.8e-05
|
| 156 |
+
Training loss: 0.098851
|
| 157 |
+
Instr dry sdr: 11.2437 (Std: 4.4635)
|
| 158 |
+
Instr dry l1_freq: 48.9190 (Std: 14.9174)
|
| 159 |
+
Instr dry si_sdr: 10.0969 (Std: 7.1745)
|
| 160 |
+
Instr other sdr: 4.8748 (Std: 2.9083)
|
| 161 |
+
Instr other l1_freq: 47.2522 (Std: 13.2537)
|
| 162 |
+
Instr other si_sdr: 3.4444 (Std: 3.1525)
|
| 163 |
+
Metric avg sdr : 8.0592
|
| 164 |
+
Metric avg l1_freq : 48.0856
|
| 165 |
+
Metric avg si_sdr : 6.7706
|
| 166 |
+
Train epoch: 15 Learning rate: 3.8e-05
|
| 167 |
+
Training loss: 0.100223
|
| 168 |
+
Instr dry sdr: 11.8901 (Std: 3.8317)
|
| 169 |
+
Instr dry l1_freq: 51.2161 (Std: 12.9691)
|
| 170 |
+
Instr dry si_sdr: 11.2922 (Std: 5.1277)
|
| 171 |
+
Instr other sdr: 5.5019 (Std: 2.2995)
|
| 172 |
+
Instr other l1_freq: 48.7933 (Std: 11.9829)
|
| 173 |
+
Instr other si_sdr: 4.1441 (Std: 2.6947)
|
| 174 |
+
Metric avg sdr : 8.6960
|
| 175 |
+
Metric avg l1_freq : 50.0047
|
| 176 |
+
Metric avg si_sdr : 7.7181
|
| 177 |
+
Train epoch: 16 Learning rate: 3.8e-05
|
| 178 |
+
Training loss: 0.104321
|
| 179 |
+
Instr dry sdr: 11.9911 (Std: 3.9050)
|
| 180 |
+
Instr dry l1_freq: 51.5090 (Std: 13.0993)
|
| 181 |
+
Instr dry si_sdr: 11.3194 (Std: 5.4409)
|
| 182 |
+
Instr other sdr: 5.5892 (Std: 2.4072)
|
| 183 |
+
Instr other l1_freq: 49.2916 (Std: 11.9865)
|
| 184 |
+
Instr other si_sdr: 4.2758 (Std: 2.7573)
|
| 185 |
+
Metric avg sdr : 8.7901
|
| 186 |
+
Metric avg l1_freq : 50.4003
|
| 187 |
+
Metric avg si_sdr : 7.7976
|
| 188 |
+
Train epoch: 17 Learning rate: 3.8e-05
|
| 189 |
+
Training loss: 0.101089
|
| 190 |
+
Instr dry sdr: 11.3998 (Std: 4.4243)
|
| 191 |
+
Instr dry l1_freq: 49.5020 (Std: 14.6672)
|
| 192 |
+
Instr dry si_sdr: 10.2264 (Std: 7.2563)
|
| 193 |
+
Instr other sdr: 5.0164 (Std: 2.9508)
|
| 194 |
+
Instr other l1_freq: 47.8112 (Std: 13.1082)
|
| 195 |
+
Instr other si_sdr: 3.6554 (Std: 3.1220)
|
| 196 |
+
Metric avg sdr : 8.2081
|
| 197 |
+
Metric avg l1_freq : 48.6566
|
| 198 |
+
Metric avg si_sdr : 6.9409
|
| 199 |
+
Train epoch: 18 Learning rate: 3.8e-05
|
| 200 |
+
Training loss: 0.104896
|
| 201 |
+
Instr dry sdr: 11.8436 (Std: 4.2132)
|
| 202 |
+
Instr dry l1_freq: 50.8741 (Std: 13.9037)
|
| 203 |
+
Instr dry si_sdr: 10.9560 (Std: 6.3993)
|
| 204 |
+
Instr other sdr: 5.4496 (Std: 2.7765)
|
| 205 |
+
Instr other l1_freq: 49.0518 (Std: 12.5874)
|
| 206 |
+
Instr other si_sdr: 4.1728 (Std: 2.9902)
|
| 207 |
+
Metric avg sdr : 8.6466
|
| 208 |
+
Metric avg l1_freq : 49.9630
|
| 209 |
+
Metric avg si_sdr : 7.5644
|
| 210 |
+
Train epoch: 19 Learning rate: 3.8e-05
|
| 211 |
+
Training loss: 0.102872
|
| 212 |
+
Instr dry sdr: 11.6119 (Std: 4.4405)
|
| 213 |
+
Instr dry l1_freq: 50.0832 (Std: 14.4807)
|
| 214 |
+
Instr dry si_sdr: 10.3961 (Std: 7.4146)
|
| 215 |
+
Instr other sdr: 5.2438 (Std: 2.9718)
|
| 216 |
+
Instr other l1_freq: 48.5173 (Std: 12.9634)
|
| 217 |
+
Instr other si_sdr: 3.9460 (Std: 3.1250)
|
| 218 |
+
Metric avg sdr : 8.4278
|
| 219 |
+
Metric avg l1_freq : 49.3003
|
| 220 |
+
Metric avg si_sdr : 7.1711
|
| 221 |
+
Train epoch: 20 Learning rate: 3.61e-05
|
| 222 |
+
Training loss: 0.103917
|
| 223 |
+
Instr dry sdr: 11.8600 (Std: 4.3186)
|
| 224 |
+
Instr dry l1_freq: 50.7067 (Std: 14.1043)
|
| 225 |
+
Instr dry si_sdr: 10.8580 (Std: 6.8196)
|
| 226 |
+
Instr other sdr: 5.4763 (Std: 2.8551)
|
| 227 |
+
Instr other l1_freq: 49.0513 (Std: 12.7018)
|
| 228 |
+
Instr other si_sdr: 4.2312 (Std: 3.0315)
|
| 229 |
+
Metric avg sdr : 8.6681
|
| 230 |
+
Metric avg l1_freq : 49.8790
|
| 231 |
+
Metric avg si_sdr : 7.5446
|
| 232 |
+
Train epoch: 21 Learning rate: 3.61e-05
|
| 233 |
+
Training loss: 0.099953
|
| 234 |
+
Instr dry sdr: 11.6488 (Std: 4.4892)
|
| 235 |
+
Instr dry l1_freq: 50.1608 (Std: 14.5906)
|
| 236 |
+
Instr dry si_sdr: 10.4241 (Std: 7.4959)
|
| 237 |
+
Instr other sdr: 5.2680 (Std: 2.9869)
|
| 238 |
+
Instr other l1_freq: 48.7911 (Std: 12.9553)
|
| 239 |
+
Instr other si_sdr: 3.9999 (Std: 3.1246)
|
| 240 |
+
Metric avg sdr : 8.4584
|
| 241 |
+
Metric avg l1_freq : 49.4760
|
| 242 |
+
Metric avg si_sdr : 7.2120
|
| 243 |
+
Train epoch: 22 Learning rate: 3.61e-05
|
| 244 |
+
Training loss: 0.106623
|
| 245 |
+
Instr dry sdr: 11.4431 (Std: 4.5723)
|
| 246 |
+
Instr dry l1_freq: 49.5066 (Std: 14.8685)
|
| 247 |
+
Instr dry si_sdr: 10.0020 (Std: 8.1887)
|
| 248 |
+
Instr other sdr: 5.0968 (Std: 3.0595)
|
| 249 |
+
Instr other l1_freq: 48.0954 (Std: 13.1793)
|
| 250 |
+
Instr other si_sdr: 3.8148 (Std: 3.1874)
|
| 251 |
+
Metric avg sdr : 8.2699
|
| 252 |
+
Metric avg l1_freq : 48.8010
|
| 253 |
+
Metric avg si_sdr : 6.9084
|
| 254 |
+
Train epoch: 23 Learning rate: 3.4295e-05
|
| 255 |
+
Training loss: 0.102432
|
| 256 |
+
Instr dry sdr: 11.7803 (Std: 4.5411)
|
| 257 |
+
Instr dry l1_freq: 50.1692 (Std: 14.6833)
|
| 258 |
+
Instr dry si_sdr: 10.4433 (Std: 7.9273)
|
| 259 |
+
Instr other sdr: 5.4089 (Std: 3.0554)
|
| 260 |
+
Instr other l1_freq: 48.6791 (Std: 13.1322)
|
| 261 |
+
Instr other si_sdr: 4.2015 (Std: 3.1739)
|
| 262 |
+
Metric avg sdr : 8.5946
|
| 263 |
+
Metric avg l1_freq : 49.4242
|
| 264 |
+
Metric avg si_sdr : 7.3224
|
| 265 |
+
Train epoch: 24 Learning rate: 3.4295e-05
|
| 266 |
+
Training loss: 0.099989
|
| 267 |
+
Instr dry sdr: 11.8416 (Std: 4.5566)
|
| 268 |
+
Instr dry l1_freq: 50.3986 (Std: 14.6825)
|
| 269 |
+
Instr dry si_sdr: 10.4740 (Std: 8.0559)
|
| 270 |
+
Instr other sdr: 5.4663 (Std: 3.0807)
|
| 271 |
+
Instr other l1_freq: 49.1233 (Std: 13.1509)
|
| 272 |
+
Instr other si_sdr: 4.2740 (Std: 3.1957)
|
| 273 |
+
Metric avg sdr : 8.6540
|
| 274 |
+
Metric avg l1_freq : 49.7609
|
| 275 |
+
Metric avg si_sdr : 7.3740
|
| 276 |
+
Train epoch: 25 Learning rate: 3.4295e-05
|
| 277 |
+
Training loss: 0.098635
|
| 278 |
+
Instr dry sdr: 11.9577 (Std: 4.5334)
|
| 279 |
+
Instr dry l1_freq: 51.0521 (Std: 14.5271)
|
| 280 |
+
Instr dry si_sdr: 10.8045 (Std: 7.3315)
|
| 281 |
+
Instr other sdr: 5.5823 (Std: 3.0608)
|
| 282 |
+
Instr other l1_freq: 49.4446 (Std: 12.9467)
|
| 283 |
+
Instr other si_sdr: 4.4169 (Std: 3.1841)
|
| 284 |
+
Metric avg sdr : 8.7700
|
| 285 |
+
Metric avg l1_freq : 50.2483
|
| 286 |
+
Metric avg si_sdr : 7.6107
|
| 287 |
+
Train epoch: 26 Learning rate: 3.258025e-05
|
| 288 |
+
Training loss: 0.099137
|
| 289 |
+
Instr dry sdr: 11.9302 (Std: 4.6017)
|
| 290 |
+
Instr dry l1_freq: 50.8494 (Std: 14.8073)
|
| 291 |
+
Instr dry si_sdr: 10.5274 (Std: 8.1764)
|
| 292 |
+
Instr other sdr: 5.5601 (Std: 3.1095)
|
| 293 |
+
Instr other l1_freq: 49.3405 (Std: 13.1348)
|
| 294 |
+
Instr other si_sdr: 4.4060 (Std: 3.2139)
|
| 295 |
+
Metric avg sdr : 8.7451
|
| 296 |
+
Metric avg l1_freq : 50.0949
|
| 297 |
+
Metric avg si_sdr : 7.4667
|
| 298 |
+
Train epoch: 27 Learning rate: 3.258025e-05
|
| 299 |
+
Training loss: 0.097129
|
| 300 |
+
Instr dry sdr: 11.8247 (Std: 4.5460)
|
| 301 |
+
Instr dry l1_freq: 50.5849 (Std: 14.6852)
|
| 302 |
+
Instr dry si_sdr: 10.4771 (Std: 7.9980)
|
| 303 |
+
Instr other sdr: 5.4648 (Std: 3.0762)
|
| 304 |
+
Instr other l1_freq: 48.8602 (Std: 13.0388)
|
| 305 |
+
Instr other si_sdr: 4.2713 (Std: 3.1981)
|
| 306 |
+
Metric avg sdr : 8.6448
|
| 307 |
+
Metric avg l1_freq : 49.7225
|
| 308 |
+
Metric avg si_sdr : 7.3742
|
| 309 |
+
Train epoch: 28 Learning rate: 3.258025e-05
|
| 310 |
+
Training loss: 0.099773
|
| 311 |
+
Instr dry sdr: 11.9798 (Std: 4.5750)
|
| 312 |
+
Instr dry l1_freq: 51.0790 (Std: 14.6501)
|
| 313 |
+
Instr dry si_sdr: 10.6954 (Std: 7.7941)
|
| 314 |
+
Instr other sdr: 5.6008 (Std: 3.0957)
|
| 315 |
+
Instr other l1_freq: 49.4151 (Std: 13.0527)
|
| 316 |
+
Instr other si_sdr: 4.4569 (Std: 3.1976)
|
| 317 |
+
Metric avg sdr : 8.7903
|
| 318 |
+
Metric avg l1_freq : 50.2470
|
| 319 |
+
Metric avg si_sdr : 7.5762
|
| 320 |
+
Train epoch: 29 Learning rate: 3.09512375e-05
|
| 321 |
+
Training loss: 0.099705
|
| 322 |
+
Instr dry sdr: 11.9371 (Std: 4.6418)
|
| 323 |
+
Instr dry l1_freq: 51.0463 (Std: 14.8174)
|
| 324 |
+
Instr dry si_sdr: 10.5877 (Std: 7.9657)
|
| 325 |
+
Instr other sdr: 5.5785 (Std: 3.1468)
|
| 326 |
+
Instr other l1_freq: 49.4233 (Std: 13.1175)
|
| 327 |
+
Instr other si_sdr: 4.4452 (Std: 3.2448)
|
| 328 |
+
Metric avg sdr : 8.7578
|
| 329 |
+
Metric avg l1_freq : 50.2348
|
| 330 |
+
Metric avg si_sdr : 7.5165
|
| 331 |
+
Train epoch: 30 Learning rate: 3.09512375e-05
|
| 332 |
+
Training loss: 0.101415
|
| 333 |
+
Instr dry sdr: 12.1884 (Std: 4.4321)
|
| 334 |
+
Instr dry l1_freq: 51.4162 (Std: 14.2252)
|
| 335 |
+
Instr dry si_sdr: 11.1747 (Std: 6.8448)
|
| 336 |
+
Instr other sdr: 5.8140 (Std: 3.0305)
|
| 337 |
+
Instr other l1_freq: 50.1628 (Std: 12.9061)
|
| 338 |
+
Instr other si_sdr: 4.6854 (Std: 3.1503)
|
| 339 |
+
Metric avg sdr : 9.0012
|
| 340 |
+
Metric avg l1_freq : 50.7895
|
| 341 |
+
Metric avg si_sdr : 7.9300
|
| 342 |
+
Train epoch: 31 Learning rate: 3.09512375e-05
|
| 343 |
+
Training loss: 0.102380
|
| 344 |
+
Instr dry sdr: 12.2048 (Std: 4.4409)
|
| 345 |
+
Instr dry l1_freq: 51.5894 (Std: 14.3102)
|
| 346 |
+
Instr dry si_sdr: 11.1695 (Std: 7.0154)
|
| 347 |
+
Instr other sdr: 5.8346 (Std: 3.0329)
|
| 348 |
+
Instr other l1_freq: 50.0733 (Std: 12.9218)
|
| 349 |
+
Instr other si_sdr: 4.7251 (Std: 3.1519)
|
| 350 |
+
Metric avg sdr : 9.0197
|
| 351 |
+
Metric avg l1_freq : 50.8314
|
| 352 |
+
Metric avg si_sdr : 7.9473
|
| 353 |
+
Train epoch: 32 Learning rate: 3.09512375e-05
|
| 354 |
+
Training loss: 0.101785
|
| 355 |
+
Instr dry sdr: 12.1684 (Std: 4.5522)
|
| 356 |
+
Instr dry l1_freq: 51.4581 (Std: 14.5296)
|
| 357 |
+
Instr dry si_sdr: 11.0002 (Std: 7.4294)
|
| 358 |
+
Instr other sdr: 5.8010 (Std: 3.0979)
|
| 359 |
+
Instr other l1_freq: 49.9899 (Std: 13.0052)
|
| 360 |
+
Instr other si_sdr: 4.7016 (Std: 3.2061)
|
| 361 |
+
Metric avg sdr : 8.9847
|
| 362 |
+
Metric avg l1_freq : 50.7240
|
| 363 |
+
Metric avg si_sdr : 7.8509
|
| 364 |
+
Train epoch: 33 Learning rate: 3.09512375e-05
|
| 365 |
+
Training loss: 0.100284
|
| 366 |
+
Instr dry sdr: 11.9117 (Std: 4.7139)
|
| 367 |
+
Instr dry l1_freq: 50.5437 (Std: 14.9248)
|
| 368 |
+
Instr dry si_sdr: 10.4955 (Std: 8.2177)
|
| 369 |
+
Instr other sdr: 5.5665 (Std: 3.1587)
|
| 370 |
+
Instr other l1_freq: 49.5938 (Std: 13.3054)
|
| 371 |
+
Instr other si_sdr: 4.4402 (Std: 3.2527)
|
| 372 |
+
Metric avg sdr : 8.7391
|
| 373 |
+
Metric avg l1_freq : 50.0688
|
| 374 |
+
Metric avg si_sdr : 7.4679
|
| 375 |
+
Train epoch: 34 Learning rate: 3.09512375e-05
|
| 376 |
+
Training loss: 0.098834
|
| 377 |
+
Instr dry sdr: 11.8616 (Std: 4.6685)
|
| 378 |
+
Instr dry l1_freq: 50.6035 (Std: 14.8479)
|
| 379 |
+
Instr dry si_sdr: 10.4479 (Std: 8.1880)
|
| 380 |
+
Instr other sdr: 5.5394 (Std: 3.1456)
|
| 381 |
+
Instr other l1_freq: 49.5593 (Std: 13.2399)
|
| 382 |
+
Instr other si_sdr: 4.3980 (Std: 3.2515)
|
| 383 |
+
Metric avg sdr : 8.7005
|
| 384 |
+
Metric avg l1_freq : 50.0814
|
| 385 |
+
Metric avg si_sdr : 7.4229
|
| 386 |
+
Train epoch: 35 Learning rate: 2.9403675625e-05
|
| 387 |
+
Training loss: 0.103044
|
| 388 |
+
Instr dry sdr: 12.0009 (Std: 4.6071)
|
| 389 |
+
Instr dry l1_freq: 51.2387 (Std: 14.6381)
|
| 390 |
+
Instr dry si_sdr: 10.7337 (Std: 7.7206)
|
| 391 |
+
Instr other sdr: 5.6760 (Std: 3.1386)
|
| 392 |
+
Instr other l1_freq: 49.7333 (Std: 13.0192)
|
| 393 |
+
Instr other si_sdr: 4.5561 (Std: 3.2552)
|
| 394 |
+
Metric avg sdr : 8.8384
|
| 395 |
+
Metric avg l1_freq : 50.4860
|
| 396 |
+
Metric avg si_sdr : 7.6449
|
| 397 |
+
Train epoch: 36 Learning rate: 2.9403675625e-05
|
| 398 |
+
Training loss: 0.095640
|
| 399 |
+
Instr dry sdr: 12.1978 (Std: 4.6388)
|
| 400 |
+
Instr dry l1_freq: 51.5424 (Std: 14.6671)
|
| 401 |
+
Instr dry si_sdr: 10.9504 (Std: 7.7064)
|
| 402 |
+
Instr other sdr: 5.8538 (Std: 3.1690)
|
| 403 |
+
Instr other l1_freq: 50.2770 (Std: 13.1821)
|
| 404 |
+
Instr other si_sdr: 4.7852 (Std: 3.2577)
|
| 405 |
+
Metric avg sdr : 9.0258
|
| 406 |
+
Metric avg l1_freq : 50.9097
|
| 407 |
+
Metric avg si_sdr : 7.8678
|
| 408 |
+
Train epoch: 37 Learning rate: 2.9403675625e-05
|
| 409 |
+
Training loss: 0.097300
|
| 410 |
+
Instr dry sdr: 12.1350 (Std: 4.7538)
|
| 411 |
+
Instr dry l1_freq: 51.1537 (Std: 14.8995)
|
| 412 |
+
Instr dry si_sdr: 10.6954 (Std: 8.3349)
|
| 413 |
+
Instr other sdr: 5.7904 (Std: 3.2381)
|
| 414 |
+
Instr other l1_freq: 50.0719 (Std: 13.2881)
|
| 415 |
+
Instr other si_sdr: 4.7196 (Std: 3.3284)
|
| 416 |
+
Metric avg sdr : 8.9627
|
| 417 |
+
Metric avg l1_freq : 50.6128
|
| 418 |
+
Metric avg si_sdr : 7.7075
|
| 419 |
+
Train epoch: 38 Learning rate: 2.9403675625e-05
|
| 420 |
+
Training loss: 0.097327
|
| 421 |
+
Instr dry sdr: 12.0688 (Std: 4.8227)
|
| 422 |
+
Instr dry l1_freq: 50.9813 (Std: 15.0747)
|
| 423 |
+
Instr dry si_sdr: 10.5224 (Std: 8.6736)
|
| 424 |
+
Instr other sdr: 5.7242 (Std: 3.2753)
|
| 425 |
+
Instr other l1_freq: 50.0266 (Std: 13.4201)
|
| 426 |
+
Instr other si_sdr: 4.6608 (Std: 3.3507)
|
| 427 |
+
Metric avg sdr : 8.8965
|
| 428 |
+
Metric avg l1_freq : 50.5040
|
| 429 |
+
Metric avg si_sdr : 7.5916
|
| 430 |
+
Train epoch: 39 Learning rate: 2.9403675625e-05
|
| 431 |
+
Training loss: 0.100668
|
| 432 |
+
Instr dry sdr: 11.8969 (Std: 4.8789)
|
| 433 |
+
Instr dry l1_freq: 50.1775 (Std: 15.0496)
|
| 434 |
+
Instr dry si_sdr: 10.4221 (Std: 8.4724)
|
| 435 |
+
Instr other sdr: 5.5662 (Std: 3.2807)
|
| 436 |
+
Instr other l1_freq: 49.3151 (Std: 13.3768)
|
| 437 |
+
Instr other si_sdr: 4.4702 (Std: 3.3781)
|
| 438 |
+
Metric avg sdr : 8.7316
|
| 439 |
+
Metric avg l1_freq : 49.7463
|
| 440 |
+
Metric avg si_sdr : 7.4462
|
| 441 |
+
Train epoch: 40 Learning rate: 2.7933491843749998e-05
|
| 442 |
+
Training loss: 0.096047
|
| 443 |
+
Instr dry sdr: 11.7411 (Std: 5.1290)
|
| 444 |
+
Instr dry l1_freq: 49.9637 (Std: 15.4402)
|
| 445 |
+
Instr dry si_sdr: 10.1175 (Std: 8.8404)
|
| 446 |
+
Instr other sdr: 5.4359 (Std: 3.4525)
|
| 447 |
+
Instr other l1_freq: 49.2590 (Std: 13.6127)
|
| 448 |
+
Instr other si_sdr: 4.3865 (Std: 3.5094)
|
| 449 |
+
Metric avg sdr : 8.5885
|
| 450 |
+
Metric avg l1_freq : 49.6114
|
| 451 |
+
Metric avg si_sdr : 7.2520
|
| 452 |
+
Train epoch: 41 Learning rate: 2.7933491843749998e-05
|
| 453 |
+
Training loss: 0.095904
|
| 454 |
+
Instr dry sdr: 12.2122 (Std: 4.6289)
|
| 455 |
+
Instr dry l1_freq: 51.6605 (Std: 14.6610)
|
| 456 |
+
Instr dry si_sdr: 11.2688 (Std: 6.6841)
|
| 457 |
+
Instr other sdr: 5.8853 (Std: 3.1060)
|
| 458 |
+
Instr other l1_freq: 50.0406 (Std: 13.1129)
|
| 459 |
+
Instr other si_sdr: 4.8181 (Std: 3.2378)
|
| 460 |
+
Metric avg sdr : 9.0487
|
| 461 |
+
Metric avg l1_freq : 50.8506
|
| 462 |
+
Metric avg si_sdr : 8.0434
|
| 463 |
+
Train epoch: 42 Learning rate: 2.7933491843749998e-05
|
| 464 |
+
Training loss: 0.100599
|
| 465 |
+
Instr dry sdr: 12.1917 (Std: 4.6540)
|
| 466 |
+
Instr dry l1_freq: 51.6310 (Std: 14.7739)
|
| 467 |
+
Instr dry si_sdr: 11.0723 (Std: 7.3049)
|
| 468 |
+
Instr other sdr: 5.8670 (Std: 3.1752)
|
| 469 |
+
Instr other l1_freq: 50.0911 (Std: 13.2149)
|
| 470 |
+
Instr other si_sdr: 4.8079 (Std: 3.2820)
|
| 471 |
+
Metric avg sdr : 9.0293
|
| 472 |
+
Metric avg l1_freq : 50.8610
|
| 473 |
+
Metric avg si_sdr : 7.9401
|
| 474 |
+
Train epoch: 43 Learning rate: 2.7933491843749998e-05
|
| 475 |
+
Training loss: 0.098432
|
| 476 |
+
Instr dry sdr: 12.2574 (Std: 4.6928)
|
| 477 |
+
Instr dry l1_freq: 51.7157 (Std: 14.8442)
|
| 478 |
+
Instr dry si_sdr: 11.0937 (Std: 7.4824)
|
| 479 |
+
Instr other sdr: 5.9243 (Std: 3.2065)
|
| 480 |
+
Instr other l1_freq: 50.3579 (Std: 13.3033)
|
| 481 |
+
Instr other si_sdr: 4.8882 (Std: 3.3074)
|
| 482 |
+
Metric avg sdr : 9.0909
|
| 483 |
+
Metric avg l1_freq : 51.0368
|
| 484 |
+
Metric avg si_sdr : 7.9909
|
| 485 |
+
Train epoch: 44 Learning rate: 2.7933491843749998e-05
|
| 486 |
+
Training loss: 0.099358
|
| 487 |
+
Instr dry sdr: 12.1303 (Std: 4.8594)
|
| 488 |
+
Instr dry l1_freq: 51.3296 (Std: 15.1673)
|
| 489 |
+
Instr dry si_sdr: 10.7959 (Std: 8.0152)
|
| 490 |
+
Instr other sdr: 5.8136 (Std: 3.3279)
|
| 491 |
+
Instr other l1_freq: 50.1510 (Std: 13.4426)
|
| 492 |
+
Instr other si_sdr: 4.7747 (Std: 3.4179)
|
| 493 |
+
Metric avg sdr : 8.9719
|
| 494 |
+
Metric avg l1_freq : 50.7403
|
| 495 |
+
Metric avg si_sdr : 7.7853
|
| 496 |
+
Train epoch: 45 Learning rate: 2.7933491843749998e-05
|
| 497 |
+
Training loss: 0.094929
|
| 498 |
+
Instr dry sdr: 12.0053 (Std: 4.9333)
|
| 499 |
+
Instr dry l1_freq: 51.0921 (Std: 15.2064)
|
| 500 |
+
Instr dry si_sdr: 10.6287 (Std: 8.1391)
|
| 501 |
+
Instr other sdr: 5.6823 (Std: 3.3632)
|
| 502 |
+
Instr other l1_freq: 49.9480 (Std: 13.4875)
|
| 503 |
+
Instr other si_sdr: 4.6250 (Std: 3.4695)
|
| 504 |
+
Metric avg sdr : 8.8438
|
| 505 |
+
Metric avg l1_freq : 50.5201
|
| 506 |
+
Metric avg si_sdr : 7.6269
|
| 507 |
+
Train epoch: 46 Learning rate: 2.7933491843749998e-05
|
| 508 |
+
Training loss: 0.094544
|
| 509 |
+
Instr dry sdr: 12.2630 (Std: 4.7134)
|
| 510 |
+
Instr dry l1_freq: 51.8582 (Std: 14.7762)
|
| 511 |
+
Instr dry si_sdr: 11.2257 (Std: 7.0517)
|
| 512 |
+
Instr other sdr: 5.9420 (Std: 3.2099)
|
| 513 |
+
Instr other l1_freq: 50.4802 (Std: 13.1570)
|
| 514 |
+
Instr other si_sdr: 4.9045 (Std: 3.3225)
|
| 515 |
+
Metric avg sdr : 9.1025
|
| 516 |
+
Metric avg l1_freq : 51.1692
|
| 517 |
+
Metric avg si_sdr : 8.0651
|
| 518 |
+
Train epoch: 47 Learning rate: 2.7933491843749998e-05
|
| 519 |
+
Training loss: 0.100300
|
| 520 |
+
Instr dry sdr: 12.5258 (Std: 4.2445)
|
| 521 |
+
Instr dry l1_freq: 52.7581 (Std: 13.7617)
|
| 522 |
+
Instr dry si_sdr: 11.9621 (Std: 5.3200)
|
| 523 |
+
Instr other sdr: 6.2022 (Std: 2.8190)
|
| 524 |
+
Instr other l1_freq: 50.9424 (Std: 12.3721)
|
| 525 |
+
Instr other si_sdr: 5.1532 (Std: 3.0129)
|
| 526 |
+
Metric avg sdr : 9.3640
|
| 527 |
+
Metric avg l1_freq : 51.8502
|
| 528 |
+
Metric avg si_sdr : 8.5576
|
| 529 |
+
Train epoch: 48 Learning rate: 2.7933491843749998e-05
|
| 530 |
+
Training loss: 0.095596
|
| 531 |
+
Instr dry sdr: 12.4497 (Std: 4.4619)
|
| 532 |
+
Instr dry l1_freq: 52.3584 (Std: 14.2714)
|
| 533 |
+
Instr dry si_sdr: 11.6337 (Std: 6.2797)
|
| 534 |
+
Instr other sdr: 6.1288 (Std: 3.0325)
|
| 535 |
+
Instr other l1_freq: 50.8711 (Std: 12.8454)
|
| 536 |
+
Instr other si_sdr: 5.0948 (Std: 3.1700)
|
| 537 |
+
Metric avg sdr : 9.2892
|
| 538 |
+
Metric avg l1_freq : 51.6147
|
| 539 |
+
Metric avg si_sdr : 8.3643
|
| 540 |
+
Train epoch: 49 Learning rate: 2.7933491843749998e-05
|
| 541 |
+
Training loss: 0.103359
|
| 542 |
+
Instr dry sdr: 12.4709 (Std: 4.3961)
|
| 543 |
+
Instr dry l1_freq: 51.9473 (Std: 14.2387)
|
| 544 |
+
Instr dry si_sdr: 11.8527 (Std: 5.5742)
|
| 545 |
+
Instr other sdr: 6.1567 (Std: 2.9016)
|
| 546 |
+
Instr other l1_freq: 50.5832 (Std: 12.7367)
|
| 547 |
+
Instr other si_sdr: 5.1042 (Std: 3.1088)
|
| 548 |
+
Metric avg sdr : 9.3138
|
| 549 |
+
Metric avg l1_freq : 51.2652
|
| 550 |
+
Metric avg si_sdr : 8.4785
|
| 551 |
+
Train epoch: 50 Learning rate: 2.7933491843749998e-05
|
| 552 |
+
Training loss: 0.097140
|
| 553 |
+
Instr dry sdr: 12.5480 (Std: 4.4551)
|
| 554 |
+
Instr dry l1_freq: 52.4209 (Std: 14.3051)
|
| 555 |
+
Instr dry si_sdr: 11.8755 (Std: 5.8093)
|
| 556 |
+
Instr other sdr: 6.2244 (Std: 2.9714)
|
| 557 |
+
Instr other l1_freq: 50.8542 (Std: 12.8472)
|
| 558 |
+
Instr other si_sdr: 5.2055 (Std: 3.1398)
|
| 559 |
+
Metric avg sdr : 9.3862
|
| 560 |
+
Metric avg l1_freq : 51.6375
|
| 561 |
+
Metric avg si_sdr : 8.5405
|
| 562 |
+
Train epoch: 51 Learning rate: 2.7933491843749998e-05
|
| 563 |
+
Training loss: 0.095402
|
| 564 |
+
Instr dry sdr: 12.4629 (Std: 4.4734)
|
| 565 |
+
Instr dry l1_freq: 52.3328 (Std: 14.3300)
|
| 566 |
+
Instr dry si_sdr: 11.7317 (Std: 6.0010)
|
| 567 |
+
Instr other sdr: 6.1470 (Std: 3.0206)
|
| 568 |
+
Instr other l1_freq: 50.7004 (Std: 12.8662)
|
| 569 |
+
Instr other si_sdr: 5.1226 (Std: 3.1724)
|
| 570 |
+
Metric avg sdr : 9.3050
|
| 571 |
+
Metric avg l1_freq : 51.5166
|
| 572 |
+
Metric avg si_sdr : 8.4272
|
| 573 |
+
Train epoch: 52 Learning rate: 2.7933491843749998e-05
|
| 574 |
+
Training loss: 0.099080
|
| 575 |
+
Instr dry sdr: 12.6029 (Std: 4.4025)
|
| 576 |
+
Instr dry l1_freq: 52.7431 (Std: 14.1114)
|
| 577 |
+
Instr dry si_sdr: 12.0241 (Std: 5.4395)
|
| 578 |
+
Instr other sdr: 6.2833 (Std: 2.9341)
|
| 579 |
+
Instr other l1_freq: 51.1383 (Std: 12.6247)
|
| 580 |
+
Instr other si_sdr: 5.2792 (Std: 3.1178)
|
| 581 |
+
Metric avg sdr : 9.4431
|
| 582 |
+
Metric avg l1_freq : 51.9407
|
| 583 |
+
Metric avg si_sdr : 8.6517
|
| 584 |
+
Train epoch: 53 Learning rate: 2.7933491843749998e-05
|
| 585 |
+
Training loss: 0.094254
|
| 586 |
+
Instr dry sdr: 12.5107 (Std: 4.6218)
|
| 587 |
+
Instr dry l1_freq: 52.4360 (Std: 14.5449)
|
| 588 |
+
Instr dry si_sdr: 11.7284 (Std: 6.2280)
|
| 589 |
+
Instr other sdr: 6.1962 (Std: 3.1480)
|
| 590 |
+
Instr other l1_freq: 50.9403 (Std: 13.0012)
|
| 591 |
+
Instr other si_sdr: 5.2072 (Std: 3.2774)
|
| 592 |
+
Metric avg sdr : 9.3534
|
| 593 |
+
Metric avg l1_freq : 51.6882
|
| 594 |
+
Metric avg si_sdr : 8.4678
|
| 595 |
+
Train epoch: 54 Learning rate: 2.7933491843749998e-05
|
| 596 |
+
Training loss: 0.091159
|
| 597 |
+
Instr dry sdr: 12.0227 (Std: 4.9936)
|
| 598 |
+
Instr dry l1_freq: 51.1259 (Std: 15.4072)
|
| 599 |
+
Instr dry si_sdr: 10.5224 (Std: 8.5369)
|
| 600 |
+
Instr other sdr: 5.7271 (Std: 3.4290)
|
| 601 |
+
Instr other l1_freq: 49.7751 (Std: 13.6606)
|
| 602 |
+
Instr other si_sdr: 4.7132 (Std: 3.4658)
|
| 603 |
+
Metric avg sdr : 8.8749
|
| 604 |
+
Metric avg l1_freq : 50.4505
|
| 605 |
+
Metric avg si_sdr : 7.6178
|
| 606 |
+
Train epoch: 55 Learning rate: 2.7933491843749998e-05
|
| 607 |
+
Training loss: 0.096296
|
| 608 |
+
Instr dry sdr: 12.2970 (Std: 4.8705)
|
| 609 |
+
Instr dry l1_freq: 51.8453 (Std: 15.0951)
|
| 610 |
+
Instr dry si_sdr: 11.0047 (Std: 7.9714)
|
| 611 |
+
Instr other sdr: 5.9926 (Std: 3.3691)
|
| 612 |
+
Instr other l1_freq: 50.5093 (Std: 13.4355)
|
| 613 |
+
Instr other si_sdr: 5.0113 (Std: 3.4300)
|
| 614 |
+
Metric avg sdr : 9.1448
|
| 615 |
+
Metric avg l1_freq : 51.1773
|
| 616 |
+
Metric avg si_sdr : 8.0080
|
| 617 |
+
Train epoch: 56 Learning rate: 2.6536817251562497e-05
|
| 618 |
+
Training loss: 0.094687
|
| 619 |
+
Instr dry sdr: 12.2359 (Std: 5.0098)
|
| 620 |
+
Instr dry l1_freq: 51.4253 (Std: 15.2918)
|
| 621 |
+
Instr dry si_sdr: 10.7536 (Std: 8.5601)
|
| 622 |
+
Instr other sdr: 5.9342 (Std: 3.4720)
|
| 623 |
+
Instr other l1_freq: 50.4779 (Std: 13.6366)
|
| 624 |
+
Instr other si_sdr: 4.9585 (Std: 3.5136)
|
| 625 |
+
Metric avg sdr : 9.0850
|
| 626 |
+
Metric avg l1_freq : 50.9516
|
| 627 |
+
Metric avg si_sdr : 7.8560
|
| 628 |
+
Train epoch: 57 Learning rate: 2.6536817251562497e-05
|
| 629 |
+
Training loss: 0.095657
|
| 630 |
+
Instr dry sdr: 12.2102 (Std: 4.9633)
|
| 631 |
+
Instr dry l1_freq: 51.4960 (Std: 15.2521)
|
| 632 |
+
Instr dry si_sdr: 10.7497 (Std: 8.4845)
|
| 633 |
+
Instr other sdr: 5.9077 (Std: 3.4567)
|
| 634 |
+
Instr other l1_freq: 50.2654 (Std: 13.5850)
|
| 635 |
+
Instr other si_sdr: 4.9244 (Std: 3.4981)
|
| 636 |
+
Metric avg sdr : 9.0590
|
| 637 |
+
Metric avg l1_freq : 50.8807
|
| 638 |
+
Metric avg si_sdr : 7.8371
|
| 639 |
+
Train epoch: 58 Learning rate: 2.6536817251562497e-05
|
| 640 |
+
Training loss: 0.097515
|
| 641 |
+
Instr dry sdr: 12.4264 (Std: 4.8078)
|
| 642 |
+
Instr dry l1_freq: 52.1458 (Std: 14.9872)
|
| 643 |
+
Instr dry si_sdr: 11.3226 (Std: 7.4191)
|
| 644 |
+
Instr other sdr: 6.1070 (Std: 3.3150)
|
| 645 |
+
Instr other l1_freq: 50.8045 (Std: 13.3580)
|
| 646 |
+
Instr other si_sdr: 5.1458 (Std: 3.3906)
|
| 647 |
+
Metric avg sdr : 9.2667
|
| 648 |
+
Metric avg l1_freq : 51.4752
|
| 649 |
+
Metric avg si_sdr : 8.2342
|
| 650 |
+
Train epoch: 59 Learning rate: 2.5209976388984372e-05
|
| 651 |
+
Training loss: 0.097498
|
| 652 |
+
Instr dry sdr: 12.3827 (Std: 4.9430)
|
| 653 |
+
Instr dry l1_freq: 51.7468 (Std: 15.2411)
|
| 654 |
+
Instr dry si_sdr: 10.9553 (Std: 8.4594)
|
| 655 |
+
Instr other sdr: 6.0841 (Std: 3.4534)
|
| 656 |
+
Instr other l1_freq: 50.8139 (Std: 13.6451)
|
| 657 |
+
Instr other si_sdr: 5.1394 (Std: 3.4837)
|
| 658 |
+
Metric avg sdr : 9.2334
|
| 659 |
+
Metric avg l1_freq : 51.2803
|
| 660 |
+
Metric avg si_sdr : 8.0473
|
| 661 |
+
Train epoch: 60 Learning rate: 2.5209976388984372e-05
|
| 662 |
+
Training loss: 0.093099
|
| 663 |
+
Instr dry sdr: 12.2849 (Std: 4.9824)
|
| 664 |
+
Instr dry l1_freq: 51.6414 (Std: 15.1842)
|
| 665 |
+
Instr dry si_sdr: 10.8583 (Std: 8.4044)
|
| 666 |
+
Instr other sdr: 5.9955 (Std: 3.4715)
|
| 667 |
+
Instr other l1_freq: 50.6220 (Std: 13.5627)
|
| 668 |
+
Instr other si_sdr: 5.0373 (Std: 3.5125)
|
| 669 |
+
Metric avg sdr : 9.1402
|
| 670 |
+
Metric avg l1_freq : 51.1317
|
| 671 |
+
Metric avg si_sdr : 7.9478
|
| 672 |
+
Train epoch: 61 Learning rate: 2.5209976388984372e-05
|
| 673 |
+
Training loss: 0.103669
|
| 674 |
+
Instr dry sdr: 12.0979 (Std: 5.1797)
|
| 675 |
+
Instr dry l1_freq: 50.9696 (Std: 15.3880)
|
| 676 |
+
Instr dry si_sdr: 10.4390 (Std: 9.0538)
|
| 677 |
+
Instr other sdr: 5.8103 (Std: 3.6200)
|
| 678 |
+
Instr other l1_freq: 50.1947 (Std: 13.6859)
|
| 679 |
+
Instr other si_sdr: 4.8524 (Std: 3.6527)
|
| 680 |
+
Metric avg sdr : 8.9541
|
| 681 |
+
Metric avg l1_freq : 50.5821
|
| 682 |
+
Metric avg si_sdr : 7.6457
|
| 683 |
+
Train epoch: 62 Learning rate: 2.3949477569535154e-05
|
| 684 |
+
Training loss: 0.092208
|
| 685 |
+
Instr dry sdr: 12.2718 (Std: 5.0631)
|
| 686 |
+
Instr dry l1_freq: 51.3891 (Std: 15.3569)
|
| 687 |
+
Instr dry si_sdr: 10.7125 (Std: 8.8047)
|
| 688 |
+
Instr other sdr: 5.9777 (Std: 3.5298)
|
| 689 |
+
Instr other l1_freq: 50.5797 (Std: 13.7257)
|
| 690 |
+
Instr other si_sdr: 5.0241 (Std: 3.5631)
|
| 691 |
+
Metric avg sdr : 9.1248
|
| 692 |
+
Metric avg l1_freq : 50.9844
|
| 693 |
+
Metric avg si_sdr : 7.8683
|
| 694 |
+
Train epoch: 63 Learning rate: 2.3949477569535154e-05
|
| 695 |
+
Training loss: 0.102014
|
| 696 |
+
Instr dry sdr: 11.9243 (Std: 5.3757)
|
| 697 |
+
Instr dry l1_freq: 50.3253 (Std: 15.8274)
|
| 698 |
+
Instr dry si_sdr: 10.0076 (Std: 9.6708)
|
| 699 |
+
Instr other sdr: 5.6612 (Std: 3.7498)
|
| 700 |
+
Instr other l1_freq: 49.9824 (Std: 13.9572)
|
| 701 |
+
Instr other si_sdr: 4.7142 (Std: 3.7771)
|
| 702 |
+
Metric avg sdr : 8.7927
|
| 703 |
+
Metric avg l1_freq : 50.1539
|
| 704 |
+
Metric avg si_sdr : 7.3609
|
| 705 |
+
Train epoch: 64 Learning rate: 2.3949477569535154e-05
|
| 706 |
+
Training loss: 0.095988
|
| 707 |
+
Instr dry sdr: 12.2540 (Std: 5.0462)
|
| 708 |
+
Instr dry l1_freq: 51.4500 (Std: 15.3783)
|
| 709 |
+
Instr dry si_sdr: 10.7858 (Std: 8.5484)
|
| 710 |
+
Instr other sdr: 5.9716 (Std: 3.5017)
|
| 711 |
+
Instr other l1_freq: 50.5902 (Std: 13.7341)
|
| 712 |
+
Instr other si_sdr: 5.0183 (Std: 3.5460)
|
| 713 |
+
Metric avg sdr : 9.1128
|
| 714 |
+
Metric avg l1_freq : 51.0201
|
| 715 |
+
Metric avg si_sdr : 7.9021
|
| 716 |
+
Train epoch: 65 Learning rate: 2.2752003691058396e-05
|
| 717 |
+
Training loss: 0.098379
|
| 718 |
+
Instr dry sdr: 12.3659 (Std: 5.0193)
|
| 719 |
+
Instr dry l1_freq: 51.6833 (Std: 15.3331)
|
| 720 |
+
Instr dry si_sdr: 10.9391 (Std: 8.4503)
|
| 721 |
+
Instr other sdr: 6.0788 (Std: 3.4828)
|
| 722 |
+
Instr other l1_freq: 50.8337 (Std: 13.6849)
|
| 723 |
+
Instr other si_sdr: 5.1414 (Std: 3.5247)
|
| 724 |
+
Metric avg sdr : 9.2224
|
| 725 |
+
Metric avg l1_freq : 51.2585
|
| 726 |
+
Metric avg si_sdr : 8.0402
|
| 727 |
+
Train epoch: 66 Learning rate: 2.2752003691058396e-05
|
| 728 |
+
Training loss: 0.091182
|
| 729 |
+
Instr dry sdr: 12.5520 (Std: 4.7837)
|
| 730 |
+
Instr dry l1_freq: 52.3609 (Std: 14.9107)
|
| 731 |
+
Instr dry si_sdr: 11.5022 (Std: 7.2267)
|
| 732 |
+
Instr other sdr: 6.2720 (Std: 3.3150)
|
| 733 |
+
Instr other l1_freq: 51.2592 (Std: 13.3255)
|
| 734 |
+
Instr other si_sdr: 5.3416 (Std: 3.3879)
|
| 735 |
+
Metric avg sdr : 9.4120
|
| 736 |
+
Metric avg l1_freq : 51.8101
|
| 737 |
+
Metric avg si_sdr : 8.4219
|
| 738 |
+
Train epoch: 67 Learning rate: 2.2752003691058396e-05
|
| 739 |
+
Training loss: 0.092582
|
| 740 |
+
Instr dry sdr: 12.6093 (Std: 4.8153)
|
| 741 |
+
Instr dry l1_freq: 52.3751 (Std: 15.0178)
|
| 742 |
+
Instr dry si_sdr: 11.5044 (Std: 7.4468)
|
| 743 |
+
Instr other sdr: 6.3197 (Std: 3.3409)
|
| 744 |
+
Instr other l1_freq: 51.4147 (Std: 13.4250)
|
| 745 |
+
Instr other si_sdr: 5.4056 (Std: 3.4002)
|
| 746 |
+
Metric avg sdr : 9.4645
|
| 747 |
+
Metric avg l1_freq : 51.8949
|
| 748 |
+
Metric avg si_sdr : 8.4550
|
| 749 |
+
Train epoch: 68 Learning rate: 2.2752003691058396e-05
|
| 750 |
+
Training loss: 0.095525
|
| 751 |
+
Instr dry sdr: 12.6933 (Std: 4.6196)
|
| 752 |
+
Instr dry l1_freq: 52.7676 (Std: 14.5984)
|
| 753 |
+
Instr dry si_sdr: 11.9203 (Std: 6.2891)
|
| 754 |
+
Instr other sdr: 6.4140 (Std: 3.1507)
|
| 755 |
+
Instr other l1_freq: 51.5851 (Std: 12.9630)
|
| 756 |
+
Instr other si_sdr: 5.4850 (Std: 3.2781)
|
| 757 |
+
Metric avg sdr : 9.5537
|
| 758 |
+
Metric avg l1_freq : 52.1764
|
| 759 |
+
Metric avg si_sdr : 8.7026
|
| 760 |
+
Train epoch: 69 Learning rate: 2.2752003691058396e-05
|
| 761 |
+
Training loss: 0.094700
|
| 762 |
+
Instr dry sdr: 12.6011 (Std: 4.7247)
|
| 763 |
+
Instr dry l1_freq: 52.4801 (Std: 14.7547)
|
| 764 |
+
Instr dry si_sdr: 11.6395 (Std: 6.9502)
|
| 765 |
+
Instr other sdr: 6.3259 (Std: 3.2496)
|
| 766 |
+
Instr other l1_freq: 51.3514 (Std: 13.1609)
|
| 767 |
+
Instr other si_sdr: 5.3912 (Std: 3.3501)
|
| 768 |
+
Metric avg sdr : 9.4635
|
| 769 |
+
Metric avg l1_freq : 51.9158
|
| 770 |
+
Metric avg si_sdr : 8.5153
|
| 771 |
+
Train epoch: 70 Learning rate: 2.2752003691058396e-05
|
| 772 |
+
Training loss: 0.094604
|
| 773 |
+
Instr dry sdr: 12.7777 (Std: 4.4996)
|
| 774 |
+
Instr dry l1_freq: 52.9749 (Std: 14.2646)
|
| 775 |
+
Instr dry si_sdr: 12.0962 (Std: 5.9162)
|
| 776 |
+
Instr other sdr: 6.4962 (Std: 3.0231)
|
| 777 |
+
Instr other l1_freq: 51.8018 (Std: 12.7076)
|
| 778 |
+
Instr other si_sdr: 5.5538 (Std: 3.1770)
|
| 779 |
+
Metric avg sdr : 9.6370
|
| 780 |
+
Metric avg l1_freq : 52.3884
|
| 781 |
+
Metric avg si_sdr : 8.8250
|
| 782 |
+
Train epoch: 71 Learning rate: 2.2752003691058396e-05
|
| 783 |
+
Training loss: 0.097073
|
| 784 |
+
Instr dry sdr: 12.5640 (Std: 4.8496)
|
| 785 |
+
Instr dry l1_freq: 52.2550 (Std: 14.9567)
|
| 786 |
+
Instr dry si_sdr: 11.5595 (Std: 7.0962)
|
| 787 |
+
Instr other sdr: 6.2763 (Std: 3.3485)
|
| 788 |
+
Instr other l1_freq: 51.3199 (Std: 13.3586)
|
| 789 |
+
Instr other si_sdr: 5.3568 (Std: 3.4202)
|
| 790 |
+
Metric avg sdr : 9.4202
|
| 791 |
+
Metric avg l1_freq : 51.7875
|
| 792 |
+
Metric avg si_sdr : 8.4581
|
| 793 |
+
Train epoch: 72 Learning rate: 2.2752003691058396e-05
|
| 794 |
+
Training loss: 0.095600
|
| 795 |
+
Instr dry sdr: 12.8003 (Std: 4.5423)
|
| 796 |
+
Instr dry l1_freq: 52.7600 (Std: 14.3588)
|
| 797 |
+
Instr dry si_sdr: 12.1805 (Std: 5.7041)
|
| 798 |
+
Instr other sdr: 6.5115 (Std: 2.9982)
|
| 799 |
+
Instr other l1_freq: 52.0823 (Std: 12.7863)
|
| 800 |
+
Instr other si_sdr: 5.5840 (Std: 3.1398)
|
| 801 |
+
Metric avg sdr : 9.6559
|
| 802 |
+
Metric avg l1_freq : 52.4211
|
| 803 |
+
Metric avg si_sdr : 8.8822
|
| 804 |
+
Train epoch: 73 Learning rate: 2.2752003691058396e-05
|
| 805 |
+
Training loss: 0.094673
|
| 806 |
+
Instr dry sdr: 12.4820 (Std: 4.9681)
|
| 807 |
+
Instr dry l1_freq: 51.8282 (Std: 15.2062)
|
| 808 |
+
Instr dry si_sdr: 11.2022 (Std: 8.0409)
|
| 809 |
+
Instr other sdr: 6.1976 (Std: 3.4702)
|
| 810 |
+
Instr other l1_freq: 51.1850 (Std: 13.6441)
|
| 811 |
+
Instr other si_sdr: 5.2832 (Std: 3.5149)
|
| 812 |
+
Metric avg sdr : 9.3398
|
| 813 |
+
Metric avg l1_freq : 51.5066
|
| 814 |
+
Metric avg si_sdr : 8.2427
|
| 815 |
+
Train epoch: 74 Learning rate: 2.2752003691058396e-05
|
| 816 |
+
Training loss: 0.098970
|
| 817 |
+
Instr dry sdr: 13.0093 (Std: 4.1357)
|
| 818 |
+
Instr dry l1_freq: 53.5719 (Std: 13.3422)
|
| 819 |
+
Instr dry si_sdr: 12.5743 (Std: 4.8086)
|
| 820 |
+
Instr other sdr: 6.7228 (Std: 2.5965)
|
| 821 |
+
Instr other l1_freq: 52.6082 (Std: 11.9304)
|
| 822 |
+
Instr other si_sdr: 5.7645 (Std: 2.8514)
|
| 823 |
+
Metric avg sdr : 9.8661
|
| 824 |
+
Metric avg l1_freq : 53.0901
|
| 825 |
+
Metric avg si_sdr : 9.1694
|
| 826 |
+
Train epoch: 75 Learning rate: 2.2752003691058396e-05
|
| 827 |
+
Training loss: 0.098243
|
| 828 |
+
Instr dry sdr: 12.3501 (Std: 5.0944)
|
| 829 |
+
Instr dry l1_freq: 51.7057 (Std: 15.2088)
|
| 830 |
+
Instr dry si_sdr: 10.9885 (Std: 8.2387)
|
| 831 |
+
Instr other sdr: 6.0836 (Std: 3.5578)
|
| 832 |
+
Instr other l1_freq: 51.0110 (Std: 13.5603)
|
| 833 |
+
Instr other si_sdr: 5.1709 (Std: 3.5957)
|
| 834 |
+
Metric avg sdr : 9.2169
|
| 835 |
+
Metric avg l1_freq : 51.3583
|
| 836 |
+
Metric avg si_sdr : 8.0797
|
| 837 |
+
Train epoch: 76 Learning rate: 2.2752003691058396e-05
|
| 838 |
+
Training loss: 0.100630
|
| 839 |
+
Instr dry sdr: 12.7034 (Std: 4.6444)
|
| 840 |
+
Instr dry l1_freq: 52.7285 (Std: 14.6490)
|
| 841 |
+
Instr dry si_sdr: 11.8711 (Std: 6.4940)
|
| 842 |
+
Instr other sdr: 6.4306 (Std: 3.1718)
|
| 843 |
+
Instr other l1_freq: 51.6144 (Std: 13.1196)
|
| 844 |
+
Instr other si_sdr: 5.5063 (Std: 3.2832)
|
| 845 |
+
Metric avg sdr : 9.5670
|
| 846 |
+
Metric avg l1_freq : 52.1714
|
| 847 |
+
Metric avg si_sdr : 8.6887
|
| 848 |
+
Train epoch: 77 Learning rate: 2.2752003691058396e-05
|
| 849 |
+
Training loss: 0.096283
|
| 850 |
+
Instr dry sdr: 12.4348 (Std: 5.0475)
|
| 851 |
+
Instr dry l1_freq: 51.7710 (Std: 15.2990)
|
| 852 |
+
Instr dry si_sdr: 11.0244 (Std: 8.4198)
|
| 853 |
+
Instr other sdr: 6.1578 (Std: 3.5390)
|
| 854 |
+
Instr other l1_freq: 50.9328 (Std: 13.6746)
|
| 855 |
+
Instr other si_sdr: 5.2448 (Std: 3.5768)
|
| 856 |
+
Metric avg sdr : 9.2963
|
| 857 |
+
Metric avg l1_freq : 51.3519
|
| 858 |
+
Metric avg si_sdr : 8.1346
|
| 859 |
+
Train epoch: 78 Learning rate: 2.1614403506505474e-05
|
| 860 |
+
Training loss: 0.097837
|
| 861 |
+
Instr dry sdr: 13.0207 (Std: 4.1453)
|
| 862 |
+
Instr dry l1_freq: 53.6459 (Std: 13.1713)
|
| 863 |
+
Instr dry si_sdr: 12.6080 (Std: 4.7312)
|
| 864 |
+
Instr other sdr: 6.7353 (Std: 2.5701)
|
| 865 |
+
Instr other l1_freq: 52.6842 (Std: 11.7093)
|
| 866 |
+
Instr other si_sdr: 5.7647 (Std: 2.8744)
|
| 867 |
+
Metric avg sdr : 9.8780
|
| 868 |
+
Metric avg l1_freq : 53.1650
|
| 869 |
+
Metric avg si_sdr : 9.1863
|
| 870 |
+
Train epoch: 79 Learning rate: 2.1614403506505474e-05
|
| 871 |
+
Training loss: 0.101947
|
| 872 |
+
Instr dry sdr: 12.9332 (Std: 4.3436)
|
| 873 |
+
Instr dry l1_freq: 53.3537 (Std: 13.8190)
|
| 874 |
+
Instr dry si_sdr: 12.4283 (Std: 5.2005)
|
| 875 |
+
Instr other sdr: 6.6543 (Std: 2.8273)
|
| 876 |
+
Instr other l1_freq: 52.4335 (Std: 12.2786)
|
| 877 |
+
Instr other si_sdr: 5.7128 (Std: 3.0416)
|
| 878 |
+
Metric avg sdr : 9.7937
|
| 879 |
+
Metric avg l1_freq : 52.8936
|
| 880 |
+
Metric avg si_sdr : 9.0706
|
| 881 |
+
Train epoch: 80 Learning rate: 2.1614403506505474e-05
|
| 882 |
+
Training loss: 0.099350
|
| 883 |
+
Instr dry sdr: 12.4723 (Std: 5.0149)
|
| 884 |
+
Instr dry l1_freq: 52.1068 (Std: 15.3157)
|
| 885 |
+
Instr dry si_sdr: 11.0805 (Std: 8.3241)
|
| 886 |
+
Instr other sdr: 6.2074 (Std: 3.5594)
|
| 887 |
+
Instr other l1_freq: 51.0360 (Std: 13.6940)
|
| 888 |
+
Instr other si_sdr: 5.3164 (Std: 3.5688)
|
| 889 |
+
Metric avg sdr : 9.3399
|
| 890 |
+
Metric avg l1_freq : 51.5714
|
| 891 |
+
Metric avg si_sdr : 8.1985
|
| 892 |
+
Train epoch: 81 Learning rate: 2.1614403506505474e-05
|
| 893 |
+
Training loss: 0.093635
|
| 894 |
+
Instr dry sdr: 12.7099 (Std: 4.8541)
|
| 895 |
+
Instr dry l1_freq: 52.5968 (Std: 15.0617)
|
| 896 |
+
Instr dry si_sdr: 11.8017 (Std: 6.8042)
|
| 897 |
+
Instr other sdr: 6.4319 (Std: 3.3872)
|
| 898 |
+
Instr other l1_freq: 51.6630 (Std: 13.4759)
|
| 899 |
+
Instr other si_sdr: 5.5562 (Std: 3.4348)
|
| 900 |
+
Metric avg sdr : 9.5709
|
| 901 |
+
Metric avg l1_freq : 52.1299
|
| 902 |
+
Metric avg si_sdr : 8.6790
|
| 903 |
+
Train epoch: 82 Learning rate: 2.05336833311802e-05
|
| 904 |
+
Training loss: 0.096353
|
| 905 |
+
Instr dry sdr: 12.9787 (Std: 4.3767)
|
| 906 |
+
Instr dry l1_freq: 53.1769 (Std: 14.0526)
|
| 907 |
+
Instr dry si_sdr: 12.4865 (Std: 5.1844)
|
| 908 |
+
Instr other sdr: 6.6993 (Std: 2.8520)
|
| 909 |
+
Instr other l1_freq: 52.2443 (Std: 12.6081)
|
| 910 |
+
Instr other si_sdr: 5.7706 (Std: 3.0585)
|
| 911 |
+
Metric avg sdr : 9.8390
|
| 912 |
+
Metric avg l1_freq : 52.7106
|
| 913 |
+
Metric avg si_sdr : 9.1286
|
| 914 |
+
Train epoch: 83 Learning rate: 2.05336833311802e-05
|
| 915 |
+
Training loss: 0.097904
|
| 916 |
+
Instr dry sdr: 12.7420 (Std: 4.8454)
|
| 917 |
+
Instr dry l1_freq: 52.7578 (Std: 15.0835)
|
| 918 |
+
Instr dry si_sdr: 11.7943 (Std: 6.9475)
|
| 919 |
+
Instr other sdr: 6.4755 (Std: 3.3666)
|
| 920 |
+
Instr other l1_freq: 51.7215 (Std: 13.4713)
|
| 921 |
+
Instr other si_sdr: 5.6022 (Std: 3.4287)
|
| 922 |
+
Metric avg sdr : 9.6088
|
| 923 |
+
Metric avg l1_freq : 52.2396
|
| 924 |
+
Metric avg si_sdr : 8.6982
|
| 925 |
+
Train epoch: 84 Learning rate: 2.05336833311802e-05
|
| 926 |
+
Training loss: 0.100543
|
| 927 |
+
Instr dry sdr: 12.6633 (Std: 4.9497)
|
| 928 |
+
Instr dry l1_freq: 52.5279 (Std: 15.2972)
|
| 929 |
+
Instr dry si_sdr: 11.4269 (Std: 7.9240)
|
| 930 |
+
Instr other sdr: 6.3931 (Std: 3.4863)
|
| 931 |
+
Instr other l1_freq: 51.4757 (Std: 13.7058)
|
| 932 |
+
Instr other si_sdr: 5.5262 (Std: 3.5109)
|
| 933 |
+
Metric avg sdr : 9.5282
|
| 934 |
+
Metric avg l1_freq : 52.0018
|
| 935 |
+
Metric avg si_sdr : 8.4766
|
| 936 |
+
Train epoch: 85 Learning rate: 1.9506999164621187e-05
|
| 937 |
+
Training loss: 0.094997
|
| 938 |
+
Instr dry sdr: 12.6071 (Std: 4.9734)
|
| 939 |
+
Instr dry l1_freq: 52.4756 (Std: 15.3162)
|
| 940 |
+
Instr dry si_sdr: 11.3062 (Std: 8.1111)
|
| 941 |
+
Instr other sdr: 6.3386 (Std: 3.5149)
|
| 942 |
+
Instr other l1_freq: 51.1921 (Std: 13.6591)
|
| 943 |
+
Instr other si_sdr: 5.4646 (Std: 3.5364)
|
| 944 |
+
Metric avg sdr : 9.4728
|
| 945 |
+
Metric avg l1_freq : 51.8338
|
| 946 |
+
Metric avg si_sdr : 8.3854
|
| 947 |
+
Train epoch: 86 Learning rate: 1.9506999164621187e-05
|
| 948 |
+
Training loss: 0.088851
|
| 949 |
+
Instr dry sdr: 12.7812 (Std: 4.8315)
|
| 950 |
+
Instr dry l1_freq: 52.8639 (Std: 14.9941)
|
| 951 |
+
Instr dry si_sdr: 11.8750 (Std: 6.8288)
|
| 952 |
+
Instr other sdr: 6.5110 (Std: 3.3512)
|
| 953 |
+
Instr other l1_freq: 51.8905 (Std: 13.4302)
|
| 954 |
+
Instr other si_sdr: 5.6364 (Std: 3.4245)
|
| 955 |
+
Metric avg sdr : 9.6461
|
| 956 |
+
Metric avg l1_freq : 52.3772
|
| 957 |
+
Metric avg si_sdr : 8.7557
|
| 958 |
+
Train epoch: 87 Learning rate: 1.9506999164621187e-05
|
| 959 |
+
Training loss: 0.096688
|
| 960 |
+
Instr dry sdr: 12.6107 (Std: 5.0691)
|
| 961 |
+
Instr dry l1_freq: 52.2532 (Std: 15.5093)
|
| 962 |
+
Instr dry si_sdr: 11.1608 (Std: 8.5200)
|
| 963 |
+
Instr other sdr: 6.3398 (Std: 3.6006)
|
| 964 |
+
Instr other l1_freq: 51.5105 (Std: 13.9688)
|
| 965 |
+
Instr other si_sdr: 5.4765 (Std: 3.5912)
|
| 966 |
+
Metric avg sdr : 9.4752
|
| 967 |
+
Metric avg l1_freq : 51.8819
|
| 968 |
+
Metric avg si_sdr : 8.3187
|
| 969 |
+
Train epoch: 88 Learning rate: 1.8531649206390126e-05
|
| 970 |
+
Training loss: 0.088508
|
| 971 |
+
Instr dry sdr: 12.7883 (Std: 4.8446)
|
| 972 |
+
Instr dry l1_freq: 52.9156 (Std: 15.0524)
|
| 973 |
+
Instr dry si_sdr: 11.9754 (Std: 6.4877)
|
| 974 |
+
Instr other sdr: 6.5203 (Std: 3.3676)
|
| 975 |
+
Instr other l1_freq: 51.7987 (Std: 13.4090)
|
| 976 |
+
Instr other si_sdr: 5.6604 (Std: 3.4343)
|
| 977 |
+
Metric avg sdr : 9.6543
|
| 978 |
+
Metric avg l1_freq : 52.3571
|
| 979 |
+
Metric avg si_sdr : 8.8179
|
| 980 |
+
Train epoch: 89 Learning rate: 1.8531649206390126e-05
|
| 981 |
+
Training loss: 0.093433
|
| 982 |
+
Instr dry sdr: 12.6572 (Std: 4.9947)
|
| 983 |
+
Instr dry l1_freq: 52.4093 (Std: 15.3350)
|
| 984 |
+
Instr dry si_sdr: 11.4798 (Std: 7.6844)
|
| 985 |
+
Instr other sdr: 6.3887 (Std: 3.5282)
|
| 986 |
+
Instr other l1_freq: 51.5581 (Std: 13.7855)
|
| 987 |
+
Instr other si_sdr: 5.5268 (Std: 3.5389)
|
| 988 |
+
Metric avg sdr : 9.5229
|
| 989 |
+
Metric avg l1_freq : 51.9837
|
| 990 |
+
Metric avg si_sdr : 8.5033
|
| 991 |
+
Train epoch: 90 Learning rate: 1.8531649206390126e-05
|
| 992 |
+
Training loss: 0.094809
|
| 993 |
+
Instr dry sdr: 13.1507 (Std: 4.1088)
|
| 994 |
+
Instr dry l1_freq: 53.7715 (Std: 13.3363)
|
| 995 |
+
Instr dry si_sdr: 12.7707 (Std: 4.6134)
|
| 996 |
+
Instr other sdr: 6.8830 (Std: 2.5547)
|
| 997 |
+
Instr other l1_freq: 52.7358 (Std: 11.8587)
|
| 998 |
+
Instr other si_sdr: 5.9448 (Std: 2.8721)
|
| 999 |
+
Metric avg sdr : 10.0169
|
| 1000 |
+
Metric avg l1_freq : 53.2536
|
| 1001 |
+
Metric avg si_sdr : 9.3577
|
| 1002 |
+
Train epoch: 91 Learning rate: 1.8531649206390126e-05
|
| 1003 |
+
Training loss: 0.098019
|
| 1004 |
+
Instr dry sdr: 12.2693 (Std: 5.2773)
|
| 1005 |
+
Instr dry l1_freq: 51.0024 (Std: 15.6507)
|
| 1006 |
+
Instr dry si_sdr: 10.1893 (Std: 10.3445)
|
| 1007 |
+
Instr other sdr: 6.0155 (Std: 3.7583)
|
| 1008 |
+
Instr other l1_freq: 50.2293 (Std: 13.8978)
|
| 1009 |
+
Instr other si_sdr: 5.1193 (Std: 3.7885)
|
| 1010 |
+
Metric avg sdr : 9.1424
|
| 1011 |
+
Metric avg l1_freq : 50.6159
|
| 1012 |
+
Metric avg si_sdr : 7.6543
|
| 1013 |
+
Train epoch: 92 Learning rate: 1.8531649206390126e-05
|
| 1014 |
+
Training loss: 0.095568
|
| 1015 |
+
Instr dry sdr: 12.1517 (Std: 5.4645)
|
| 1016 |
+
Instr dry l1_freq: 50.5573 (Std: 16.0760)
|
| 1017 |
+
Instr dry si_sdr: 9.7243 (Std: 11.3482)
|
| 1018 |
+
Instr other sdr: 5.9071 (Std: 3.8700)
|
| 1019 |
+
Instr other l1_freq: 50.2320 (Std: 14.1274)
|
| 1020 |
+
Instr other si_sdr: 5.0182 (Std: 3.9033)
|
| 1021 |
+
Metric avg sdr : 9.0294
|
| 1022 |
+
Metric avg l1_freq : 50.3946
|
| 1023 |
+
Metric avg si_sdr : 7.3713
|
| 1024 |
+
Train epoch: 93 Learning rate: 1.8531649206390126e-05
|
| 1025 |
+
Training loss: 0.099267
|
| 1026 |
+
Instr dry sdr: 12.3923 (Std: 5.3252)
|
| 1027 |
+
Instr dry l1_freq: 51.3353 (Std: 15.7117)
|
| 1028 |
+
Instr dry si_sdr: 10.3237 (Std: 10.3709)
|
| 1029 |
+
Instr other sdr: 6.1382 (Std: 3.7639)
|
| 1030 |
+
Instr other l1_freq: 50.9070 (Std: 14.0275)
|
| 1031 |
+
Instr other si_sdr: 5.2708 (Std: 3.7720)
|
| 1032 |
+
Metric avg sdr : 9.2653
|
| 1033 |
+
Metric avg l1_freq : 51.1212
|
| 1034 |
+
Metric avg si_sdr : 7.7973
|
| 1035 |
+
Train epoch: 94 Learning rate: 1.760506674607062e-05
|
| 1036 |
+
Training loss: 0.098203
|
| 1037 |
+
Instr dry sdr: 12.1776 (Std: 5.5474)
|
| 1038 |
+
Instr dry l1_freq: 50.2574 (Std: 16.2700)
|
| 1039 |
+
Instr dry si_sdr: 9.8557 (Std: 11.1696)
|
| 1040 |
+
Instr other sdr: 5.9308 (Std: 3.9415)
|
| 1041 |
+
Instr other l1_freq: 50.1638 (Std: 14.2621)
|
| 1042 |
+
Instr other si_sdr: 5.0634 (Std: 3.9698)
|
| 1043 |
+
Metric avg sdr : 9.0542
|
| 1044 |
+
Metric avg l1_freq : 50.2106
|
| 1045 |
+
Metric avg si_sdr : 7.4596
|
| 1046 |
+
Train epoch: 95 Learning rate: 1.760506674607062e-05
|
| 1047 |
+
Training loss: 0.091828
|
| 1048 |
+
Instr dry sdr: 12.7154 (Std: 5.0649)
|
| 1049 |
+
Instr dry l1_freq: 52.3362 (Std: 15.4446)
|
| 1050 |
+
Instr dry si_sdr: 11.3587 (Std: 8.4150)
|
| 1051 |
+
Instr other sdr: 6.4484 (Std: 3.5644)
|
| 1052 |
+
Instr other l1_freq: 51.5290 (Std: 13.8994)
|
| 1053 |
+
Instr other si_sdr: 5.6174 (Std: 3.5561)
|
| 1054 |
+
Metric avg sdr : 9.5819
|
| 1055 |
+
Metric avg l1_freq : 51.9326
|
| 1056 |
+
Metric avg si_sdr : 8.4881
|
| 1057 |
+
Train epoch: 96 Learning rate: 1.760506674607062e-05
|
| 1058 |
+
Training loss: 0.092210
|
| 1059 |
+
Instr dry sdr: 12.5542 (Std: 5.1640)
|
| 1060 |
+
Instr dry l1_freq: 51.9249 (Std: 15.4726)
|
| 1061 |
+
Instr dry si_sdr: 10.9541 (Std: 9.0623)
|
| 1062 |
+
Instr other sdr: 6.2939 (Std: 3.6601)
|
| 1063 |
+
Instr other l1_freq: 51.3135 (Std: 13.9318)
|
| 1064 |
+
Instr other si_sdr: 5.4368 (Std: 3.6569)
|
| 1065 |
+
Metric avg sdr : 9.4241
|
| 1066 |
+
Metric avg l1_freq : 51.6192
|
| 1067 |
+
Metric avg si_sdr : 8.1955
|
| 1068 |
+
Train epoch: 97 Learning rate: 1.6724813408767087e-05
|
| 1069 |
+
Training loss: 0.092498
|
| 1070 |
+
Instr dry sdr: 12.3693 (Std: 5.3792)
|
| 1071 |
+
Instr dry l1_freq: 51.2841 (Std: 15.7054)
|
| 1072 |
+
Instr dry si_sdr: 10.3668 (Std: 10.1002)
|
| 1073 |
+
Instr other sdr: 6.1246 (Std: 3.8157)
|
| 1074 |
+
Instr other l1_freq: 50.8108 (Std: 13.9787)
|
| 1075 |
+
Instr other si_sdr: 5.2606 (Std: 3.8357)
|
| 1076 |
+
Metric avg sdr : 9.2470
|
| 1077 |
+
Metric avg l1_freq : 51.0475
|
| 1078 |
+
Metric avg si_sdr : 7.8137
|
| 1079 |
+
Train epoch: 98 Learning rate: 1.6724813408767087e-05
|
| 1080 |
+
Training loss: 0.096498
|
| 1081 |
+
Instr dry sdr: 12.7051 (Std: 5.0507)
|
| 1082 |
+
Instr dry l1_freq: 52.3622 (Std: 15.4344)
|
| 1083 |
+
Instr dry si_sdr: 11.5561 (Std: 7.6149)
|
| 1084 |
+
Instr other sdr: 6.4355 (Std: 3.5707)
|
| 1085 |
+
Instr other l1_freq: 51.5607 (Std: 13.8798)
|
| 1086 |
+
Instr other si_sdr: 5.6009 (Std: 3.5600)
|
| 1087 |
+
Metric avg sdr : 9.5703
|
| 1088 |
+
Metric avg l1_freq : 51.9614
|
| 1089 |
+
Metric avg si_sdr : 8.5785
|
| 1090 |
+
Train epoch: 99 Learning rate: 1.6724813408767087e-05
|
| 1091 |
+
Training loss: 0.100907
|
| 1092 |
+
Instr dry sdr: 12.7264 (Std: 4.9980)
|
| 1093 |
+
Instr dry l1_freq: 52.5787 (Std: 15.3304)
|
| 1094 |
+
Instr dry si_sdr: 11.6759 (Std: 7.3167)
|
| 1095 |
+
Instr other sdr: 6.4726 (Std: 3.5190)
|
| 1096 |
+
Instr other l1_freq: 51.7835 (Std: 13.7848)
|
| 1097 |
+
Instr other si_sdr: 5.6326 (Std: 3.5291)
|
| 1098 |
+
Metric avg sdr : 9.5995
|
| 1099 |
+
Metric avg l1_freq : 52.1811
|
| 1100 |
+
Metric avg si_sdr : 8.6543
|
| 1101 |
+
Train epoch: 100 Learning rate: 1.5888572738328732e-05
|
| 1102 |
+
Training loss: 0.092124
|
| 1103 |
+
Instr dry sdr: 12.5440 (Std: 5.1811)
|
| 1104 |
+
Instr dry l1_freq: 52.0072 (Std: 15.5140)
|
| 1105 |
+
Instr dry si_sdr: 11.0584 (Std: 8.6049)
|
| 1106 |
+
Instr other sdr: 6.2961 (Std: 3.6691)
|
| 1107 |
+
Instr other l1_freq: 51.5142 (Std: 13.9767)
|
| 1108 |
+
Instr other si_sdr: 5.4429 (Std: 3.6636)
|
| 1109 |
+
Metric avg sdr : 9.4201
|
| 1110 |
+
Metric avg l1_freq : 51.7607
|
| 1111 |
+
Metric avg si_sdr : 8.2507
|
| 1112 |
+
Train epoch: 101 Learning rate: 1.5888572738328732e-05
|
| 1113 |
+
Training loss: 0.090086
|
| 1114 |
+
Instr dry sdr: 12.5978 (Std: 5.1102)
|
| 1115 |
+
Instr dry l1_freq: 52.2081 (Std: 15.3974)
|
| 1116 |
+
Instr dry si_sdr: 11.2203 (Std: 8.3888)
|
| 1117 |
+
Instr other sdr: 6.3431 (Std: 3.6186)
|
| 1118 |
+
Instr other l1_freq: 51.4018 (Std: 13.8223)
|
| 1119 |
+
Instr other si_sdr: 5.4885 (Std: 3.6250)
|
| 1120 |
+
Metric avg sdr : 9.4705
|
| 1121 |
+
Metric avg l1_freq : 51.8049
|
| 1122 |
+
Metric avg si_sdr : 8.3544
|
| 1123 |
+
Train epoch: 102 Learning rate: 1.5888572738328732e-05
|
| 1124 |
+
Training loss: 0.096567
|
| 1125 |
+
Instr dry sdr: 12.7490 (Std: 4.9942)
|
| 1126 |
+
Instr dry l1_freq: 52.5952 (Std: 15.2602)
|
| 1127 |
+
Instr dry si_sdr: 11.6794 (Std: 7.4370)
|
| 1128 |
+
Instr other sdr: 6.4891 (Std: 3.5021)
|
| 1129 |
+
Instr other l1_freq: 51.8253 (Std: 13.7127)
|
| 1130 |
+
Instr other si_sdr: 5.6486 (Std: 3.5285)
|
| 1131 |
+
Metric avg sdr : 9.6190
|
| 1132 |
+
Metric avg l1_freq : 52.2103
|
| 1133 |
+
Metric avg si_sdr : 8.6640
|
| 1134 |
+
Train epoch: 103 Learning rate: 1.5094144101412296e-05
|
| 1135 |
+
Training loss: 0.096566
|
| 1136 |
+
Instr dry sdr: 12.7887 (Std: 4.9264)
|
| 1137 |
+
Instr dry l1_freq: 52.6449 (Std: 15.1826)
|
| 1138 |
+
Instr dry si_sdr: 11.9172 (Std: 6.7330)
|
| 1139 |
+
Instr other sdr: 6.5313 (Std: 3.4205)
|
| 1140 |
+
Instr other l1_freq: 52.0825 (Std: 13.6229)
|
| 1141 |
+
Instr other si_sdr: 5.6871 (Std: 3.4548)
|
| 1142 |
+
Metric avg sdr : 9.6600
|
| 1143 |
+
Metric avg l1_freq : 52.3637
|
| 1144 |
+
Metric avg si_sdr : 8.8022
|
| 1145 |
+
Train epoch: 104 Learning rate: 1.5094144101412296e-05
|
| 1146 |
+
Training loss: 0.093049
|
| 1147 |
+
Instr dry sdr: 12.6579 (Std: 5.0226)
|
| 1148 |
+
Instr dry l1_freq: 52.3947 (Std: 15.3537)
|
| 1149 |
+
Instr dry si_sdr: 11.4864 (Std: 7.7357)
|
| 1150 |
+
Instr other sdr: 6.4079 (Std: 3.5368)
|
| 1151 |
+
Instr other l1_freq: 51.5370 (Std: 13.7596)
|
| 1152 |
+
Instr other si_sdr: 5.5595 (Std: 3.5535)
|
| 1153 |
+
Metric avg sdr : 9.5329
|
| 1154 |
+
Metric avg l1_freq : 51.9658
|
| 1155 |
+
Metric avg si_sdr : 8.5229
|
| 1156 |
+
Train epoch: 105 Learning rate: 1.5094144101412296e-05
|
| 1157 |
+
Training loss: 0.098858
|
| 1158 |
+
Instr dry sdr: 12.6818 (Std: 5.0442)
|
| 1159 |
+
Instr dry l1_freq: 52.4730 (Std: 15.3907)
|
| 1160 |
+
Instr dry si_sdr: 11.5151 (Std: 7.6824)
|
| 1161 |
+
Instr other sdr: 6.4299 (Std: 3.5690)
|
| 1162 |
+
Instr other l1_freq: 51.6939 (Std: 13.8234)
|
| 1163 |
+
Instr other si_sdr: 5.5873 (Std: 3.5722)
|
| 1164 |
+
Metric avg sdr : 9.5559
|
| 1165 |
+
Metric avg l1_freq : 52.0835
|
| 1166 |
+
Metric avg si_sdr : 8.5512
|
| 1167 |
+
Train epoch: 106 Learning rate: 1.433943689634168e-05
|
| 1168 |
+
Training loss: 0.097726
|
| 1169 |
+
Instr dry sdr: 12.5751 (Std: 5.1911)
|
| 1170 |
+
Instr dry l1_freq: 51.9894 (Std: 15.5097)
|
| 1171 |
+
Instr dry si_sdr: 11.0083 (Std: 8.8566)
|
| 1172 |
+
Instr other sdr: 6.3257 (Std: 3.6878)
|
| 1173 |
+
Instr other l1_freq: 51.5607 (Std: 13.9770)
|
| 1174 |
+
Instr other si_sdr: 5.4763 (Std: 3.6851)
|
| 1175 |
+
Metric avg sdr : 9.4504
|
| 1176 |
+
Metric avg l1_freq : 51.7750
|
| 1177 |
+
Metric avg si_sdr : 8.2423
|
| 1178 |
+
Train epoch: 107 Learning rate: 1.433943689634168e-05
|
| 1179 |
+
Training loss: 0.092017
|
| 1180 |
+
Instr dry sdr: 12.7352 (Std: 5.0253)
|
| 1181 |
+
Instr dry l1_freq: 52.4895 (Std: 15.3276)
|
| 1182 |
+
Instr dry si_sdr: 11.6367 (Std: 7.5058)
|
| 1183 |
+
Instr other sdr: 6.4876 (Std: 3.5314)
|
| 1184 |
+
Instr other l1_freq: 51.7795 (Std: 13.7572)
|
| 1185 |
+
Instr other si_sdr: 5.6532 (Std: 3.5388)
|
| 1186 |
+
Metric avg sdr : 9.6114
|
| 1187 |
+
Metric avg l1_freq : 52.1345
|
| 1188 |
+
Metric avg si_sdr : 8.6450
|
| 1189 |
+
Train epoch: 108 Learning rate: 1.433943689634168e-05
|
| 1190 |
+
Training loss: 0.093190
|
| 1191 |
+
Instr dry sdr: 12.8397 (Std: 4.8776)
|
| 1192 |
+
Instr dry l1_freq: 52.8024 (Std: 15.0866)
|
| 1193 |
+
Instr dry si_sdr: 11.9941 (Std: 6.6657)
|
| 1194 |
+
Instr other sdr: 6.5905 (Std: 3.3897)
|
| 1195 |
+
Instr other l1_freq: 52.0548 (Std: 13.5235)
|
| 1196 |
+
Instr other si_sdr: 5.7513 (Std: 3.4407)
|
| 1197 |
+
Metric avg sdr : 9.7151
|
| 1198 |
+
Metric avg l1_freq : 52.4286
|
| 1199 |
+
Metric avg si_sdr : 8.8727
|
| 1200 |
+
Train epoch: 109 Learning rate: 1.3622465051524595e-05
|
| 1201 |
+
Training loss: 0.097330
|
| 1202 |
+
Instr dry sdr: 12.9161 (Std: 4.7276)
|
| 1203 |
+
Instr dry l1_freq: 53.0033 (Std: 14.7825)
|
| 1204 |
+
Instr dry si_sdr: 12.2813 (Std: 5.8908)
|
| 1205 |
+
Instr other sdr: 6.6614 (Std: 3.2214)
|
| 1206 |
+
Instr other l1_freq: 52.2954 (Std: 13.1528)
|
| 1207 |
+
Instr other si_sdr: 5.8090 (Std: 3.3168)
|
| 1208 |
+
Metric avg sdr : 9.7888
|
| 1209 |
+
Metric avg l1_freq : 52.6493
|
| 1210 |
+
Metric avg si_sdr : 9.0452
|
| 1211 |
+
Train epoch: 110 Learning rate: 1.3622465051524595e-05
|
| 1212 |
+
Training loss: 0.093989
|
| 1213 |
+
Instr dry sdr: 13.0471 (Std: 4.5122)
|
| 1214 |
+
Instr dry l1_freq: 53.2873 (Std: 14.2572)
|
| 1215 |
+
Instr dry si_sdr: 12.5396 (Std: 5.3434)
|
| 1216 |
+
Instr other sdr: 6.7939 (Std: 2.9733)
|
| 1217 |
+
Instr other l1_freq: 52.7643 (Std: 12.6462)
|
| 1218 |
+
Instr other si_sdr: 5.9262 (Std: 3.1305)
|
| 1219 |
+
Metric avg sdr : 9.9205
|
| 1220 |
+
Metric avg l1_freq : 53.0258
|
| 1221 |
+
Metric avg si_sdr : 9.2329
|
| 1222 |
+
Train epoch: 111 Learning rate: 1.3622465051524595e-05
|
| 1223 |
+
Training loss: 0.091716
|
| 1224 |
+
Instr dry sdr: 12.8921 (Std: 4.7097)
|
| 1225 |
+
Instr dry l1_freq: 53.0324 (Std: 14.7172)
|
| 1226 |
+
Instr dry si_sdr: 12.2804 (Std: 5.7996)
|
| 1227 |
+
Instr other sdr: 6.6447 (Std: 3.2111)
|
| 1228 |
+
Instr other l1_freq: 52.1832 (Std: 13.0902)
|
| 1229 |
+
Instr other si_sdr: 5.7832 (Std: 3.3266)
|
| 1230 |
+
Metric avg sdr : 9.7684
|
| 1231 |
+
Metric avg l1_freq : 52.6078
|
| 1232 |
+
Metric avg si_sdr : 9.0318
|
| 1233 |
+
Train epoch: 112 Learning rate: 1.2941341798948365e-05
|
| 1234 |
+
Training loss: 0.093010
|
| 1235 |
+
Instr dry sdr: 12.7339 (Std: 4.9894)
|
| 1236 |
+
Instr dry l1_freq: 52.5628 (Std: 15.2270)
|
| 1237 |
+
Instr dry si_sdr: 11.7856 (Std: 6.9943)
|
| 1238 |
+
Instr other sdr: 6.4929 (Std: 3.4961)
|
| 1239 |
+
Instr other l1_freq: 51.8127 (Std: 13.6453)
|
| 1240 |
+
Instr other si_sdr: 5.6540 (Std: 3.5220)
|
| 1241 |
+
Metric avg sdr : 9.6134
|
| 1242 |
+
Metric avg l1_freq : 52.1878
|
| 1243 |
+
Metric avg si_sdr : 8.7198
|
| 1244 |
+
Train epoch: 113 Learning rate: 1.2941341798948365e-05
|
| 1245 |
+
Training loss: 0.091633
|
| 1246 |
+
Instr dry sdr: 12.8765 (Std: 4.7889)
|
| 1247 |
+
Instr dry l1_freq: 52.9751 (Std: 14.8547)
|
| 1248 |
+
Instr dry si_sdr: 12.1655 (Std: 6.1935)
|
| 1249 |
+
Instr other sdr: 6.6291 (Std: 3.2774)
|
| 1250 |
+
Instr other l1_freq: 52.1851 (Std: 13.2451)
|
| 1251 |
+
Instr other si_sdr: 5.7841 (Std: 3.3589)
|
| 1252 |
+
Metric avg sdr : 9.7528
|
| 1253 |
+
Metric avg l1_freq : 52.5801
|
| 1254 |
+
Metric avg si_sdr : 8.9748
|
| 1255 |
+
Train epoch: 114 Learning rate: 1.2941341798948365e-05
|
| 1256 |
+
Training loss: 0.092634
|
| 1257 |
+
Instr dry sdr: 12.7374 (Std: 5.0415)
|
| 1258 |
+
Instr dry l1_freq: 52.4767 (Std: 15.2749)
|
| 1259 |
+
Instr dry si_sdr: 11.7247 (Std: 7.2032)
|
| 1260 |
+
Instr other sdr: 6.4891 (Std: 3.5588)
|
| 1261 |
+
Instr other l1_freq: 51.8537 (Std: 13.7385)
|
| 1262 |
+
Instr other si_sdr: 5.6611 (Std: 3.5587)
|
| 1263 |
+
Metric avg sdr : 9.6133
|
| 1264 |
+
Metric avg l1_freq : 52.1652
|
| 1265 |
+
Metric avg si_sdr : 8.6929
|
| 1266 |
+
Train epoch: 115 Learning rate: 1.2294274709000947e-05
|
| 1267 |
+
Training loss: 0.096644
|
| 1268 |
+
Instr dry sdr: 12.6075 (Std: 5.1926)
|
| 1269 |
+
Instr dry l1_freq: 52.0390 (Std: 15.4268)
|
| 1270 |
+
Instr dry si_sdr: 11.1788 (Std: 8.4648)
|
| 1271 |
+
Instr other sdr: 6.3639 (Std: 3.6876)
|
| 1272 |
+
Instr other l1_freq: 51.6923 (Std: 13.8963)
|
| 1273 |
+
Instr other si_sdr: 5.5344 (Std: 3.6760)
|
| 1274 |
+
Metric avg sdr : 9.4857
|
| 1275 |
+
Metric avg l1_freq : 51.8657
|
| 1276 |
+
Metric avg si_sdr : 8.3566
|
| 1277 |
+
Train epoch: 116 Learning rate: 1.2294274709000947e-05
|
| 1278 |
+
Training loss: 0.094321
|
| 1279 |
+
Instr dry sdr: 12.6282 (Std: 5.2046)
|
| 1280 |
+
Instr dry l1_freq: 52.0768 (Std: 15.4735)
|
| 1281 |
+
Instr dry si_sdr: 11.1439 (Std: 8.6633)
|
| 1282 |
+
Instr other sdr: 6.3837 (Std: 3.6983)
|
| 1283 |
+
Instr other l1_freq: 51.5680 (Std: 13.9084)
|
| 1284 |
+
Instr other si_sdr: 5.5586 (Std: 3.6887)
|
| 1285 |
+
Metric avg sdr : 9.5060
|
| 1286 |
+
Metric avg l1_freq : 51.8224
|
| 1287 |
+
Metric avg si_sdr : 8.3512
|
| 1288 |
+
Train epoch: 117 Learning rate: 1.2294274709000947e-05
|
| 1289 |
+
Training loss: 0.093851
|
| 1290 |
+
Instr dry sdr: 12.7273 (Std: 5.0907)
|
| 1291 |
+
Instr dry l1_freq: 52.3832 (Std: 15.3896)
|
| 1292 |
+
Instr dry si_sdr: 11.5779 (Std: 7.6525)
|
| 1293 |
+
Instr other sdr: 6.4779 (Std: 3.6006)
|
| 1294 |
+
Instr other l1_freq: 51.7455 (Std: 13.8349)
|
| 1295 |
+
Instr other si_sdr: 5.6541 (Std: 3.5949)
|
| 1296 |
+
Metric avg sdr : 9.6026
|
| 1297 |
+
Metric avg l1_freq : 52.0644
|
| 1298 |
+
Metric avg si_sdr : 8.6160
|
| 1299 |
+
Train epoch: 118 Learning rate: 1.1679560973550899e-05
|
| 1300 |
+
Training loss: 0.095892
|
| 1301 |
+
Instr dry sdr: 12.8512 (Std: 4.9712)
|
| 1302 |
+
Instr dry l1_freq: 52.6765 (Std: 15.2045)
|
| 1303 |
+
Instr dry si_sdr: 12.0067 (Std: 6.6730)
|
| 1304 |
+
Instr other sdr: 6.6058 (Std: 3.4656)
|
| 1305 |
+
Instr other l1_freq: 52.1678 (Std: 13.6668)
|
| 1306 |
+
Instr other si_sdr: 5.7832 (Std: 3.4873)
|
| 1307 |
+
Metric avg sdr : 9.7285
|
| 1308 |
+
Metric avg l1_freq : 52.4222
|
| 1309 |
+
Metric avg si_sdr : 8.8950
|
| 1310 |
+
Train epoch: 119 Learning rate: 1.1679560973550899e-05
|
| 1311 |
+
Training loss: 0.091460
|
| 1312 |
+
Instr dry sdr: 12.7908 (Std: 5.0447)
|
| 1313 |
+
Instr dry l1_freq: 52.5138 (Std: 15.2710)
|
| 1314 |
+
Instr dry si_sdr: 11.8395 (Std: 7.0315)
|
| 1315 |
+
Instr other sdr: 6.5475 (Std: 3.5367)
|
| 1316 |
+
Instr other l1_freq: 52.1575 (Std: 13.7656)
|
| 1317 |
+
Instr other si_sdr: 5.7225 (Std: 3.5484)
|
| 1318 |
+
Metric avg sdr : 9.6691
|
| 1319 |
+
Metric avg l1_freq : 52.3357
|
| 1320 |
+
Metric avg si_sdr : 8.7810
|
| 1321 |
+
Train epoch: 120 Learning rate: 1.1679560973550899e-05
|
| 1322 |
+
Training loss: 0.095307
|
| 1323 |
+
Instr dry sdr: 12.6581 (Std: 5.1660)
|
| 1324 |
+
Instr dry l1_freq: 52.2390 (Std: 15.4570)
|
| 1325 |
+
Instr dry si_sdr: 11.3697 (Std: 8.0572)
|
| 1326 |
+
Instr other sdr: 6.4173 (Std: 3.6589)
|
| 1327 |
+
Instr other l1_freq: 51.7268 (Std: 13.8933)
|
| 1328 |
+
Instr other si_sdr: 5.5903 (Std: 3.6538)
|
| 1329 |
+
Metric avg sdr : 9.5377
|
| 1330 |
+
Metric avg l1_freq : 51.9829
|
| 1331 |
+
Metric avg si_sdr : 8.4800
|
| 1332 |
+
Train epoch: 121 Learning rate: 1.1095582924873354e-05
|
| 1333 |
+
Training loss: 0.092688
|
| 1334 |
+
Instr dry sdr: 12.8339 (Std: 4.9952)
|
| 1335 |
+
Instr dry l1_freq: 52.7786 (Std: 15.2630)
|
| 1336 |
+
Instr dry si_sdr: 11.9348 (Std: 6.8469)
|
| 1337 |
+
Instr other sdr: 6.5914 (Std: 3.5119)
|
| 1338 |
+
Instr other l1_freq: 51.9780 (Std: 13.6690)
|
| 1339 |
+
Instr other si_sdr: 5.7741 (Std: 3.5316)
|
| 1340 |
+
Metric avg sdr : 9.7127
|
| 1341 |
+
Metric avg l1_freq : 52.3783
|
| 1342 |
+
Metric avg si_sdr : 8.8545
|
| 1343 |
+
Train epoch: 122 Learning rate: 1.1095582924873354e-05
|
| 1344 |
+
Training loss: 0.089389
|
| 1345 |
+
Instr dry sdr: 12.6868 (Std: 5.1543)
|
| 1346 |
+
Instr dry l1_freq: 52.2544 (Std: 15.4487)
|
| 1347 |
+
Instr dry si_sdr: 11.3596 (Std: 8.1785)
|
| 1348 |
+
Instr other sdr: 6.4391 (Std: 3.6619)
|
| 1349 |
+
Instr other l1_freq: 51.7883 (Std: 13.9304)
|
| 1350 |
+
Instr other si_sdr: 5.6145 (Std: 3.6520)
|
| 1351 |
+
Metric avg sdr : 9.5629
|
| 1352 |
+
Metric avg l1_freq : 52.0214
|
| 1353 |
+
Metric avg si_sdr : 8.4870
|
| 1354 |
+
Train epoch: 123 Learning rate: 1.1095582924873354e-05
|
| 1355 |
+
Training loss: 0.092695
|
| 1356 |
+
Instr dry sdr: 13.1334 (Std: 4.4033)
|
| 1357 |
+
Instr dry l1_freq: 53.5958 (Std: 13.9688)
|
| 1358 |
+
Instr dry si_sdr: 12.6618 (Std: 5.1663)
|
| 1359 |
+
Instr other sdr: 6.8817 (Std: 2.8615)
|
| 1360 |
+
Instr other l1_freq: 52.8812 (Std: 12.3821)
|
| 1361 |
+
Instr other si_sdr: 6.0108 (Std: 3.0557)
|
| 1362 |
+
Metric avg sdr : 10.0075
|
| 1363 |
+
Metric avg l1_freq : 53.2385
|
| 1364 |
+
Metric avg si_sdr : 9.3363
|
| 1365 |
+
Train epoch: 124 Learning rate: 1.0540803778629686e-05
|
| 1366 |
+
Training loss: 0.090865
|
| 1367 |
+
Instr dry sdr: 12.8815 (Std: 4.9351)
|
| 1368 |
+
Instr dry l1_freq: 52.8738 (Std: 15.1633)
|
| 1369 |
+
Instr dry si_sdr: 12.0065 (Std: 6.7775)
|
| 1370 |
+
Instr other sdr: 6.6391 (Std: 3.4489)
|
| 1371 |
+
Instr other l1_freq: 52.2346 (Std: 13.5820)
|
| 1372 |
+
Instr other si_sdr: 5.8236 (Std: 3.4771)
|
| 1373 |
+
Metric avg sdr : 9.7603
|
| 1374 |
+
Metric avg l1_freq : 52.5542
|
| 1375 |
+
Metric avg si_sdr : 8.9150
|
| 1376 |
+
Train epoch: 125 Learning rate: 1.0540803778629686e-05
|
| 1377 |
+
Training loss: 0.097932
|
| 1378 |
+
Instr dry sdr: 12.8245 (Std: 5.0095)
|
| 1379 |
+
Instr dry l1_freq: 52.7419 (Std: 15.3479)
|
| 1380 |
+
Instr dry si_sdr: 11.7842 (Std: 7.3198)
|
| 1381 |
+
Instr other sdr: 6.5780 (Std: 3.5360)
|
| 1382 |
+
Instr other l1_freq: 52.0653 (Std: 13.7986)
|
| 1383 |
+
Instr other si_sdr: 5.7681 (Std: 3.5339)
|
| 1384 |
+
Metric avg sdr : 9.7012
|
| 1385 |
+
Metric avg l1_freq : 52.4036
|
| 1386 |
+
Metric avg si_sdr : 8.7762
|
| 1387 |
+
Train epoch: 126 Learning rate: 1.0540803778629686e-05
|
| 1388 |
+
Training loss: 0.090215
|
| 1389 |
+
Instr dry sdr: 12.7792 (Std: 5.1109)
|
| 1390 |
+
Instr dry l1_freq: 52.4720 (Std: 15.4843)
|
| 1391 |
+
Instr dry si_sdr: 11.5726 (Std: 7.8367)
|
| 1392 |
+
Instr other sdr: 6.5294 (Std: 3.6304)
|
| 1393 |
+
Instr other l1_freq: 51.8799 (Std: 13.9584)
|
| 1394 |
+
Instr other si_sdr: 5.7211 (Std: 3.6152)
|
| 1395 |
+
Metric avg sdr : 9.6543
|
| 1396 |
+
Metric avg l1_freq : 52.1760
|
| 1397 |
+
Metric avg si_sdr : 8.6469
|
| 1398 |
+
Train epoch: 127 Learning rate: 1.0013763589698201e-05
|
| 1399 |
+
Training loss: 0.089430
|
| 1400 |
+
Instr dry sdr: 12.9886 (Std: 4.7834)
|
| 1401 |
+
Instr dry l1_freq: 53.1443 (Std: 14.8720)
|
| 1402 |
+
Instr dry si_sdr: 12.3267 (Std: 6.0204)
|
| 1403 |
+
Instr other sdr: 6.7426 (Std: 3.2993)
|
| 1404 |
+
Instr other l1_freq: 52.4058 (Std: 13.3023)
|
| 1405 |
+
Instr other si_sdr: 5.9186 (Std: 3.3788)
|
| 1406 |
+
Metric avg sdr : 9.8656
|
| 1407 |
+
Metric avg l1_freq : 52.7750
|
| 1408 |
+
Metric avg si_sdr : 9.1226
|
| 1409 |
+
Train epoch: 128 Learning rate: 1.0013763589698201e-05
|
| 1410 |
+
Training loss: 0.094312
|
| 1411 |
+
Instr dry sdr: 12.8587 (Std: 5.0473)
|
| 1412 |
+
Instr dry l1_freq: 52.7096 (Std: 15.3562)
|
| 1413 |
+
Instr dry si_sdr: 11.8176 (Std: 7.3272)
|
| 1414 |
+
Instr other sdr: 6.6173 (Std: 3.5731)
|
| 1415 |
+
Instr other l1_freq: 52.1558 (Std: 13.8513)
|
| 1416 |
+
Instr other si_sdr: 5.8106 (Std: 3.5761)
|
| 1417 |
+
Metric avg sdr : 9.7380
|
| 1418 |
+
Metric avg l1_freq : 52.4327
|
| 1419 |
+
Metric avg si_sdr : 8.8141
|
| 1420 |
+
Train epoch: 129 Learning rate: 1.0013763589698201e-05
|
| 1421 |
+
Training loss: 0.097339
|
| 1422 |
+
Instr dry sdr: 12.9453 (Std: 4.9302)
|
| 1423 |
+
Instr dry l1_freq: 52.9732 (Std: 15.1751)
|
| 1424 |
+
Instr dry si_sdr: 12.1253 (Std: 6.5995)
|
| 1425 |
+
Instr other sdr: 6.7016 (Std: 3.4517)
|
| 1426 |
+
Instr other l1_freq: 52.3808 (Std: 13.6101)
|
| 1427 |
+
Instr other si_sdr: 5.8944 (Std: 3.4824)
|
| 1428 |
+
Metric avg sdr : 9.8235
|
| 1429 |
+
Metric avg l1_freq : 52.6770
|
| 1430 |
+
Metric avg si_sdr : 9.0099
|
| 1431 |
+
Train epoch: 130 Learning rate: 9.513075410213291e-06
|
| 1432 |
+
Training loss: 0.093759
|
| 1433 |
+
Instr dry sdr: 12.6769 (Std: 5.1848)
|
| 1434 |
+
Instr dry l1_freq: 52.2604 (Std: 15.4905)
|
| 1435 |
+
Instr dry si_sdr: 11.2656 (Std: 8.4064)
|
| 1436 |
+
Instr other sdr: 6.4356 (Std: 3.7061)
|
| 1437 |
+
Instr other l1_freq: 51.7764 (Std: 13.9597)
|
| 1438 |
+
Instr other si_sdr: 5.6129 (Std: 3.6973)
|
| 1439 |
+
Metric avg sdr : 9.5563
|
| 1440 |
+
Metric avg l1_freq : 52.0184
|
| 1441 |
+
Metric avg si_sdr : 8.4393
|
| 1442 |
+
Train epoch: 131 Learning rate: 9.513075410213291e-06
|
| 1443 |
+
Training loss: 0.098356
|
| 1444 |
+
Instr dry sdr: 12.7425 (Std: 5.1650)
|
| 1445 |
+
Instr dry l1_freq: 52.4089 (Std: 15.4820)
|
| 1446 |
+
Instr dry si_sdr: 11.4501 (Std: 8.0911)
|
| 1447 |
+
Instr other sdr: 6.4990 (Std: 3.6775)
|
| 1448 |
+
Instr other l1_freq: 51.8683 (Std: 13.9575)
|
| 1449 |
+
Instr other si_sdr: 5.6862 (Std: 3.6691)
|
| 1450 |
+
Metric avg sdr : 9.6207
|
| 1451 |
+
Metric avg l1_freq : 52.1386
|
| 1452 |
+
Metric avg si_sdr : 8.5681
|
| 1453 |
+
Train epoch: 132 Learning rate: 9.513075410213291e-06
|
| 1454 |
+
Training loss: 0.095287
|
| 1455 |
+
Instr dry sdr: 12.4559 (Std: 5.4014)
|
| 1456 |
+
Instr dry l1_freq: 51.3773 (Std: 15.7209)
|
| 1457 |
+
Instr dry si_sdr: 10.6520 (Std: 9.5616)
|
| 1458 |
+
Instr other sdr: 6.2205 (Std: 3.8719)
|
| 1459 |
+
Instr other l1_freq: 51.2221 (Std: 14.0111)
|
| 1460 |
+
Instr other si_sdr: 5.3885 (Std: 3.8971)
|
| 1461 |
+
Metric avg sdr : 9.3382
|
| 1462 |
+
Metric avg l1_freq : 51.2997
|
| 1463 |
+
Metric avg si_sdr : 8.0202
|
| 1464 |
+
Train epoch: 133 Learning rate: 9.037421639702626e-06
|
| 1465 |
+
Training loss: 0.094915
|
| 1466 |
+
Instr dry sdr: 12.7138 (Std: 5.1674)
|
| 1467 |
+
Instr dry l1_freq: 52.4015 (Std: 15.4349)
|
| 1468 |
+
Instr dry si_sdr: 11.4121 (Std: 8.1166)
|
| 1469 |
+
Instr other sdr: 6.4753 (Std: 3.6846)
|
| 1470 |
+
Instr other l1_freq: 51.8321 (Std: 13.8875)
|
| 1471 |
+
Instr other si_sdr: 5.6583 (Std: 3.6783)
|
| 1472 |
+
Metric avg sdr : 9.5945
|
| 1473 |
+
Metric avg l1_freq : 52.1168
|
| 1474 |
+
Metric avg si_sdr : 8.5352
|
| 1475 |
+
Train epoch: 134 Learning rate: 9.037421639702626e-06
|
| 1476 |
+
Training loss: 0.096393
|
| 1477 |
+
Instr dry sdr: 12.7945 (Std: 5.1220)
|
| 1478 |
+
Instr dry l1_freq: 52.6010 (Std: 15.3983)
|
| 1479 |
+
Instr dry si_sdr: 11.6378 (Std: 7.6964)
|
| 1480 |
+
Instr other sdr: 6.5584 (Std: 3.6388)
|
| 1481 |
+
Instr other l1_freq: 51.9830 (Std: 13.8424)
|
| 1482 |
+
Instr other si_sdr: 5.7504 (Std: 3.6350)
|
| 1483 |
+
Metric avg sdr : 9.6764
|
| 1484 |
+
Metric avg l1_freq : 52.2920
|
| 1485 |
+
Metric avg si_sdr : 8.6941
|
| 1486 |
+
Train epoch: 135 Learning rate: 9.037421639702626e-06
|
| 1487 |
+
Training loss: 0.099597
|
| 1488 |
+
Instr dry sdr: 12.7919 (Std: 5.1178)
|
| 1489 |
+
Instr dry l1_freq: 52.5562 (Std: 15.4150)
|
| 1490 |
+
Instr dry si_sdr: 11.6321 (Std: 7.6935)
|
| 1491 |
+
Instr other sdr: 6.5530 (Std: 3.6320)
|
| 1492 |
+
Instr other l1_freq: 52.0400 (Std: 13.8747)
|
| 1493 |
+
Instr other si_sdr: 5.7409 (Std: 3.6274)
|
| 1494 |
+
Metric avg sdr : 9.6724
|
| 1495 |
+
Metric avg l1_freq : 52.2981
|
| 1496 |
+
Metric avg si_sdr : 8.6865
|
| 1497 |
+
Train epoch: 136 Learning rate: 8.585550557717495e-06
|
| 1498 |
+
Training loss: 0.090295
|
| 1499 |
+
Instr dry sdr: 12.8795 (Std: 4.9871)
|
| 1500 |
+
Instr dry l1_freq: 52.8569 (Std: 15.2440)
|
| 1501 |
+
Instr dry si_sdr: 11.9876 (Std: 6.8381)
|
| 1502 |
+
Instr other sdr: 6.6420 (Std: 3.5077)
|
| 1503 |
+
Instr other l1_freq: 52.2082 (Std: 13.6723)
|
| 1504 |
+
Instr other si_sdr: 5.8337 (Std: 3.5257)
|
| 1505 |
+
Metric avg sdr : 9.7607
|
| 1506 |
+
Metric avg l1_freq : 52.5326
|
| 1507 |
+
Metric avg si_sdr : 8.9106
|
| 1508 |
+
Train epoch: 137 Learning rate: 8.585550557717495e-06
|
| 1509 |
+
Training loss: 0.089884
|
| 1510 |
+
Instr dry sdr: 12.8850 (Std: 5.0298)
|
| 1511 |
+
Instr dry l1_freq: 52.7489 (Std: 15.2832)
|
| 1512 |
+
Instr dry si_sdr: 11.9058 (Std: 7.1376)
|
| 1513 |
+
Instr other sdr: 6.6479 (Std: 3.5415)
|
| 1514 |
+
Instr other l1_freq: 52.2620 (Std: 13.7692)
|
| 1515 |
+
Instr other si_sdr: 5.8442 (Std: 3.5491)
|
| 1516 |
+
Metric avg sdr : 9.7665
|
| 1517 |
+
Metric avg l1_freq : 52.5055
|
| 1518 |
+
Metric avg si_sdr : 8.8750
|
| 1519 |
+
Train epoch: 138 Learning rate: 8.585550557717495e-06
|
| 1520 |
+
Training loss: 0.088977
|
| 1521 |
+
Instr dry sdr: 12.9498 (Std: 4.8888)
|
| 1522 |
+
Instr dry l1_freq: 53.0007 (Std: 15.0386)
|
| 1523 |
+
Instr dry si_sdr: 12.1730 (Std: 6.4540)
|
| 1524 |
+
Instr other sdr: 6.7089 (Std: 3.3994)
|
| 1525 |
+
Instr other l1_freq: 52.4736 (Std: 13.5112)
|
| 1526 |
+
Instr other si_sdr: 5.8944 (Std: 3.4422)
|
| 1527 |
+
Metric avg sdr : 9.8294
|
| 1528 |
+
Metric avg l1_freq : 52.7371
|
| 1529 |
+
Metric avg si_sdr : 9.0337
|
| 1530 |
+
Train epoch: 139 Learning rate: 8.156273029831619e-06
|
| 1531 |
+
Training loss: 0.094878
|
| 1532 |
+
Instr dry sdr: 13.0263 (Std: 4.8388)
|
| 1533 |
+
Instr dry l1_freq: 53.2131 (Std: 14.9437)
|
| 1534 |
+
Instr dry si_sdr: 12.3148 (Std: 6.2340)
|
| 1535 |
+
Instr other sdr: 6.7840 (Std: 3.3348)
|
| 1536 |
+
Instr other l1_freq: 52.5629 (Std: 13.3594)
|
| 1537 |
+
Instr other si_sdr: 5.9767 (Std: 3.3971)
|
| 1538 |
+
Metric avg sdr : 9.9051
|
| 1539 |
+
Metric avg l1_freq : 52.8880
|
| 1540 |
+
Metric avg si_sdr : 9.1457
|
| 1541 |
+
Train epoch: 140 Learning rate: 8.156273029831619e-06
|
| 1542 |
+
Training loss: 0.095048
|
| 1543 |
+
Instr dry sdr: 13.0318 (Std: 4.7903)
|
| 1544 |
+
Instr dry l1_freq: 53.2220 (Std: 14.8110)
|
| 1545 |
+
Instr dry si_sdr: 12.3731 (Std: 6.0319)
|
| 1546 |
+
Instr other sdr: 6.7918 (Std: 3.2833)
|
| 1547 |
+
Instr other l1_freq: 52.5610 (Std: 13.2352)
|
| 1548 |
+
Instr other si_sdr: 5.9756 (Std: 3.3698)
|
| 1549 |
+
Metric avg sdr : 9.9118
|
| 1550 |
+
Metric avg l1_freq : 52.8915
|
| 1551 |
+
Metric avg si_sdr : 9.1744
|
| 1552 |
+
Train epoch: 141 Learning rate: 8.156273029831619e-06
|
| 1553 |
+
Training loss: 0.100407
|
| 1554 |
+
Instr dry sdr: 12.8483 (Std: 5.0633)
|
| 1555 |
+
Instr dry l1_freq: 52.7168 (Std: 15.3261)
|
| 1556 |
+
Instr dry si_sdr: 11.7780 (Std: 7.4301)
|
| 1557 |
+
Instr other sdr: 6.6118 (Std: 3.5896)
|
| 1558 |
+
Instr other l1_freq: 52.0975 (Std: 13.7927)
|
| 1559 |
+
Instr other si_sdr: 5.8122 (Std: 3.5883)
|
| 1560 |
+
Metric avg sdr : 9.7301
|
| 1561 |
+
Metric avg l1_freq : 52.4071
|
| 1562 |
+
Metric avg si_sdr : 8.7951
|
| 1563 |
+
Train epoch: 142 Learning rate: 7.748459378340037e-06
|
| 1564 |
+
Training loss: 0.098264
|
| 1565 |
+
Instr dry sdr: 12.9012 (Std: 5.0163)
|
| 1566 |
+
Instr dry l1_freq: 52.9055 (Std: 15.2636)
|
| 1567 |
+
Instr dry si_sdr: 11.9283 (Std: 7.1281)
|
| 1568 |
+
Instr other sdr: 6.6659 (Std: 3.5414)
|
| 1569 |
+
Instr other l1_freq: 52.2809 (Std: 13.7113)
|
| 1570 |
+
Instr other si_sdr: 5.8686 (Std: 3.5462)
|
| 1571 |
+
Metric avg sdr : 9.7835
|
| 1572 |
+
Metric avg l1_freq : 52.5932
|
| 1573 |
+
Metric avg si_sdr : 8.8984
|
| 1574 |
+
Train epoch: 143 Learning rate: 7.748459378340037e-06
|
| 1575 |
+
Training loss: 0.091402
|
| 1576 |
+
Instr dry sdr: 12.9116 (Std: 5.0022)
|
| 1577 |
+
Instr dry l1_freq: 52.9557 (Std: 15.2628)
|
| 1578 |
+
Instr dry si_sdr: 11.9703 (Std: 7.0275)
|
| 1579 |
+
Instr other sdr: 6.6674 (Std: 3.5289)
|
| 1580 |
+
Instr other l1_freq: 52.2054 (Std: 13.6955)
|
| 1581 |
+
Instr other si_sdr: 5.8712 (Std: 3.5378)
|
| 1582 |
+
Metric avg sdr : 9.7895
|
| 1583 |
+
Metric avg l1_freq : 52.5805
|
| 1584 |
+
Metric avg si_sdr : 8.9208
|
| 1585 |
+
Train epoch: 144 Learning rate: 7.748459378340037e-06
|
| 1586 |
+
Training loss: 0.094382
|
| 1587 |
+
Instr dry sdr: 12.9307 (Std: 4.9579)
|
| 1588 |
+
Instr dry l1_freq: 52.8868 (Std: 15.1344)
|
| 1589 |
+
Instr dry si_sdr: 12.0759 (Std: 6.7416)
|
| 1590 |
+
Instr other sdr: 6.6924 (Std: 3.4671)
|
| 1591 |
+
Instr other l1_freq: 52.4059 (Std: 13.6066)
|
| 1592 |
+
Instr other si_sdr: 5.8890 (Std: 3.4903)
|
| 1593 |
+
Metric avg sdr : 9.8116
|
| 1594 |
+
Metric avg l1_freq : 52.6464
|
| 1595 |
+
Metric avg si_sdr : 8.9825
|
| 1596 |
+
Train epoch: 145 Learning rate: 7.361036409423035e-06
|
| 1597 |
+
Training loss: 0.097014
|
| 1598 |
+
Instr dry sdr: 12.8796 (Std: 5.0266)
|
| 1599 |
+
Instr dry l1_freq: 52.7791 (Std: 15.2656)
|
| 1600 |
+
Instr dry si_sdr: 11.9162 (Std: 7.1001)
|
| 1601 |
+
Instr other sdr: 6.6454 (Std: 3.5405)
|
| 1602 |
+
Instr other l1_freq: 52.2561 (Std: 13.7232)
|
| 1603 |
+
Instr other si_sdr: 5.8467 (Std: 3.5463)
|
| 1604 |
+
Metric avg sdr : 9.7625
|
| 1605 |
+
Metric avg l1_freq : 52.5176
|
| 1606 |
+
Metric avg si_sdr : 8.8815
|
| 1607 |
+
Train epoch: 146 Learning rate: 7.361036409423035e-06
|
| 1608 |
+
Training loss: 0.090039
|
| 1609 |
+
Instr dry sdr: 12.9316 (Std: 4.9567)
|
| 1610 |
+
Instr dry l1_freq: 52.9859 (Std: 15.1807)
|
| 1611 |
+
Instr dry si_sdr: 12.0449 (Std: 6.8583)
|
| 1612 |
+
Instr other sdr: 6.6940 (Std: 3.4768)
|
| 1613 |
+
Instr other l1_freq: 52.3062 (Std: 13.5915)
|
| 1614 |
+
Instr other si_sdr: 5.8962 (Std: 3.4986)
|
| 1615 |
+
Metric avg sdr : 9.8128
|
| 1616 |
+
Metric avg l1_freq : 52.6460
|
| 1617 |
+
Metric avg si_sdr : 8.9706
|
| 1618 |
+
Train epoch: 147 Learning rate: 7.361036409423035e-06
|
| 1619 |
+
Training loss: 0.086740
|
| 1620 |
+
Instr dry sdr: 12.9175 (Std: 5.0477)
|
| 1621 |
+
Instr dry l1_freq: 52.8124 (Std: 15.3145)
|
| 1622 |
+
Instr dry si_sdr: 11.9079 (Std: 7.2653)
|
| 1623 |
+
Instr other sdr: 6.6818 (Std: 3.5602)
|
| 1624 |
+
Instr other l1_freq: 52.3869 (Std: 13.7973)
|
| 1625 |
+
Instr other si_sdr: 5.8909 (Std: 3.5586)
|
| 1626 |
+
Metric avg sdr : 9.7996
|
| 1627 |
+
Metric avg l1_freq : 52.5997
|
| 1628 |
+
Metric avg si_sdr : 8.8994
|
| 1629 |
+
Train epoch: 148 Learning rate: 6.992984588951883e-06
|
| 1630 |
+
Training loss: 0.093262
|
| 1631 |
+
Instr dry sdr: 12.9297 (Std: 4.9863)
|
| 1632 |
+
Instr dry l1_freq: 52.9437 (Std: 15.2206)
|
| 1633 |
+
Instr dry si_sdr: 12.0304 (Std: 6.8971)
|
| 1634 |
+
Instr other sdr: 6.6975 (Std: 3.4967)
|
| 1635 |
+
Instr other l1_freq: 52.3166 (Std: 13.6655)
|
| 1636 |
+
Instr other si_sdr: 5.9003 (Std: 3.5149)
|
| 1637 |
+
Metric avg sdr : 9.8136
|
| 1638 |
+
Metric avg l1_freq : 52.6301
|
| 1639 |
+
Metric avg si_sdr : 8.9654
|
| 1640 |
+
Train epoch: 149 Learning rate: 6.992984588951883e-06
|
| 1641 |
+
Training loss: 0.089209
|
| 1642 |
+
Instr dry sdr: 12.9448 (Std: 4.9485)
|
| 1643 |
+
Instr dry l1_freq: 52.9930 (Std: 15.1825)
|
| 1644 |
+
Instr dry si_sdr: 12.0571 (Std: 6.8559)
|
| 1645 |
+
Instr other sdr: 6.7064 (Std: 3.4694)
|
| 1646 |
+
Instr other l1_freq: 52.3082 (Std: 13.6207)
|
| 1647 |
+
Instr other si_sdr: 5.9045 (Std: 3.4973)
|
| 1648 |
+
Metric avg sdr : 9.8256
|
| 1649 |
+
Metric avg l1_freq : 52.6506
|
| 1650 |
+
Metric avg si_sdr : 8.9808
|
| 1651 |
+
Train epoch: 150 Learning rate: 6.992984588951883e-06
|
| 1652 |
+
Training loss: 0.091250
|
| 1653 |
+
Instr dry sdr: 13.0154 (Std: 4.8329)
|
| 1654 |
+
Instr dry l1_freq: 53.1560 (Std: 14.9594)
|
| 1655 |
+
Instr dry si_sdr: 12.2982 (Std: 6.2567)
|
| 1656 |
+
Instr other sdr: 6.7774 (Std: 3.3365)
|
| 1657 |
+
Instr other l1_freq: 52.5333 (Std: 13.4056)
|
| 1658 |
+
Instr other si_sdr: 5.9671 (Std: 3.4008)
|
| 1659 |
+
Metric avg sdr : 9.8964
|
| 1660 |
+
Metric avg l1_freq : 52.8446
|
| 1661 |
+
Metric avg si_sdr : 9.1326
|
| 1662 |
+
Train epoch: 151 Learning rate: 6.643335359504288e-06
|
| 1663 |
+
Training loss: 0.089285
|
| 1664 |
+
Instr dry sdr: 12.9558 (Std: 5.0116)
|
| 1665 |
+
Instr dry l1_freq: 52.8557 (Std: 15.2873)
|
| 1666 |
+
Instr dry si_sdr: 12.0446 (Std: 6.9359)
|
| 1667 |
+
Instr other sdr: 6.7192 (Std: 3.5214)
|
| 1668 |
+
Instr other l1_freq: 52.2718 (Std: 13.7646)
|
| 1669 |
+
Instr other si_sdr: 5.9287 (Std: 3.5342)
|
| 1670 |
+
Metric avg sdr : 9.8375
|
| 1671 |
+
Metric avg l1_freq : 52.5638
|
| 1672 |
+
Metric avg si_sdr : 8.9866
|
| 1673 |
+
Train epoch: 152 Learning rate: 6.643335359504288e-06
|
| 1674 |
+
Training loss: 0.093715
|
| 1675 |
+
Instr dry sdr: 12.8837 (Std: 5.0895)
|
| 1676 |
+
Instr dry l1_freq: 52.7785 (Std: 15.4209)
|
| 1677 |
+
Instr dry si_sdr: 11.8158 (Std: 7.4261)
|
| 1678 |
+
Instr other sdr: 6.6453 (Std: 3.6111)
|
| 1679 |
+
Instr other l1_freq: 52.1904 (Std: 13.9012)
|
| 1680 |
+
Instr other si_sdr: 5.8519 (Std: 3.6058)
|
| 1681 |
+
Metric avg sdr : 9.7645
|
| 1682 |
+
Metric avg l1_freq : 52.4845
|
| 1683 |
+
Metric avg si_sdr : 8.8338
|
| 1684 |
+
Train epoch: 153 Learning rate: 6.643335359504288e-06
|
| 1685 |
+
Training loss: 0.094634
|
| 1686 |
+
Instr dry sdr: 12.9221 (Std: 5.0286)
|
| 1687 |
+
Instr dry l1_freq: 52.7799 (Std: 15.3241)
|
| 1688 |
+
Instr dry si_sdr: 11.9359 (Std: 7.1872)
|
| 1689 |
+
Instr other sdr: 6.6838 (Std: 3.5465)
|
| 1690 |
+
Instr other l1_freq: 52.2104 (Std: 13.8029)
|
| 1691 |
+
Instr other si_sdr: 5.8925 (Std: 3.5535)
|
| 1692 |
+
Metric avg sdr : 9.8030
|
| 1693 |
+
Metric avg l1_freq : 52.4951
|
| 1694 |
+
Metric avg si_sdr : 8.9142
|
| 1695 |
+
Train epoch: 154 Learning rate: 6.311168591529074e-06
|
| 1696 |
+
Training loss: 0.090340
|
| 1697 |
+
Instr dry sdr: 12.5977 (Std: 5.3607)
|
| 1698 |
+
Instr dry l1_freq: 51.7653 (Std: 15.6438)
|
| 1699 |
+
Instr dry si_sdr: 10.8231 (Std: 9.5397)
|
| 1700 |
+
Instr other sdr: 6.3668 (Std: 3.8433)
|
| 1701 |
+
Instr other l1_freq: 51.4808 (Std: 14.0331)
|
| 1702 |
+
Instr other si_sdr: 5.5531 (Std: 3.8592)
|
| 1703 |
+
Metric avg sdr : 9.4822
|
| 1704 |
+
Metric avg l1_freq : 51.6231
|
| 1705 |
+
Metric avg si_sdr : 8.1881
|
| 1706 |
+
Train epoch: 155 Learning rate: 6.311168591529074e-06
|
| 1707 |
+
Training loss: 0.094673
|
| 1708 |
+
Instr dry sdr: 12.6857 (Std: 5.2910)
|
| 1709 |
+
Instr dry l1_freq: 52.0814 (Std: 15.5593)
|
| 1710 |
+
Instr dry si_sdr: 11.0689 (Std: 9.0954)
|
| 1711 |
+
Instr other sdr: 6.4517 (Std: 3.7781)
|
| 1712 |
+
Instr other l1_freq: 51.7817 (Std: 14.0336)
|
| 1713 |
+
Instr other si_sdr: 5.6439 (Std: 3.7786)
|
| 1714 |
+
Metric avg sdr : 9.5687
|
| 1715 |
+
Metric avg l1_freq : 51.9316
|
| 1716 |
+
Metric avg si_sdr : 8.3564
|
| 1717 |
+
Train epoch: 156 Learning rate: 6.311168591529074e-06
|
| 1718 |
+
Training loss: 0.097054
|
| 1719 |
+
Instr dry sdr: 12.8776 (Std: 5.1045)
|
| 1720 |
+
Instr dry l1_freq: 52.6716 (Std: 15.4472)
|
| 1721 |
+
Instr dry si_sdr: 11.7472 (Std: 7.6424)
|
| 1722 |
+
Instr other sdr: 6.6376 (Std: 3.6234)
|
| 1723 |
+
Instr other l1_freq: 52.1721 (Std: 13.9403)
|
| 1724 |
+
Instr other si_sdr: 5.8483 (Std: 3.6134)
|
| 1725 |
+
Metric avg sdr : 9.7576
|
| 1726 |
+
Metric avg l1_freq : 52.4218
|
| 1727 |
+
Metric avg si_sdr : 8.7978
|
| 1728 |
+
Train epoch: 157 Learning rate: 5.9956101619526196e-06
|
| 1729 |
+
Training loss: 0.086725
|
| 1730 |
+
Instr dry sdr: 12.7567 (Std: 5.1877)
|
| 1731 |
+
Instr dry l1_freq: 52.3955 (Std: 15.5117)
|
| 1732 |
+
Instr dry si_sdr: 11.3619 (Std: 8.4342)
|
| 1733 |
+
Instr other sdr: 6.5151 (Std: 3.7013)
|
| 1734 |
+
Instr other l1_freq: 51.9408 (Std: 13.9934)
|
| 1735 |
+
Instr other si_sdr: 5.7100 (Std: 3.6893)
|
| 1736 |
+
Metric avg sdr : 9.6359
|
| 1737 |
+
Metric avg l1_freq : 52.1681
|
| 1738 |
+
Metric avg si_sdr : 8.5360
|
| 1739 |
+
Train epoch: 158 Learning rate: 5.9956101619526196e-06
|
| 1740 |
+
Training loss: 0.088358
|
| 1741 |
+
Instr dry sdr: 12.8922 (Std: 5.0698)
|
| 1742 |
+
Instr dry l1_freq: 52.7622 (Std: 15.3663)
|
| 1743 |
+
Instr dry si_sdr: 11.8662 (Std: 7.3063)
|
| 1744 |
+
Instr other sdr: 6.6547 (Std: 3.5908)
|
| 1745 |
+
Instr other l1_freq: 52.2345 (Std: 13.8596)
|
| 1746 |
+
Instr other si_sdr: 5.8634 (Std: 3.5879)
|
| 1747 |
+
Metric avg sdr : 9.7735
|
| 1748 |
+
Metric avg l1_freq : 52.4984
|
| 1749 |
+
Metric avg si_sdr : 8.8648
|
| 1750 |
+
Train epoch: 159 Learning rate: 5.9956101619526196e-06
|
| 1751 |
+
Training loss: 0.095690
|
| 1752 |
+
Instr dry sdr: 12.8906 (Std: 5.0697)
|
| 1753 |
+
Instr dry l1_freq: 52.7371 (Std: 15.3624)
|
| 1754 |
+
Instr dry si_sdr: 11.8548 (Std: 7.3340)
|
| 1755 |
+
Instr other sdr: 6.6570 (Std: 3.5914)
|
| 1756 |
+
Instr other l1_freq: 52.2013 (Std: 13.8421)
|
| 1757 |
+
Instr other si_sdr: 5.8675 (Std: 3.5863)
|
| 1758 |
+
Metric avg sdr : 9.7738
|
| 1759 |
+
Metric avg l1_freq : 52.4692
|
| 1760 |
+
Metric avg si_sdr : 8.8611
|
| 1761 |
+
Train epoch: 160 Learning rate: 5.695829653854988e-06
|
| 1762 |
+
Training loss: 0.092579
|
| 1763 |
+
Instr dry sdr: 12.8544 (Std: 5.1251)
|
| 1764 |
+
Instr dry l1_freq: 52.6313 (Std: 15.4354)
|
| 1765 |
+
Instr dry si_sdr: 11.7075 (Std: 7.6726)
|
| 1766 |
+
Instr other sdr: 6.6202 (Std: 3.6433)
|
| 1767 |
+
Instr other l1_freq: 52.2660 (Std: 13.9422)
|
| 1768 |
+
Instr other si_sdr: 5.8278 (Std: 3.6284)
|
| 1769 |
+
Metric avg sdr : 9.7373
|
| 1770 |
+
Metric avg l1_freq : 52.4487
|
| 1771 |
+
Metric avg si_sdr : 8.7676
|
| 1772 |
+
Train epoch: 161 Learning rate: 5.695829653854988e-06
|
| 1773 |
+
Training loss: 0.097362
|
| 1774 |
+
Instr dry sdr: 12.9443 (Std: 5.0329)
|
| 1775 |
+
Instr dry l1_freq: 52.8741 (Std: 15.3065)
|
| 1776 |
+
Instr dry si_sdr: 11.9991 (Std: 7.0508)
|
| 1777 |
+
Instr other sdr: 6.7074 (Std: 3.5450)
|
| 1778 |
+
Instr other l1_freq: 52.4280 (Std: 13.8087)
|
| 1779 |
+
Instr other si_sdr: 5.9183 (Std: 3.5510)
|
| 1780 |
+
Metric avg sdr : 9.8259
|
| 1781 |
+
Metric avg l1_freq : 52.6510
|
| 1782 |
+
Metric avg si_sdr : 8.9587
|
| 1783 |
+
Train epoch: 162 Learning rate: 5.695829653854988e-06
|
| 1784 |
+
Training loss: 0.091346
|
| 1785 |
+
Instr dry sdr: 12.8804 (Std: 5.1055)
|
| 1786 |
+
Instr dry l1_freq: 52.7372 (Std: 15.4190)
|
| 1787 |
+
Instr dry si_sdr: 11.7930 (Std: 7.5043)
|
| 1788 |
+
Instr other sdr: 6.6422 (Std: 3.6245)
|
| 1789 |
+
Instr other l1_freq: 52.2196 (Std: 13.9112)
|
| 1790 |
+
Instr other si_sdr: 5.8524 (Std: 3.6164)
|
| 1791 |
+
Metric avg sdr : 9.7613
|
| 1792 |
+
Metric avg l1_freq : 52.4784
|
| 1793 |
+
Metric avg si_sdr : 8.8227
|
| 1794 |
+
Train epoch: 163 Learning rate: 5.411038171162238e-06
|
| 1795 |
+
Training loss: 0.091542
|
| 1796 |
+
Instr dry sdr: 12.8616 (Std: 5.1150)
|
| 1797 |
+
Instr dry l1_freq: 52.6565 (Std: 15.4280)
|
| 1798 |
+
Instr dry si_sdr: 11.7335 (Std: 7.6210)
|
| 1799 |
+
Instr other sdr: 6.6225 (Std: 3.6385)
|
| 1800 |
+
Instr other l1_freq: 52.1651 (Std: 13.9175)
|
| 1801 |
+
Instr other si_sdr: 5.8302 (Std: 3.6274)
|
| 1802 |
+
Metric avg sdr : 9.7421
|
| 1803 |
+
Metric avg l1_freq : 52.4108
|
| 1804 |
+
Metric avg si_sdr : 8.7819
|
| 1805 |
+
Train epoch: 164 Learning rate: 5.411038171162238e-06
|
| 1806 |
+
Training loss: 0.094600
|
| 1807 |
+
Instr dry sdr: 12.8673 (Std: 5.1267)
|
| 1808 |
+
Instr dry l1_freq: 52.6975 (Std: 15.4468)
|
| 1809 |
+
Instr dry si_sdr: 11.7171 (Std: 7.6899)
|
| 1810 |
+
Instr other sdr: 6.6311 (Std: 3.6509)
|
| 1811 |
+
Instr other l1_freq: 52.1967 (Std: 13.9381)
|
| 1812 |
+
Instr other si_sdr: 5.8418 (Std: 3.6379)
|
| 1813 |
+
Metric avg sdr : 9.7492
|
| 1814 |
+
Metric avg l1_freq : 52.4471
|
| 1815 |
+
Metric avg si_sdr : 8.7795
|
| 1816 |
+
Train epoch: 165 Learning rate: 5.411038171162238e-06
|
| 1817 |
+
Training loss: 0.097291
|
| 1818 |
+
Instr dry sdr: 13.0089 (Std: 4.9530)
|
| 1819 |
+
Instr dry l1_freq: 53.1224 (Std: 15.1908)
|
| 1820 |
+
Instr dry si_sdr: 12.2088 (Std: 6.5852)
|
| 1821 |
+
Instr other sdr: 6.7727 (Std: 3.4620)
|
| 1822 |
+
Instr other l1_freq: 52.4034 (Std: 13.6353)
|
| 1823 |
+
Instr other si_sdr: 5.9884 (Std: 3.4897)
|
| 1824 |
+
Metric avg sdr : 9.8908
|
| 1825 |
+
Metric avg l1_freq : 52.7629
|
| 1826 |
+
Metric avg si_sdr : 9.0986
|
| 1827 |
+
Train epoch: 166 Learning rate: 5.1404862626041264e-06
|
| 1828 |
+
Training loss: 0.094797
|
| 1829 |
+
Instr dry sdr: 13.0049 (Std: 4.9604)
|
| 1830 |
+
Instr dry l1_freq: 53.0771 (Std: 15.1746)
|
| 1831 |
+
Instr dry si_sdr: 12.2103 (Std: 6.5536)
|
| 1832 |
+
Instr other sdr: 6.7714 (Std: 3.4740)
|
| 1833 |
+
Instr other l1_freq: 52.4696 (Std: 13.6267)
|
| 1834 |
+
Instr other si_sdr: 5.9851 (Std: 3.5005)
|
| 1835 |
+
Metric avg sdr : 9.8881
|
| 1836 |
+
Metric avg l1_freq : 52.7734
|
| 1837 |
+
Metric avg si_sdr : 9.0977
|
| 1838 |
+
Train epoch: 167 Learning rate: 5.1404862626041264e-06
|
| 1839 |
+
Training loss: 0.100379
|
| 1840 |
+
Instr dry sdr: 12.9419 (Std: 5.0760)
|
| 1841 |
+
Instr dry l1_freq: 52.8755 (Std: 15.3623)
|
| 1842 |
+
Instr dry si_sdr: 11.9785 (Std: 7.1096)
|
| 1843 |
+
Instr other sdr: 6.7099 (Std: 3.5933)
|
| 1844 |
+
Instr other l1_freq: 52.3490 (Std: 13.8569)
|
| 1845 |
+
Instr other si_sdr: 5.9277 (Std: 3.5915)
|
| 1846 |
+
Metric avg sdr : 9.8259
|
| 1847 |
+
Metric avg l1_freq : 52.6122
|
| 1848 |
+
Metric avg si_sdr : 8.9531
|
| 1849 |
+
Train epoch: 168 Learning rate: 5.1404862626041264e-06
|
| 1850 |
+
Training loss: 0.097326
|
| 1851 |
+
Instr dry sdr: 12.8634 (Std: 5.1823)
|
| 1852 |
+
Instr dry l1_freq: 52.4627 (Std: 15.5339)
|
| 1853 |
+
Instr dry si_sdr: 11.6184 (Std: 7.9900)
|
| 1854 |
+
Instr other sdr: 6.6246 (Std: 3.6947)
|
| 1855 |
+
Instr other l1_freq: 52.0684 (Std: 14.0159)
|
| 1856 |
+
Instr other si_sdr: 5.8370 (Std: 3.6815)
|
| 1857 |
+
Metric avg sdr : 9.7440
|
| 1858 |
+
Metric avg l1_freq : 52.2656
|
| 1859 |
+
Metric avg si_sdr : 8.7277
|
| 1860 |
+
Train epoch: 169 Learning rate: 4.88346194947392e-06
|
| 1861 |
+
Training loss: 0.092164
|
| 1862 |
+
Instr dry sdr: 13.0002 (Std: 4.9702)
|
| 1863 |
+
Instr dry l1_freq: 52.9855 (Std: 15.2065)
|
| 1864 |
+
Instr dry si_sdr: 12.1563 (Std: 6.7287)
|
| 1865 |
+
Instr other sdr: 6.7648 (Std: 3.4724)
|
| 1866 |
+
Instr other l1_freq: 52.3790 (Std: 13.6860)
|
| 1867 |
+
Instr other si_sdr: 5.9752 (Std: 3.5019)
|
| 1868 |
+
Metric avg sdr : 9.8825
|
| 1869 |
+
Metric avg l1_freq : 52.6822
|
| 1870 |
+
Metric avg si_sdr : 9.0658
|
| 1871 |
+
Train epoch: 170 Learning rate: 4.88346194947392e-06
|
| 1872 |
+
Training loss: 0.093825
|
| 1873 |
+
Instr dry sdr: 13.0661 (Std: 4.8525)
|
| 1874 |
+
Instr dry l1_freq: 53.1495 (Std: 14.9630)
|
| 1875 |
+
Instr dry si_sdr: 12.3687 (Std: 6.2087)
|
| 1876 |
+
Instr other sdr: 6.8300 (Std: 3.3398)
|
| 1877 |
+
Instr other l1_freq: 52.6276 (Std: 13.4359)
|
| 1878 |
+
Instr other si_sdr: 6.0311 (Std: 3.4032)
|
| 1879 |
+
Metric avg sdr : 9.9481
|
| 1880 |
+
Metric avg l1_freq : 52.8886
|
| 1881 |
+
Metric avg si_sdr : 9.1999
|
| 1882 |
+
Train epoch: 171 Learning rate: 4.88346194947392e-06
|
| 1883 |
+
Training loss: 0.093724
|
| 1884 |
+
Instr dry sdr: 13.1031 (Std: 4.7939)
|
| 1885 |
+
Instr dry l1_freq: 53.2780 (Std: 14.8401)
|
| 1886 |
+
Instr dry si_sdr: 12.4540 (Std: 6.0211)
|
| 1887 |
+
Instr other sdr: 6.8673 (Std: 3.2787)
|
| 1888 |
+
Instr other l1_freq: 52.7146 (Std: 13.2905)
|
| 1889 |
+
Instr other si_sdr: 6.0661 (Std: 3.3589)
|
| 1890 |
+
Metric avg sdr : 9.9852
|
| 1891 |
+
Metric avg l1_freq : 52.9963
|
| 1892 |
+
Metric avg si_sdr : 9.2600
|
| 1893 |
+
Train epoch: 172 Learning rate: 4.639288852000224e-06
|
| 1894 |
+
Training loss: 0.092525
|
| 1895 |
+
Instr dry sdr: 12.9381 (Std: 4.9911)
|
| 1896 |
+
Instr dry l1_freq: 52.8903 (Std: 15.2267)
|
| 1897 |
+
Instr dry si_sdr: 12.0534 (Std: 6.8457)
|
| 1898 |
+
Instr other sdr: 6.7037 (Std: 3.5046)
|
| 1899 |
+
Instr other l1_freq: 52.3353 (Std: 13.6947)
|
| 1900 |
+
Instr other si_sdr: 5.9037 (Std: 3.5301)
|
| 1901 |
+
Metric avg sdr : 9.8209
|
| 1902 |
+
Metric avg l1_freq : 52.6128
|
| 1903 |
+
Metric avg si_sdr : 8.9786
|
| 1904 |
+
Train epoch: 173 Learning rate: 4.639288852000224e-06
|
| 1905 |
+
Training loss: 0.093124
|
| 1906 |
+
Instr dry sdr: 12.9824 (Std: 4.9425)
|
| 1907 |
+
Instr dry l1_freq: 52.9453 (Std: 15.1376)
|
| 1908 |
+
Instr dry si_sdr: 12.1760 (Std: 6.5795)
|
| 1909 |
+
Instr other sdr: 6.7494 (Std: 3.4530)
|
| 1910 |
+
Instr other l1_freq: 52.4448 (Std: 13.6078)
|
| 1911 |
+
Instr other si_sdr: 5.9532 (Std: 3.4866)
|
| 1912 |
+
Metric avg sdr : 9.8659
|
| 1913 |
+
Metric avg l1_freq : 52.6951
|
| 1914 |
+
Metric avg si_sdr : 9.0646
|
| 1915 |
+
Train epoch: 174 Learning rate: 4.639288852000224e-06
|
| 1916 |
+
Training loss: 0.097429
|
| 1917 |
+
Instr dry sdr: 12.8439 (Std: 5.1313)
|
| 1918 |
+
Instr dry l1_freq: 52.6034 (Std: 15.4667)
|
| 1919 |
+
Instr dry si_sdr: 11.7080 (Std: 7.6385)
|
| 1920 |
+
Instr other sdr: 6.6100 (Std: 3.6477)
|
| 1921 |
+
Instr other l1_freq: 52.0806 (Std: 13.9462)
|
| 1922 |
+
Instr other si_sdr: 5.8138 (Std: 3.6422)
|
| 1923 |
+
Metric avg sdr : 9.7269
|
| 1924 |
+
Metric avg l1_freq : 52.3420
|
| 1925 |
+
Metric avg si_sdr : 8.7609
|
| 1926 |
+
Train epoch: 175 Learning rate: 4.407324409400213e-06
|
| 1927 |
+
Training loss: 0.095886
|
| 1928 |
+
Instr dry sdr: 12.9012 (Std: 5.1151)
|
| 1929 |
+
Instr dry l1_freq: 52.6466 (Std: 15.4250)
|
| 1930 |
+
Instr dry si_sdr: 11.8163 (Std: 7.5033)
|
| 1931 |
+
Instr other sdr: 6.6675 (Std: 3.6232)
|
| 1932 |
+
Instr other l1_freq: 52.2440 (Std: 13.9307)
|
| 1933 |
+
Instr other si_sdr: 5.8780 (Std: 3.6207)
|
| 1934 |
+
Metric avg sdr : 9.7844
|
| 1935 |
+
Metric avg l1_freq : 52.4453
|
| 1936 |
+
Metric avg si_sdr : 8.8472
|
| 1937 |
+
Train epoch: 176 Learning rate: 4.407324409400213e-06
|
| 1938 |
+
Training loss: 0.098037
|
| 1939 |
+
Instr dry sdr: 12.9997 (Std: 4.9698)
|
| 1940 |
+
Instr dry l1_freq: 53.0118 (Std: 15.2028)
|
| 1941 |
+
Instr dry si_sdr: 12.1703 (Std: 6.6775)
|
| 1942 |
+
Instr other sdr: 6.7685 (Std: 3.4791)
|
| 1943 |
+
Instr other l1_freq: 52.4436 (Std: 13.6768)
|
| 1944 |
+
Instr other si_sdr: 5.9799 (Std: 3.5082)
|
| 1945 |
+
Metric avg sdr : 9.8841
|
| 1946 |
+
Metric avg l1_freq : 52.7277
|
| 1947 |
+
Metric avg si_sdr : 9.0751
|
| 1948 |
+
Train epoch: 177 Learning rate: 4.407324409400213e-06
|
| 1949 |
+
Training loss: 0.091857
|
| 1950 |
+
Instr dry sdr: 13.0062 (Std: 4.9606)
|
| 1951 |
+
Instr dry l1_freq: 52.9682 (Std: 15.1650)
|
| 1952 |
+
Instr dry si_sdr: 12.1977 (Std: 6.6035)
|
| 1953 |
+
Instr other sdr: 6.7729 (Std: 3.4661)
|
| 1954 |
+
Instr other l1_freq: 52.4945 (Std: 13.6502)
|
| 1955 |
+
Instr other si_sdr: 5.9841 (Std: 3.4967)
|
| 1956 |
+
Metric avg sdr : 9.8896
|
| 1957 |
+
Metric avg l1_freq : 52.7313
|
| 1958 |
+
Metric avg si_sdr : 9.0909
|
| 1959 |
+
Train epoch: 178 Learning rate: 4.1869581889302025e-06
|
| 1960 |
+
Training loss: 0.098096
|
| 1961 |
+
Instr dry sdr: 12.9103 (Std: 5.0752)
|
| 1962 |
+
Instr dry l1_freq: 52.7613 (Std: 15.3833)
|
| 1963 |
+
Instr dry si_sdr: 11.8924 (Std: 7.2792)
|
| 1964 |
+
Instr other sdr: 6.6783 (Std: 3.5937)
|
| 1965 |
+
Instr other l1_freq: 52.2686 (Std: 13.8729)
|
| 1966 |
+
Instr other si_sdr: 5.8899 (Std: 3.5947)
|
| 1967 |
+
Metric avg sdr : 9.7943
|
| 1968 |
+
Metric avg l1_freq : 52.5150
|
| 1969 |
+
Metric avg si_sdr : 8.8912
|
| 1970 |
+
Train epoch: 179 Learning rate: 4.1869581889302025e-06
|
| 1971 |
+
Training loss: 0.090818
|
| 1972 |
+
Instr dry sdr: 12.9573 (Std: 5.0339)
|
| 1973 |
+
Instr dry l1_freq: 52.8341 (Std: 15.3070)
|
| 1974 |
+
Instr dry si_sdr: 12.0437 (Std: 6.9474)
|
| 1975 |
+
Instr other sdr: 6.7252 (Std: 3.5486)
|
| 1976 |
+
Instr other l1_freq: 52.3729 (Std: 13.7904)
|
| 1977 |
+
Instr other si_sdr: 5.9393 (Std: 3.5573)
|
| 1978 |
+
Metric avg sdr : 9.8412
|
| 1979 |
+
Metric avg l1_freq : 52.6035
|
| 1980 |
+
Metric avg si_sdr : 8.9915
|
| 1981 |
+
Train epoch: 180 Learning rate: 4.1869581889302025e-06
|
| 1982 |
+
Training loss: 0.092787
|
| 1983 |
+
Instr dry sdr: 13.0645 (Std: 4.8733)
|
| 1984 |
+
Instr dry l1_freq: 53.1646 (Std: 15.0069)
|
| 1985 |
+
Instr dry si_sdr: 12.3598 (Std: 6.2420)
|
| 1986 |
+
Instr other sdr: 6.8317 (Std: 3.3670)
|
| 1987 |
+
Instr other l1_freq: 52.6292 (Std: 13.4452)
|
| 1988 |
+
Instr other si_sdr: 6.0409 (Std: 3.4202)
|
| 1989 |
+
Metric avg sdr : 9.9481
|
| 1990 |
+
Metric avg l1_freq : 52.8969
|
| 1991 |
+
Metric avg si_sdr : 9.2003
|
| 1992 |
+
Train epoch: 181 Learning rate: 3.977610279483693e-06
|
| 1993 |
+
Training loss: 0.098106
|
| 1994 |
+
Instr dry sdr: 13.0562 (Std: 4.8652)
|
| 1995 |
+
Instr dry l1_freq: 53.1336 (Std: 14.9775)
|
| 1996 |
+
Instr dry si_sdr: 12.3658 (Std: 6.1905)
|
| 1997 |
+
Instr other sdr: 6.8223 (Std: 3.3560)
|
| 1998 |
+
Instr other l1_freq: 52.5849 (Std: 13.4299)
|
| 1999 |
+
Instr other si_sdr: 6.0296 (Std: 3.4127)
|
| 2000 |
+
Metric avg sdr : 9.9393
|
| 2001 |
+
Metric avg l1_freq : 52.8593
|
| 2002 |
+
Metric avg si_sdr : 9.1977
|
| 2003 |
+
Train epoch: 182 Learning rate: 3.977610279483693e-06
|
| 2004 |
+
Training loss: 0.091860
|
| 2005 |
+
Instr dry sdr: 13.0554 (Std: 4.9438)
|
| 2006 |
+
Instr dry l1_freq: 53.0550 (Std: 15.1489)
|
| 2007 |
+
Instr dry si_sdr: 12.2779 (Std: 6.5097)
|
| 2008 |
+
Instr other sdr: 6.8257 (Std: 3.4539)
|
| 2009 |
+
Instr other l1_freq: 52.5838 (Std: 13.6336)
|
| 2010 |
+
Instr other si_sdr: 6.0443 (Std: 3.4877)
|
| 2011 |
+
Metric avg sdr : 9.9406
|
| 2012 |
+
Metric avg l1_freq : 52.8194
|
| 2013 |
+
Metric avg si_sdr : 9.1611
|
| 2014 |
+
Train epoch: 183 Learning rate: 3.977610279483693e-06
|
| 2015 |
+
Training loss: 0.093953
|
| 2016 |
+
Instr dry sdr: 13.0706 (Std: 4.9253)
|
| 2017 |
+
Instr dry l1_freq: 53.1449 (Std: 15.1201)
|
| 2018 |
+
Instr dry si_sdr: 12.3207 (Std: 6.4185)
|
| 2019 |
+
Instr other sdr: 6.8401 (Std: 3.4303)
|
| 2020 |
+
Instr other l1_freq: 52.6158 (Std: 13.5921)
|
| 2021 |
+
Instr other si_sdr: 6.0593 (Std: 3.4694)
|
| 2022 |
+
Metric avg sdr : 9.9554
|
| 2023 |
+
Metric avg l1_freq : 52.8804
|
| 2024 |
+
Metric avg si_sdr : 9.1900
|
| 2025 |
+
Train epoch: 184 Learning rate: 3.778729765509508e-06
|
| 2026 |
+
Training loss: 0.092398
|
| 2027 |
+
Instr dry sdr: 12.9325 (Std: 5.1393)
|
| 2028 |
+
Instr dry l1_freq: 52.6756 (Std: 15.4664)
|
| 2029 |
+
Instr dry si_sdr: 11.8159 (Std: 7.6263)
|
| 2030 |
+
Instr other sdr: 6.7009 (Std: 3.6478)
|
| 2031 |
+
Instr other l1_freq: 52.2670 (Std: 13.9723)
|
| 2032 |
+
Instr other si_sdr: 5.9239 (Std: 3.6360)
|
| 2033 |
+
Metric avg sdr : 9.8167
|
| 2034 |
+
Metric avg l1_freq : 52.4713
|
| 2035 |
+
Metric avg si_sdr : 8.8699
|
| 2036 |
+
Train epoch: 185 Learning rate: 3.778729765509508e-06
|
| 2037 |
+
Training loss: 0.096717
|
| 2038 |
+
Instr dry sdr: 13.0490 (Std: 4.9449)
|
| 2039 |
+
Instr dry l1_freq: 53.0591 (Std: 15.1325)
|
| 2040 |
+
Instr dry si_sdr: 12.2904 (Std: 6.4531)
|
| 2041 |
+
Instr other sdr: 6.8182 (Std: 3.4383)
|
| 2042 |
+
Instr other l1_freq: 52.6409 (Std: 13.6066)
|
| 2043 |
+
Instr other si_sdr: 6.0330 (Std: 3.4746)
|
| 2044 |
+
Metric avg sdr : 9.9336
|
| 2045 |
+
Metric avg l1_freq : 52.8500
|
| 2046 |
+
Metric avg si_sdr : 9.1617
|
| 2047 |
+
Train epoch: 186 Learning rate: 3.778729765509508e-06
|
| 2048 |
+
Training loss: 0.090671
|
| 2049 |
+
Instr dry sdr: 12.9600 (Std: 5.0693)
|
| 2050 |
+
Instr dry l1_freq: 52.8589 (Std: 15.3583)
|
| 2051 |
+
Instr dry si_sdr: 11.9827 (Std: 7.1793)
|
| 2052 |
+
Instr other sdr: 6.7297 (Std: 3.5853)
|
| 2053 |
+
Instr other l1_freq: 52.3399 (Std: 13.8491)
|
| 2054 |
+
Instr other si_sdr: 5.9496 (Std: 3.5872)
|
| 2055 |
+
Metric avg sdr : 9.8448
|
| 2056 |
+
Metric avg l1_freq : 52.5994
|
| 2057 |
+
Metric avg si_sdr : 8.9661
|
| 2058 |
+
Train epoch: 187 Learning rate: 3.5897932772340322e-06
|
| 2059 |
+
Training loss: 0.093142
|
| 2060 |
+
Instr dry sdr: 12.9661 (Std: 5.0599)
|
| 2061 |
+
Instr dry l1_freq: 52.8261 (Std: 15.3346)
|
| 2062 |
+
Instr dry si_sdr: 12.0146 (Std: 7.0952)
|
| 2063 |
+
Instr other sdr: 6.7368 (Std: 3.5686)
|
| 2064 |
+
Instr other l1_freq: 52.4203 (Std: 13.8399)
|
| 2065 |
+
Instr other si_sdr: 5.9544 (Std: 3.5748)
|
| 2066 |
+
Metric avg sdr : 9.8515
|
| 2067 |
+
Metric avg l1_freq : 52.6232
|
| 2068 |
+
Metric avg si_sdr : 8.9845
|
| 2069 |
+
Train epoch: 188 Learning rate: 3.5897932772340322e-06
|
| 2070 |
+
Training loss: 0.090606
|
| 2071 |
+
Instr dry sdr: 12.9711 (Std: 5.0377)
|
| 2072 |
+
Instr dry l1_freq: 52.8756 (Std: 15.3093)
|
| 2073 |
+
Instr dry si_sdr: 12.0522 (Std: 6.9833)
|
| 2074 |
+
Instr other sdr: 6.7401 (Std: 3.5500)
|
| 2075 |
+
Instr other l1_freq: 52.3409 (Std: 13.7953)
|
| 2076 |
+
Instr other si_sdr: 5.9555 (Std: 3.5622)
|
| 2077 |
+
Metric avg sdr : 9.8556
|
| 2078 |
+
Metric avg l1_freq : 52.6082
|
| 2079 |
+
Metric avg si_sdr : 9.0039
|
| 2080 |
+
Train epoch: 189 Learning rate: 3.5897932772340322e-06
|
| 2081 |
+
Training loss: 0.092085
|
| 2082 |
+
Instr dry sdr: 12.8997 (Std: 5.1578)
|
| 2083 |
+
Instr dry l1_freq: 52.5542 (Std: 15.4780)
|
| 2084 |
+
Instr dry si_sdr: 11.7110 (Std: 7.8564)
|
| 2085 |
+
Instr other sdr: 6.6677 (Std: 3.6722)
|
| 2086 |
+
Instr other l1_freq: 52.2427 (Std: 13.9940)
|
| 2087 |
+
Instr other si_sdr: 5.8874 (Std: 3.6602)
|
| 2088 |
+
Metric avg sdr : 9.7837
|
| 2089 |
+
Metric avg l1_freq : 52.3984
|
| 2090 |
+
Metric avg si_sdr : 8.7992
|
| 2091 |
+
Train epoch: 190 Learning rate: 3.4103036133723303e-06
|
| 2092 |
+
Training loss: 0.093211
|
| 2093 |
+
Instr dry sdr: 12.9938 (Std: 5.0237)
|
| 2094 |
+
Instr dry l1_freq: 52.8923 (Std: 15.2859)
|
| 2095 |
+
Instr dry si_sdr: 12.0941 (Std: 6.9351)
|
| 2096 |
+
Instr other sdr: 6.7622 (Std: 3.5370)
|
| 2097 |
+
Instr other l1_freq: 52.4834 (Std: 13.7856)
|
| 2098 |
+
Instr other si_sdr: 5.9802 (Std: 3.5492)
|
| 2099 |
+
Metric avg sdr : 9.8780
|
| 2100 |
+
Metric avg l1_freq : 52.6879
|
| 2101 |
+
Metric avg si_sdr : 9.0371
|
| 2102 |
+
Train epoch: 191 Learning rate: 3.4103036133723303e-06
|
| 2103 |
+
Training loss: 0.093054
|
| 2104 |
+
Instr dry sdr: 12.9460 (Std: 5.0873)
|
| 2105 |
+
Instr dry l1_freq: 52.7413 (Std: 15.3860)
|
| 2106 |
+
Instr dry si_sdr: 11.9249 (Std: 7.3263)
|
| 2107 |
+
Instr other sdr: 6.7154 (Std: 3.6001)
|
| 2108 |
+
Instr other l1_freq: 52.3403 (Std: 13.8921)
|
| 2109 |
+
Instr other si_sdr: 5.9341 (Std: 3.6000)
|
| 2110 |
+
Metric avg sdr : 9.8307
|
| 2111 |
+
Metric avg l1_freq : 52.5408
|
| 2112 |
+
Metric avg si_sdr : 8.9295
|
| 2113 |
+
Train epoch: 192 Learning rate: 3.4103036133723303e-06
|
| 2114 |
+
Training loss: 0.094299
|
| 2115 |
+
Instr dry sdr: 12.9910 (Std: 5.0396)
|
| 2116 |
+
Instr dry l1_freq: 52.9021 (Std: 15.3228)
|
| 2117 |
+
Instr dry si_sdr: 12.0614 (Std: 7.0331)
|
| 2118 |
+
Instr other sdr: 6.7601 (Std: 3.5478)
|
| 2119 |
+
Instr other l1_freq: 52.4129 (Std: 13.7910)
|
| 2120 |
+
Instr other si_sdr: 5.9815 (Std: 3.5567)
|
| 2121 |
+
Metric avg sdr : 9.8756
|
| 2122 |
+
Metric avg l1_freq : 52.6575
|
| 2123 |
+
Metric avg si_sdr : 9.0214
|
| 2124 |
+
Train epoch: 193 Learning rate: 3.2397884327037135e-06
|
| 2125 |
+
Training loss: 0.099640
|
| 2126 |
+
Instr dry sdr: 12.9444 (Std: 5.0973)
|
| 2127 |
+
Instr dry l1_freq: 52.7317 (Std: 15.4063)
|
| 2128 |
+
Instr dry si_sdr: 11.9180 (Std: 7.3313)
|
| 2129 |
+
Instr other sdr: 6.7131 (Std: 3.6097)
|
| 2130 |
+
Instr other l1_freq: 52.3779 (Std: 13.9158)
|
| 2131 |
+
Instr other si_sdr: 5.9322 (Std: 3.6066)
|
| 2132 |
+
Metric avg sdr : 9.8287
|
| 2133 |
+
Metric avg l1_freq : 52.5548
|
| 2134 |
+
Metric avg si_sdr : 8.9251
|
| 2135 |
+
Train epoch: 194 Learning rate: 3.2397884327037135e-06
|
| 2136 |
+
Training loss: 0.095810
|
| 2137 |
+
Instr dry sdr: 13.0026 (Std: 4.9771)
|
| 2138 |
+
Instr dry l1_freq: 53.0306 (Std: 15.2164)
|
| 2139 |
+
Instr dry si_sdr: 12.1626 (Std: 6.7231)
|
| 2140 |
+
Instr other sdr: 6.7734 (Std: 3.4885)
|
| 2141 |
+
Instr other l1_freq: 52.5501 (Std: 13.6774)
|
| 2142 |
+
Instr other si_sdr: 5.9869 (Std: 3.5131)
|
| 2143 |
+
Metric avg sdr : 9.8880
|
| 2144 |
+
Metric avg l1_freq : 52.7903
|
| 2145 |
+
Metric avg si_sdr : 9.0747
|
| 2146 |
+
Train epoch: 195 Learning rate: 3.2397884327037135e-06
|
| 2147 |
+
Training loss: 0.094791
|
| 2148 |
+
Instr dry sdr: 13.0254 (Std: 4.9660)
|
| 2149 |
+
Instr dry l1_freq: 53.1081 (Std: 15.2067)
|
| 2150 |
+
Instr dry si_sdr: 12.2018 (Std: 6.6747)
|
| 2151 |
+
Instr other sdr: 6.7945 (Std: 3.4757)
|
| 2152 |
+
Instr other l1_freq: 52.5520 (Std: 13.6617)
|
| 2153 |
+
Instr other si_sdr: 6.0107 (Std: 3.5039)
|
| 2154 |
+
Metric avg sdr : 9.9100
|
| 2155 |
+
Metric avg l1_freq : 52.8300
|
| 2156 |
+
Metric avg si_sdr : 9.1063
|
| 2157 |
+
Train epoch: 196 Learning rate: 3.077799011068528e-06
|
| 2158 |
+
Training loss: 0.094022
|
| 2159 |
+
Instr dry sdr: 12.9993 (Std: 5.0386)
|
| 2160 |
+
Instr dry l1_freq: 52.9897 (Std: 15.3230)
|
| 2161 |
+
Instr dry si_sdr: 12.0766 (Std: 7.0081)
|
| 2162 |
+
Instr other sdr: 6.7706 (Std: 3.5526)
|
| 2163 |
+
Instr other l1_freq: 52.5178 (Std: 13.8153)
|
| 2164 |
+
Instr other si_sdr: 5.9919 (Std: 3.5632)
|
| 2165 |
+
Metric avg sdr : 9.8849
|
| 2166 |
+
Metric avg l1_freq : 52.7538
|
| 2167 |
+
Metric avg si_sdr : 9.0343
|
| 2168 |
+
Train epoch: 197 Learning rate: 3.077799011068528e-06
|
| 2169 |
+
Training loss: 0.089808
|
| 2170 |
+
Instr dry sdr: 12.9030 (Std: 5.1382)
|
| 2171 |
+
Instr dry l1_freq: 52.6801 (Std: 15.4695)
|
| 2172 |
+
Instr dry si_sdr: 11.7579 (Std: 7.6938)
|
| 2173 |
+
Instr other sdr: 6.6722 (Std: 3.6608)
|
| 2174 |
+
Instr other l1_freq: 52.2401 (Std: 13.9689)
|
| 2175 |
+
Instr other si_sdr: 5.8911 (Std: 3.6494)
|
| 2176 |
+
Metric avg sdr : 9.7876
|
| 2177 |
+
Metric avg l1_freq : 52.4601
|
| 2178 |
+
Metric avg si_sdr : 8.8245
|
| 2179 |
+
Train epoch: 198 Learning rate: 3.077799011068528e-06
|
| 2180 |
+
Training loss: 0.096411
|
| 2181 |
+
Instr dry sdr: 12.9705 (Std: 5.0528)
|
| 2182 |
+
Instr dry l1_freq: 52.8596 (Std: 15.3333)
|
| 2183 |
+
Instr dry si_sdr: 12.0465 (Std: 6.9944)
|
| 2184 |
+
Instr other sdr: 6.7392 (Std: 3.5682)
|
| 2185 |
+
Instr other l1_freq: 52.4578 (Std: 13.8326)
|
| 2186 |
+
Instr other si_sdr: 5.9563 (Std: 3.5730)
|
| 2187 |
+
Metric avg sdr : 9.8548
|
| 2188 |
+
Metric avg l1_freq : 52.6587
|
| 2189 |
+
Metric avg si_sdr : 9.0014
|
| 2190 |
+
Train epoch: 199 Learning rate: 2.9239090605151014e-06
|
| 2191 |
+
Training loss: 0.089098
|
| 2192 |
+
Instr dry sdr: 12.9623 (Std: 5.0550)
|
| 2193 |
+
Instr dry l1_freq: 52.8382 (Std: 15.3452)
|
| 2194 |
+
Instr dry si_sdr: 12.0264 (Std: 7.0291)
|
| 2195 |
+
Instr other sdr: 6.7334 (Std: 3.5707)
|
| 2196 |
+
Instr other l1_freq: 52.3943 (Std: 13.8395)
|
| 2197 |
+
Instr other si_sdr: 5.9517 (Std: 3.5752)
|
| 2198 |
+
Metric avg sdr : 9.8479
|
| 2199 |
+
Metric avg l1_freq : 52.6162
|
| 2200 |
+
Metric avg si_sdr : 8.9891
|
| 2201 |
+
Train epoch: 200 Learning rate: 2.9239090605151014e-06
|
| 2202 |
+
Training loss: 0.098282
|
| 2203 |
+
Instr dry sdr: 13.0326 (Std: 4.9732)
|
| 2204 |
+
Instr dry l1_freq: 53.0502 (Std: 15.1913)
|
| 2205 |
+
Instr dry si_sdr: 12.2395 (Std: 6.5679)
|
| 2206 |
+
Instr other sdr: 6.8032 (Std: 3.4785)
|
| 2207 |
+
Instr other l1_freq: 52.5799 (Std: 13.6677)
|
| 2208 |
+
Instr other si_sdr: 6.0207 (Std: 3.5036)
|
| 2209 |
+
Metric avg sdr : 9.9179
|
| 2210 |
+
Metric avg l1_freq : 52.8151
|
| 2211 |
+
Metric avg si_sdr : 9.1301
|
| 2212 |
+
Train epoch: 201 Learning rate: 2.9239090605151014e-06
|
| 2213 |
+
Training loss: 0.087879
|
| 2214 |
+
Instr dry sdr: 12.9945 (Std: 5.0327)
|
| 2215 |
+
Instr dry l1_freq: 52.9379 (Std: 15.2901)
|
| 2216 |
+
Instr dry si_sdr: 12.1233 (Std: 6.8245)
|
| 2217 |
+
Instr other sdr: 6.7651 (Std: 3.5438)
|
| 2218 |
+
Instr other l1_freq: 52.4752 (Std: 13.7720)
|
| 2219 |
+
Instr other si_sdr: 5.9853 (Std: 3.5541)
|
| 2220 |
+
Metric avg sdr : 9.8798
|
| 2221 |
+
Metric avg l1_freq : 52.7065
|
| 2222 |
+
Metric avg si_sdr : 9.0543
|
| 2223 |
+
Train epoch: 202 Learning rate: 2.777713607489346e-06
|
| 2224 |
+
Training loss: 0.090894
|
| 2225 |
+
Instr dry sdr: 13.0100 (Std: 5.0205)
|
| 2226 |
+
Instr dry l1_freq: 52.9811 (Std: 15.2788)
|
| 2227 |
+
Instr dry si_sdr: 12.1530 (Std: 6.7770)
|
| 2228 |
+
Instr other sdr: 6.7815 (Std: 3.5375)
|
| 2229 |
+
Instr other l1_freq: 52.5304 (Std: 13.7598)
|
| 2230 |
+
Instr other si_sdr: 6.0045 (Std: 3.5471)
|
| 2231 |
+
Metric avg sdr : 9.8958
|
| 2232 |
+
Metric avg l1_freq : 52.7557
|
| 2233 |
+
Metric avg si_sdr : 9.0787
|
| 2234 |
+
Train epoch: 203 Learning rate: 2.777713607489346e-06
|
| 2235 |
+
Training loss: 0.088920
|
| 2236 |
+
Instr dry sdr: 13.0696 (Std: 4.9347)
|
| 2237 |
+
Instr dry l1_freq: 53.1452 (Std: 15.1341)
|
| 2238 |
+
Instr dry si_sdr: 12.3204 (Std: 6.4161)
|
| 2239 |
+
Instr other sdr: 6.8407 (Std: 3.4438)
|
| 2240 |
+
Instr other l1_freq: 52.6320 (Std: 13.5918)
|
| 2241 |
+
Instr other si_sdr: 6.0610 (Std: 3.4786)
|
| 2242 |
+
Metric avg sdr : 9.9551
|
| 2243 |
+
Metric avg l1_freq : 52.8886
|
| 2244 |
+
Metric avg si_sdr : 9.1907
|
| 2245 |
+
Train epoch: 204 Learning rate: 2.777713607489346e-06
|
| 2246 |
+
Training loss: 0.090892
|
| 2247 |
+
Instr dry sdr: 13.0883 (Std: 4.9306)
|
| 2248 |
+
Instr dry l1_freq: 53.1626 (Std: 15.1372)
|
| 2249 |
+
Instr dry si_sdr: 12.3271 (Std: 6.4656)
|
| 2250 |
+
Instr other sdr: 6.8572 (Std: 3.4362)
|
| 2251 |
+
Instr other l1_freq: 52.6256 (Std: 13.6013)
|
| 2252 |
+
Instr other si_sdr: 6.0819 (Std: 3.4702)
|
| 2253 |
+
Metric avg sdr : 9.9728
|
| 2254 |
+
Metric avg l1_freq : 52.8941
|
| 2255 |
+
Metric avg si_sdr : 9.2045
|
| 2256 |
+
Train epoch: 205 Learning rate: 2.6388279271148787e-06
|
| 2257 |
+
Training loss: 0.091701
|
| 2258 |
+
Instr dry sdr: 13.0661 (Std: 4.9780)
|
| 2259 |
+
Instr dry l1_freq: 53.1265 (Std: 15.2127)
|
| 2260 |
+
Instr dry si_sdr: 12.2558 (Std: 6.6377)
|
| 2261 |
+
Instr other sdr: 6.8350 (Std: 3.4867)
|
| 2262 |
+
Instr other l1_freq: 52.6264 (Std: 13.6752)
|
| 2263 |
+
Instr other si_sdr: 6.0612 (Std: 3.5109)
|
| 2264 |
+
Metric avg sdr : 9.9505
|
| 2265 |
+
Metric avg l1_freq : 52.8764
|
| 2266 |
+
Metric avg si_sdr : 9.1585
|
| 2267 |
+
Train epoch: 206 Learning rate: 2.6388279271148787e-06
|
| 2268 |
+
Training loss: 0.090879
|
| 2269 |
+
Instr dry sdr: 12.9585 (Std: 5.1246)
|
| 2270 |
+
Instr dry l1_freq: 52.7450 (Std: 15.4385)
|
| 2271 |
+
Instr dry si_sdr: 11.8962 (Std: 7.4500)
|
| 2272 |
+
Instr other sdr: 6.7270 (Std: 3.6377)
|
| 2273 |
+
Instr other l1_freq: 52.3973 (Std: 13.9477)
|
| 2274 |
+
Instr other si_sdr: 5.9538 (Std: 3.6284)
|
| 2275 |
+
Metric avg sdr : 9.8427
|
| 2276 |
+
Metric avg l1_freq : 52.5711
|
| 2277 |
+
Metric avg si_sdr : 8.9250
|
| 2278 |
+
Train epoch: 207 Learning rate: 2.6388279271148787e-06
|
| 2279 |
+
Training loss: 0.095157
|
| 2280 |
+
Instr dry sdr: 12.9809 (Std: 5.0754)
|
| 2281 |
+
Instr dry l1_freq: 52.8825 (Std: 15.3618)
|
| 2282 |
+
Instr dry si_sdr: 12.0220 (Std: 7.1175)
|
| 2283 |
+
Instr other sdr: 6.7499 (Std: 3.5911)
|
| 2284 |
+
Instr other l1_freq: 52.4251 (Std: 13.8466)
|
| 2285 |
+
Instr other si_sdr: 5.9755 (Std: 3.5914)
|
| 2286 |
+
Metric avg sdr : 9.8654
|
| 2287 |
+
Metric avg l1_freq : 52.6538
|
| 2288 |
+
Metric avg si_sdr : 8.9987
|
| 2289 |
+
Train epoch: 208 Learning rate: 2.5068865307591348e-06
|
| 2290 |
+
Training loss: 0.097233
|
| 2291 |
+
Instr dry sdr: 12.8730 (Std: 5.1897)
|
| 2292 |
+
Instr dry l1_freq: 52.4444 (Std: 15.5242)
|
| 2293 |
+
Instr dry si_sdr: 11.6652 (Std: 7.8875)
|
| 2294 |
+
Instr other sdr: 6.6421 (Std: 3.7050)
|
| 2295 |
+
Instr other l1_freq: 52.1159 (Std: 14.0080)
|
| 2296 |
+
Instr other si_sdr: 5.8584 (Std: 3.6978)
|
| 2297 |
+
Metric avg sdr : 9.7575
|
| 2298 |
+
Metric avg l1_freq : 52.2802
|
| 2299 |
+
Metric avg si_sdr : 8.7618
|
| 2300 |
+
Train epoch: 209 Learning rate: 2.5068865307591348e-06
|
| 2301 |
+
Training loss: 0.095122
|
| 2302 |
+
Instr dry sdr: 12.8892 (Std: 5.1783)
|
| 2303 |
+
Instr dry l1_freq: 52.5212 (Std: 15.5039)
|
| 2304 |
+
Instr dry si_sdr: 11.7113 (Std: 7.7958)
|
| 2305 |
+
Instr other sdr: 6.6589 (Std: 3.6976)
|
| 2306 |
+
Instr other l1_freq: 52.2186 (Std: 13.9996)
|
| 2307 |
+
Instr other si_sdr: 5.8758 (Std: 3.6899)
|
| 2308 |
+
Metric avg sdr : 9.7741
|
| 2309 |
+
Metric avg l1_freq : 52.3699
|
| 2310 |
+
Metric avg si_sdr : 8.7936
|
| 2311 |
+
Train epoch: 210 Learning rate: 2.5068865307591348e-06
|
| 2312 |
+
Training loss: 0.089211
|
| 2313 |
+
Instr dry sdr: 12.9099 (Std: 5.1559)
|
| 2314 |
+
Instr dry l1_freq: 52.5873 (Std: 15.4712)
|
| 2315 |
+
Instr dry si_sdr: 11.7934 (Std: 7.6123)
|
| 2316 |
+
Instr other sdr: 6.6795 (Std: 3.6688)
|
| 2317 |
+
Instr other l1_freq: 52.3068 (Std: 13.9848)
|
| 2318 |
+
Instr other si_sdr: 5.8986 (Std: 3.6603)
|
| 2319 |
+
Metric avg sdr : 9.7947
|
| 2320 |
+
Metric avg l1_freq : 52.4471
|
| 2321 |
+
Metric avg si_sdr : 8.8460
|
| 2322 |
+
Train epoch: 211 Learning rate: 2.381542204221178e-06
|
| 2323 |
+
Training loss: 0.089044
|
| 2324 |
+
Instr dry sdr: 12.9820 (Std: 5.0812)
|
| 2325 |
+
Instr dry l1_freq: 52.8154 (Std: 15.3662)
|
| 2326 |
+
Instr dry si_sdr: 12.0162 (Std: 7.1432)
|
| 2327 |
+
Instr other sdr: 6.7530 (Std: 3.5918)
|
| 2328 |
+
Instr other l1_freq: 52.4064 (Std: 13.8646)
|
| 2329 |
+
Instr other si_sdr: 5.9778 (Std: 3.5935)
|
| 2330 |
+
Metric avg sdr : 9.8675
|
| 2331 |
+
Metric avg l1_freq : 52.6109
|
| 2332 |
+
Metric avg si_sdr : 8.9970
|
| 2333 |
+
Train epoch: 212 Learning rate: 2.381542204221178e-06
|
| 2334 |
+
Training loss: 0.096083
|
| 2335 |
+
Instr dry sdr: 12.9687 (Std: 5.0974)
|
| 2336 |
+
Instr dry l1_freq: 52.7944 (Std: 15.3968)
|
| 2337 |
+
Instr dry si_sdr: 11.9689 (Std: 7.2526)
|
| 2338 |
+
Instr other sdr: 6.7396 (Std: 3.6083)
|
| 2339 |
+
Instr other l1_freq: 52.3940 (Std: 13.8941)
|
| 2340 |
+
Instr other si_sdr: 5.9640 (Std: 3.6065)
|
| 2341 |
+
Metric avg sdr : 9.8542
|
| 2342 |
+
Metric avg l1_freq : 52.5942
|
| 2343 |
+
Metric avg si_sdr : 8.9664
|
| 2344 |
+
Train epoch: 213 Learning rate: 2.381542204221178e-06
|
| 2345 |
+
Training loss: 0.090508
|
| 2346 |
+
Instr dry sdr: 12.9640 (Std: 5.1021)
|
| 2347 |
+
Instr dry l1_freq: 52.7599 (Std: 15.4043)
|
| 2348 |
+
Instr dry si_sdr: 11.9621 (Std: 7.2544)
|
| 2349 |
+
Instr other sdr: 6.7350 (Std: 3.6160)
|
| 2350 |
+
Instr other l1_freq: 52.3958 (Std: 13.9046)
|
| 2351 |
+
Instr other si_sdr: 5.9594 (Std: 3.6121)
|
| 2352 |
+
Metric avg sdr : 9.8495
|
| 2353 |
+
Metric avg l1_freq : 52.5779
|
| 2354 |
+
Metric avg si_sdr : 8.9608
|
| 2355 |
+
Train epoch: 214 Learning rate: 2.262465094010119e-06
|
| 2356 |
+
Training loss: 0.088221
|
| 2357 |
+
Instr dry sdr: 12.9630 (Std: 5.1008)
|
| 2358 |
+
Instr dry l1_freq: 52.7650 (Std: 15.3975)
|
| 2359 |
+
Instr dry si_sdr: 11.9661 (Std: 7.2363)
|
| 2360 |
+
Instr other sdr: 6.7336 (Std: 3.6175)
|
| 2361 |
+
Instr other l1_freq: 52.3711 (Std: 13.8972)
|
| 2362 |
+
Instr other si_sdr: 5.9574 (Std: 3.6153)
|
| 2363 |
+
Metric avg sdr : 9.8483
|
| 2364 |
+
Metric avg l1_freq : 52.5680
|
| 2365 |
+
Metric avg si_sdr : 8.9618
|
| 2366 |
+
Train epoch: 215 Learning rate: 2.262465094010119e-06
|
| 2367 |
+
Training loss: 0.094517
|
| 2368 |
+
Instr dry sdr: 12.9718 (Std: 5.1046)
|
| 2369 |
+
Instr dry l1_freq: 52.7098 (Std: 15.3992)
|
| 2370 |
+
Instr dry si_sdr: 11.9743 (Std: 7.2457)
|
| 2371 |
+
Instr other sdr: 6.7441 (Std: 3.6193)
|
| 2372 |
+
Instr other l1_freq: 52.4082 (Std: 13.9162)
|
| 2373 |
+
Instr other si_sdr: 5.9692 (Std: 3.6165)
|
| 2374 |
+
Metric avg sdr : 9.8580
|
| 2375 |
+
Metric avg l1_freq : 52.5590
|
| 2376 |
+
Metric avg si_sdr : 8.9718
|
| 2377 |
+
Train epoch: 216 Learning rate: 2.262465094010119e-06
|
| 2378 |
+
Training loss: 0.094498
|
| 2379 |
+
Instr dry sdr: 12.9965 (Std: 5.0813)
|
| 2380 |
+
Instr dry l1_freq: 52.8448 (Std: 15.3691)
|
| 2381 |
+
Instr dry si_sdr: 12.0471 (Std: 7.0910)
|
| 2382 |
+
Instr other sdr: 6.7677 (Std: 3.5996)
|
| 2383 |
+
Instr other l1_freq: 52.4100 (Std: 13.8670)
|
| 2384 |
+
Instr other si_sdr: 5.9949 (Std: 3.6015)
|
| 2385 |
+
Metric avg sdr : 9.8821
|
| 2386 |
+
Metric avg l1_freq : 52.6274
|
| 2387 |
+
Metric avg si_sdr : 9.0210
|
| 2388 |
+
Train epoch: 217 Learning rate: 2.1493418393096127e-06
|
| 2389 |
+
Training loss: 0.090574
|
| 2390 |
+
Instr dry sdr: 13.0157 (Std: 5.0651)
|
| 2391 |
+
Instr dry l1_freq: 52.8412 (Std: 15.3343)
|
| 2392 |
+
Instr dry si_sdr: 12.1058 (Std: 6.9677)
|
| 2393 |
+
Instr other sdr: 6.7868 (Std: 3.5797)
|
| 2394 |
+
Instr other l1_freq: 52.5147 (Std: 13.8538)
|
| 2395 |
+
Instr other si_sdr: 6.0139 (Std: 3.5843)
|
| 2396 |
+
Metric avg sdr : 9.9012
|
| 2397 |
+
Metric avg l1_freq : 52.6779
|
| 2398 |
+
Metric avg si_sdr : 9.0599
|
| 2399 |
+
Train epoch: 218 Learning rate: 2.1493418393096127e-06
|
| 2400 |
+
Training loss: 0.095987
|
| 2401 |
+
Instr dry sdr: 13.1272 (Std: 4.8777)
|
| 2402 |
+
Instr dry l1_freq: 53.2347 (Std: 14.9888)
|
| 2403 |
+
Instr dry si_sdr: 12.4565 (Std: 6.1439)
|
| 2404 |
+
Instr other sdr: 6.8968 (Std: 3.3798)
|
| 2405 |
+
Instr other l1_freq: 52.7438 (Std: 13.4634)
|
| 2406 |
+
Instr other si_sdr: 6.1177 (Std: 3.4341)
|
| 2407 |
+
Metric avg sdr : 10.0120
|
| 2408 |
+
Metric avg l1_freq : 52.9893
|
| 2409 |
+
Metric avg si_sdr : 9.2871
|
| 2410 |
+
Train epoch: 219 Learning rate: 2.1493418393096127e-06
|
| 2411 |
+
Training loss: 0.097191
|
| 2412 |
+
Instr dry sdr: 12.9955 (Std: 5.0869)
|
| 2413 |
+
Instr dry l1_freq: 52.8392 (Std: 15.3718)
|
| 2414 |
+
Instr dry si_sdr: 12.0471 (Std: 7.0882)
|
| 2415 |
+
Instr other sdr: 6.7699 (Std: 3.6042)
|
| 2416 |
+
Instr other l1_freq: 52.4275 (Std: 13.8716)
|
| 2417 |
+
Instr other si_sdr: 5.9983 (Std: 3.6054)
|
| 2418 |
+
Metric avg sdr : 9.8827
|
| 2419 |
+
Metric avg l1_freq : 52.6334
|
| 2420 |
+
Metric avg si_sdr : 9.0227
|
| 2421 |
+
Train epoch: 220 Learning rate: 2.041874747344132e-06
|
| 2422 |
+
Training loss: 0.090682
|
| 2423 |
+
Instr dry sdr: 13.0097 (Std: 5.0718)
|
| 2424 |
+
Instr dry l1_freq: 52.8619 (Std: 15.3403)
|
| 2425 |
+
Instr dry si_sdr: 12.0965 (Std: 6.9746)
|
| 2426 |
+
Instr other sdr: 6.7831 (Std: 3.5878)
|
| 2427 |
+
Instr other l1_freq: 52.5006 (Std: 13.8541)
|
| 2428 |
+
Instr other si_sdr: 6.0114 (Std: 3.5907)
|
| 2429 |
+
Metric avg sdr : 9.8964
|
| 2430 |
+
Metric avg l1_freq : 52.6813
|
| 2431 |
+
Metric avg si_sdr : 9.0540
|