Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +10 -0
- docs/transformers/build/lib/transformers/models/chameleon/modeling_chameleon.py +1673 -0
- docs/transformers/build/lib/transformers/models/chameleon/processing_chameleon.py +177 -0
- docs/transformers/build/lib/transformers/models/chinese_clip/configuration_chinese_clip.py +434 -0
- docs/transformers/build/lib/transformers/models/chinese_clip/convert_chinese_clip_original_pytorch_to_hf.py +134 -0
- docs/transformers/build/lib/transformers/models/chinese_clip/feature_extraction_chinese_clip.py +38 -0
- docs/transformers/build/lib/transformers/models/chinese_clip/image_processing_chinese_clip.py +314 -0
- docs/transformers/build/lib/transformers/models/chinese_clip/image_processing_chinese_clip_fast.py +40 -0
- docs/transformers/build/lib/transformers/models/chinese_clip/modeling_chinese_clip.py +1630 -0
- docs/transformers/build/lib/transformers/models/chinese_clip/processing_chinese_clip.py +163 -0
- docs/transformers/build/lib/transformers/models/clap/__init__.py +29 -0
- docs/transformers/build/lib/transformers/models/clap/configuration_clap.py +394 -0
- docs/transformers/build/lib/transformers/models/clap/convert_clap_original_pytorch_to_hf.py +133 -0
- docs/transformers/build/lib/transformers/models/clap/feature_extraction_clap.py +367 -0
- docs/transformers/build/lib/transformers/models/clap/modeling_clap.py +0 -0
- docs/transformers/build/lib/transformers/models/clap/processing_clap.py +120 -0
- docs/transformers/build/lib/transformers/models/clip/__init__.py +35 -0
- docs/transformers/build/lib/transformers/models/clip/convert_clip_original_pytorch_to_hf.py +156 -0
- old/.ipynb_checkpoints/dataset_10k_train-checkpoint.jsonl +3 -0
- old/dataset_10k_train.jsonl +3 -0
- seamless_interaction/assets/banner.gif +3 -0
- swift/llm/template/__pycache__/vision_utils.cpython-310.pyc +0 -0
- swift/llm/template/template/__init__.py +2 -0
- swift/llm/template/template/__pycache__/__init__.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/deepseek.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/emu3.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/gemma.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/glm.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/idefics3.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/internlm.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/internvl.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/llama.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/llava.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/llm.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/megrez.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/microsoft.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/minicpm.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/minimax.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/mistral.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/molmo.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/moonshot.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/mplug.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/openbuddy.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/pixtral.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/qwen.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/stepfun.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/utils.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/valley.cpython-310.pyc +0 -0
- swift/llm/template/template/__pycache__/yi.cpython-310.pyc +0 -0
- swift/llm/template/template/deepseek.py +315 -0
.gitattributes
CHANGED
|
@@ -38,3 +38,13 @@ docs/resources/web-ui.jpg filter=lfs diff=lfs merge=lfs -text
|
|
| 38 |
docs/resources/dpo_data.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
docs/transformers/tests/fixtures/tests_samples/COCO/000000039769.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
docs/transformers/tests/fixtures/tests_samples/COCO/000000004016.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
docs/resources/dpo_data.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
docs/transformers/tests/fixtures/tests_samples/COCO/000000039769.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
docs/transformers/tests/fixtures/tests_samples/COCO/000000004016.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
old/dataset_10k_train.jsonl filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
old/.ipynb_checkpoints/dataset_10k_train-checkpoint.jsonl filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
wandb/offline-run-20250720_214625-3kgefhnp/run-3kgefhnp.wandb filter=lfs diff=lfs merge=lfs -text
|
| 44 |
+
wandb/offline-run-20250722_000857-dio4c8kj/run-dio4c8kj.wandb filter=lfs diff=lfs merge=lfs -text
|
| 45 |
+
wandb/offline-run-20250720_155533-1r0qjmiz/run-1r0qjmiz.wandb filter=lfs diff=lfs merge=lfs -text
|
| 46 |
+
wandb/offline-run-20250720_231916-zbtazovk/run-zbtazovk.wandb filter=lfs diff=lfs merge=lfs -text
|
| 47 |
+
wandb/offline-run-20250624_115955-iye05c18/run-iye05c18.wandb filter=lfs diff=lfs merge=lfs -text
|
| 48 |
+
wandb/offline-run-20250721_000454-up3efnok/run-up3efnok.wandb filter=lfs diff=lfs merge=lfs -text
|
| 49 |
+
wandb/offline-run-20250722_003110-femxkckf/run-femxkckf.wandb filter=lfs diff=lfs merge=lfs -text
|
| 50 |
+
seamless_interaction/assets/banner.gif filter=lfs diff=lfs merge=lfs -text
|
docs/transformers/build/lib/transformers/models/chameleon/modeling_chameleon.py
ADDED
|
@@ -0,0 +1,1673 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 Meta Inc. and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""PyTorch Chameleon model."""
|
| 16 |
+
|
| 17 |
+
import math
|
| 18 |
+
from functools import cached_property
|
| 19 |
+
from typing import Optional, Tuple, Union
|
| 20 |
+
|
| 21 |
+
import torch
|
| 22 |
+
import torch.nn.functional as F
|
| 23 |
+
import torch.utils.checkpoint
|
| 24 |
+
from torch import nn
|
| 25 |
+
from torch.nn import CrossEntropyLoss
|
| 26 |
+
|
| 27 |
+
from ...activations import ACT2FN
|
| 28 |
+
from ...cache_utils import Cache, DynamicCache, StaticCache
|
| 29 |
+
from ...generation import GenerationMixin
|
| 30 |
+
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
| 31 |
+
from ...modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask
|
| 32 |
+
from ...modeling_outputs import (
|
| 33 |
+
BaseModelOutputWithPast,
|
| 34 |
+
CausalLMOutputWithPast,
|
| 35 |
+
)
|
| 36 |
+
from ...modeling_utils import PreTrainedModel
|
| 37 |
+
from ...pytorch_utils import ALL_LAYERNORM_LAYERS
|
| 38 |
+
from ...utils import (
|
| 39 |
+
add_code_sample_docstrings,
|
| 40 |
+
add_start_docstrings,
|
| 41 |
+
add_start_docstrings_to_model_forward,
|
| 42 |
+
is_torch_flex_attn_available,
|
| 43 |
+
is_torchdynamo_compiling,
|
| 44 |
+
logging,
|
| 45 |
+
replace_return_docstrings,
|
| 46 |
+
)
|
| 47 |
+
from .configuration_chameleon import ChameleonConfig, ChameleonVQVAEConfig
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
if is_torch_flex_attn_available():
|
| 51 |
+
from torch.nn.attention.flex_attention import BlockMask
|
| 52 |
+
|
| 53 |
+
from ...integrations.flex_attention import make_flex_block_causal_mask
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
logger = logging.get_logger(__name__)
|
| 57 |
+
|
| 58 |
+
_CONFIG_FOR_DOC = "ChameleonConfig"
|
| 59 |
+
_CHECKPOINT_FOR_DOC = "meta/chameleon-7b"
|
| 60 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 7, 4096]
|
| 61 |
+
_SEQ_CLASS_EXPECTED_LOSS = 1.03
|
| 62 |
+
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_0'"
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Chameleon
|
| 66 |
+
class ChameleonRMSNorm(nn.Module):
|
| 67 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 68 |
+
"""
|
| 69 |
+
ChameleonRMSNorm is equivalent to T5LayerNorm
|
| 70 |
+
"""
|
| 71 |
+
super().__init__()
|
| 72 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 73 |
+
self.variance_epsilon = eps
|
| 74 |
+
|
| 75 |
+
def forward(self, hidden_states):
|
| 76 |
+
input_dtype = hidden_states.dtype
|
| 77 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 78 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 79 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 80 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 81 |
+
|
| 82 |
+
def extra_repr(self):
|
| 83 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
ALL_LAYERNORM_LAYERS.append(ChameleonRMSNorm)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
# copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Chameleon
|
| 90 |
+
# TODO(joao): add me back asap :)
|
| 91 |
+
class ChameleonRotaryEmbedding(nn.Module):
|
| 92 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 93 |
+
super().__init__()
|
| 94 |
+
self.scaling_factor = scaling_factor
|
| 95 |
+
self.dim = dim
|
| 96 |
+
self.max_position_embeddings = max_position_embeddings
|
| 97 |
+
self.base = base
|
| 98 |
+
inv_freq = 1.0 / (
|
| 99 |
+
self.base
|
| 100 |
+
** (torch.arange(0, self.dim, 2, dtype=torch.int64).to(device=device, dtype=torch.float) / self.dim)
|
| 101 |
+
)
|
| 102 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 103 |
+
# For BC we register cos and sin cached
|
| 104 |
+
self.max_seq_len_cached = max_position_embeddings
|
| 105 |
+
|
| 106 |
+
@torch.no_grad()
|
| 107 |
+
def forward(self, x, position_ids):
|
| 108 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 109 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 110 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 111 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
| 112 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
| 113 |
+
device_type = x.device.type
|
| 114 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 115 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
| 116 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 117 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 118 |
+
cos = emb.cos()
|
| 119 |
+
sin = emb.sin()
|
| 120 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
class ChameleonLinearScalingRotaryEmbedding(ChameleonRotaryEmbedding):
|
| 124 |
+
"""ChameleonRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
| 125 |
+
|
| 126 |
+
def forward(self, x, position_ids):
|
| 127 |
+
# difference to the original RoPE: a scaling factor is aplied to the position ids
|
| 128 |
+
position_ids = position_ids.float() / self.scaling_factor
|
| 129 |
+
cos, sin = super().forward(x, position_ids)
|
| 130 |
+
return cos, sin
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
class ChameleonDynamicNTKScalingRotaryEmbedding(ChameleonRotaryEmbedding):
|
| 134 |
+
"""ChameleonRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
| 135 |
+
|
| 136 |
+
def forward(self, x, position_ids):
|
| 137 |
+
# difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
|
| 138 |
+
seq_len = torch.max(position_ids) + 1
|
| 139 |
+
if seq_len > self.max_position_embeddings:
|
| 140 |
+
base = self.base * (
|
| 141 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
| 142 |
+
) ** (self.dim / (self.dim - 2))
|
| 143 |
+
inv_freq = 1.0 / (
|
| 144 |
+
base
|
| 145 |
+
** (torch.arange(0, self.dim, 2, dtype=torch.int64).to(device=x.device, dtype=torch.float) / self.dim)
|
| 146 |
+
)
|
| 147 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
|
| 148 |
+
|
| 149 |
+
cos, sin = super().forward(x, position_ids)
|
| 150 |
+
return cos, sin
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
| 154 |
+
def rotate_half(x):
|
| 155 |
+
"""Rotates half the hidden dims of the input."""
|
| 156 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 157 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 158 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
| 162 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 163 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 164 |
+
|
| 165 |
+
Args:
|
| 166 |
+
q (`torch.Tensor`): The query tensor.
|
| 167 |
+
k (`torch.Tensor`): The key tensor.
|
| 168 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 169 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 170 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 171 |
+
Deprecated and unused.
|
| 172 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 173 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 174 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 175 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 176 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 177 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 178 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 179 |
+
Returns:
|
| 180 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 181 |
+
"""
|
| 182 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 183 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 184 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 185 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 186 |
+
return q_embed, k_embed
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaMLP with Llama->Chameleon
|
| 190 |
+
class ChameleonMLP(nn.Module):
|
| 191 |
+
def __init__(self, config):
|
| 192 |
+
super().__init__()
|
| 193 |
+
self.config = config
|
| 194 |
+
self.hidden_size = config.hidden_size
|
| 195 |
+
self.intermediate_size = config.intermediate_size
|
| 196 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
| 197 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
| 198 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
|
| 199 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 200 |
+
|
| 201 |
+
# Ignore copy
|
| 202 |
+
def forward(self, x):
|
| 203 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 204 |
+
return down_proj
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
class ChameleonLayerNorm(nn.LayerNorm):
|
| 208 |
+
"""
|
| 209 |
+
LayerNorm but computes stats only over the last dim because Chameleon applies gamma and beta
|
| 210 |
+
from each shard separately to each head, instead of reducing. We can apply each head's own
|
| 211 |
+
gamma/beta by repeat-interleaving weights from each shard, but the stats have to be computed
|
| 212 |
+
in the last dimension. This module applies gamma/beta manually to fulfill this requirement.
|
| 213 |
+
"""
|
| 214 |
+
|
| 215 |
+
def __init__(self, hidden_size, *args, **kwargs):
|
| 216 |
+
super().__init__(hidden_size, *args, **kwargs)
|
| 217 |
+
self.normalized_shape = (hidden_size[-1],)
|
| 218 |
+
|
| 219 |
+
def forward(self, hidden_states):
|
| 220 |
+
hidden_states = F.layer_norm(hidden_states, self.normalized_shape, None, None, eps=1e-5)
|
| 221 |
+
hidden_states = hidden_states * self.weight + self.bias
|
| 222 |
+
return hidden_states
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
| 226 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 227 |
+
"""
|
| 228 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 229 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 230 |
+
"""
|
| 231 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 232 |
+
if n_rep == 1:
|
| 233 |
+
return hidden_states
|
| 234 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 235 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
class ChameleonAttention(nn.Module):
|
| 239 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 240 |
+
|
| 241 |
+
def __init__(self, config: ChameleonConfig, layer_idx: Optional[int] = None):
|
| 242 |
+
super().__init__()
|
| 243 |
+
self.config = config
|
| 244 |
+
self.layer_idx = layer_idx
|
| 245 |
+
if layer_idx is None:
|
| 246 |
+
logger.warning_once(
|
| 247 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
| 248 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
| 249 |
+
"when creating this class."
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
self.attention_dropout = config.attention_dropout
|
| 253 |
+
self.hidden_size = config.hidden_size
|
| 254 |
+
self.num_heads = config.num_attention_heads
|
| 255 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 256 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 257 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 258 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 259 |
+
self.rope_theta = config.rope_theta
|
| 260 |
+
self.is_causal = True
|
| 261 |
+
self.model_parallel_size = config.model_parallel_size
|
| 262 |
+
|
| 263 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 264 |
+
raise ValueError(
|
| 265 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 266 |
+
f" and `num_heads`: {self.num_heads})."
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
| 270 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
| 271 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
| 272 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
|
| 273 |
+
self.q_norm = ChameleonLayerNorm((self.num_heads, self.head_dim))
|
| 274 |
+
self.k_norm = ChameleonLayerNorm((self.num_key_value_heads, self.head_dim))
|
| 275 |
+
self._init_rope()
|
| 276 |
+
|
| 277 |
+
# copied from transformers.models.llama.modeling_llama.LlamaAttention._init_rope with Llama->Chameleon
|
| 278 |
+
# TODO(joao): add me back asap :)
|
| 279 |
+
def _init_rope(self):
|
| 280 |
+
if self.config.rope_scaling is None:
|
| 281 |
+
self.rotary_emb = ChameleonRotaryEmbedding(
|
| 282 |
+
self.head_dim,
|
| 283 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 284 |
+
base=self.rope_theta,
|
| 285 |
+
)
|
| 286 |
+
else:
|
| 287 |
+
scaling_type = self.config.rope_scaling["type"]
|
| 288 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
| 289 |
+
if scaling_type == "linear":
|
| 290 |
+
self.rotary_emb = ChameleonLinearScalingRotaryEmbedding(
|
| 291 |
+
self.head_dim,
|
| 292 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 293 |
+
scaling_factor=scaling_factor,
|
| 294 |
+
base=self.rope_theta,
|
| 295 |
+
)
|
| 296 |
+
elif scaling_type == "dynamic":
|
| 297 |
+
self.rotary_emb = ChameleonDynamicNTKScalingRotaryEmbedding(
|
| 298 |
+
self.head_dim,
|
| 299 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 300 |
+
scaling_factor=scaling_factor,
|
| 301 |
+
base=self.rope_theta,
|
| 302 |
+
)
|
| 303 |
+
else:
|
| 304 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
| 305 |
+
|
| 306 |
+
def forward(
|
| 307 |
+
self,
|
| 308 |
+
hidden_states: torch.Tensor,
|
| 309 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 310 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 311 |
+
past_key_value: Optional[Cache] = None,
|
| 312 |
+
output_attentions: bool = False,
|
| 313 |
+
use_cache: bool = False,
|
| 314 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 315 |
+
**kwargs,
|
| 316 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 317 |
+
bsz, q_len, _ = hidden_states.size()
|
| 318 |
+
|
| 319 |
+
query_states = self.q_proj(hidden_states)
|
| 320 |
+
key_states = self.k_proj(hidden_states)
|
| 321 |
+
value_states = self.v_proj(hidden_states)
|
| 322 |
+
|
| 323 |
+
query_states = query_states.reshape(-1, self.num_heads, self.head_dim)
|
| 324 |
+
query_states = self.q_norm(query_states)
|
| 325 |
+
|
| 326 |
+
key_states = key_states.reshape(-1, self.num_key_value_heads, self.head_dim)
|
| 327 |
+
key_states = self.k_norm(key_states)
|
| 328 |
+
|
| 329 |
+
query_states = query_states.reshape(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 330 |
+
key_states = key_states.reshape(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 331 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 332 |
+
|
| 333 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 334 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 335 |
+
|
| 336 |
+
if past_key_value is not None:
|
| 337 |
+
# sin and cos are specific to RoPE models; position_ids needed for the static cache
|
| 338 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 339 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 340 |
+
|
| 341 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 342 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 343 |
+
|
| 344 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 345 |
+
|
| 346 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
| 347 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 348 |
+
attn_weights = attn_weights + causal_mask
|
| 349 |
+
|
| 350 |
+
# upcast attention to fp32
|
| 351 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 352 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
| 353 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 354 |
+
|
| 355 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 356 |
+
raise ValueError(
|
| 357 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 358 |
+
f" {attn_output.size()}"
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 362 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 363 |
+
attn_output = self.o_proj(attn_output)
|
| 364 |
+
|
| 365 |
+
if not output_attentions:
|
| 366 |
+
attn_weights = None
|
| 367 |
+
|
| 368 |
+
return attn_output, attn_weights, past_key_value
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
# NO LONGER EXIST copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->Chameleon
|
| 372 |
+
# TODO(joao): add me back asap :)
|
| 373 |
+
class ChameleonFlashAttention2(ChameleonAttention):
|
| 374 |
+
"""
|
| 375 |
+
Chameleon flash attention module. This module inherits from `ChameleonAttention` as the weights of the module stays
|
| 376 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 377 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 378 |
+
"""
|
| 379 |
+
|
| 380 |
+
def __init__(self, *args, **kwargs):
|
| 381 |
+
super().__init__(*args, **kwargs)
|
| 382 |
+
|
| 383 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
| 384 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
| 385 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 386 |
+
self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask()
|
| 387 |
+
|
| 388 |
+
# Ignore copy
|
| 389 |
+
def forward(
|
| 390 |
+
self,
|
| 391 |
+
hidden_states: torch.Tensor,
|
| 392 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 393 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 394 |
+
past_key_value: Optional[Cache] = None,
|
| 395 |
+
output_attentions: bool = False,
|
| 396 |
+
use_cache: bool = False,
|
| 397 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 398 |
+
**kwargs,
|
| 399 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 400 |
+
if isinstance(past_key_value, StaticCache):
|
| 401 |
+
raise ValueError(
|
| 402 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
| 403 |
+
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
output_attentions = False
|
| 407 |
+
|
| 408 |
+
bsz, q_len, _ = hidden_states.size()
|
| 409 |
+
|
| 410 |
+
query_states = self.q_proj(hidden_states)
|
| 411 |
+
key_states = self.k_proj(hidden_states)
|
| 412 |
+
value_states = self.v_proj(hidden_states)
|
| 413 |
+
|
| 414 |
+
query_states = query_states.reshape(-1, self.num_heads, self.head_dim)
|
| 415 |
+
query_states = self.q_norm(query_states)
|
| 416 |
+
|
| 417 |
+
key_states = key_states.reshape(-1, self.num_key_value_heads, self.head_dim)
|
| 418 |
+
key_states = self.k_norm(key_states)
|
| 419 |
+
|
| 420 |
+
# Flash attention requires the input to have the shape
|
| 421 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
| 422 |
+
# therefore we just need to keep the original shape
|
| 423 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 424 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 425 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 426 |
+
|
| 427 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 428 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 429 |
+
|
| 430 |
+
if past_key_value is not None:
|
| 431 |
+
# sin and cos are specific to RoPE models; position_ids needed for the static cache
|
| 432 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 433 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 434 |
+
|
| 435 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim].
|
| 436 |
+
# We would need to refactor the KV cache to be able to avoid many of these transpose/reshape/view.
|
| 437 |
+
query_states = query_states.transpose(1, 2)
|
| 438 |
+
key_states = key_states.transpose(1, 2)
|
| 439 |
+
value_states = value_states.transpose(1, 2)
|
| 440 |
+
|
| 441 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
| 442 |
+
|
| 443 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 444 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 445 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
| 446 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
| 447 |
+
# in fp32. (ChameleonRMSNorm handles it correctly)
|
| 448 |
+
|
| 449 |
+
input_dtype = query_states.dtype
|
| 450 |
+
if input_dtype == torch.float32:
|
| 451 |
+
if torch.is_autocast_enabled():
|
| 452 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 453 |
+
# Handle the case where the model is quantized
|
| 454 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 455 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 456 |
+
else:
|
| 457 |
+
target_dtype = self.q_proj.weight.dtype
|
| 458 |
+
|
| 459 |
+
logger.warning_once(
|
| 460 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 461 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 462 |
+
f" {target_dtype}."
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
query_states = query_states.to(target_dtype)
|
| 466 |
+
key_states = key_states.to(target_dtype)
|
| 467 |
+
value_states = value_states.to(target_dtype)
|
| 468 |
+
|
| 469 |
+
attn_output = _flash_attention_forward(
|
| 470 |
+
query_states,
|
| 471 |
+
key_states,
|
| 472 |
+
value_states,
|
| 473 |
+
attention_mask,
|
| 474 |
+
q_len,
|
| 475 |
+
dropout=dropout_rate,
|
| 476 |
+
sliding_window=getattr(self, "sliding_window", None),
|
| 477 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
| 478 |
+
is_causal=self.is_causal,
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
| 482 |
+
attn_output = self.o_proj(attn_output)
|
| 483 |
+
|
| 484 |
+
if not output_attentions:
|
| 485 |
+
attn_weights = None
|
| 486 |
+
|
| 487 |
+
return attn_output, attn_weights, past_key_value
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
class ChameleonSdpaAttention(ChameleonAttention):
|
| 491 |
+
"""
|
| 492 |
+
Chameleon attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
| 493 |
+
`ChameleonAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
| 494 |
+
SDPA API.
|
| 495 |
+
"""
|
| 496 |
+
|
| 497 |
+
# Adapted from ChameleonAttention.forward
|
| 498 |
+
def forward(
|
| 499 |
+
self,
|
| 500 |
+
hidden_states: torch.Tensor,
|
| 501 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 502 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 503 |
+
past_key_value: Optional[Cache] = None,
|
| 504 |
+
output_attentions: bool = False,
|
| 505 |
+
use_cache: bool = False,
|
| 506 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 507 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 508 |
+
if output_attentions:
|
| 509 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
| 510 |
+
logger.warning_once(
|
| 511 |
+
"ChameleonModel is using ChameleonSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
| 512 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 513 |
+
)
|
| 514 |
+
return super().forward(
|
| 515 |
+
hidden_states=hidden_states,
|
| 516 |
+
attention_mask=attention_mask,
|
| 517 |
+
position_ids=position_ids,
|
| 518 |
+
past_key_value=past_key_value,
|
| 519 |
+
output_attentions=output_attentions,
|
| 520 |
+
use_cache=use_cache,
|
| 521 |
+
cache_position=cache_position,
|
| 522 |
+
)
|
| 523 |
+
|
| 524 |
+
bsz, q_len, _ = hidden_states.size()
|
| 525 |
+
|
| 526 |
+
query_states = self.q_proj(hidden_states)
|
| 527 |
+
key_states = self.k_proj(hidden_states)
|
| 528 |
+
value_states = self.v_proj(hidden_states)
|
| 529 |
+
|
| 530 |
+
query_states = query_states.reshape(-1, self.num_heads, self.head_dim)
|
| 531 |
+
query_states = self.q_norm(query_states)
|
| 532 |
+
|
| 533 |
+
key_states = key_states.reshape(-1, self.num_key_value_heads, self.head_dim)
|
| 534 |
+
key_states = self.k_norm(key_states)
|
| 535 |
+
|
| 536 |
+
query_states = query_states.reshape(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 537 |
+
key_states = key_states.reshape(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 538 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 539 |
+
|
| 540 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 541 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, None)
|
| 542 |
+
|
| 543 |
+
if past_key_value is not None:
|
| 544 |
+
# sin and cos are specific to RoPE models; position_ids needed for the static cache
|
| 545 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 546 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 547 |
+
|
| 548 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 549 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 550 |
+
|
| 551 |
+
causal_mask = attention_mask
|
| 552 |
+
if attention_mask is not None and cache_position is not None:
|
| 553 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
| 554 |
+
|
| 555 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
| 556 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 557 |
+
if query_states.device.type == "cuda" and causal_mask is not None:
|
| 558 |
+
query_states = query_states.contiguous()
|
| 559 |
+
key_states = key_states.contiguous()
|
| 560 |
+
value_states = value_states.contiguous()
|
| 561 |
+
|
| 562 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
| 563 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
| 564 |
+
is_causal = True if causal_mask is None and q_len > 1 else False
|
| 565 |
+
|
| 566 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 567 |
+
query_states,
|
| 568 |
+
key_states,
|
| 569 |
+
value_states,
|
| 570 |
+
attn_mask=causal_mask,
|
| 571 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
| 572 |
+
is_causal=is_causal,
|
| 573 |
+
)
|
| 574 |
+
|
| 575 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 576 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
| 577 |
+
|
| 578 |
+
attn_output = self.o_proj(attn_output)
|
| 579 |
+
|
| 580 |
+
return attn_output, None, past_key_value
|
| 581 |
+
|
| 582 |
+
|
| 583 |
+
CHAMELEON_ATTENTION_CLASSES = {
|
| 584 |
+
"eager": ChameleonAttention,
|
| 585 |
+
"flash_attention_2": ChameleonFlashAttention2,
|
| 586 |
+
"sdpa": ChameleonSdpaAttention,
|
| 587 |
+
}
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
# copied from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->Chameleon, LLAMA->CHAMELEON
|
| 591 |
+
# TODO(joao): add me back asap :)
|
| 592 |
+
class ChameleonDecoderLayer(nn.Module):
|
| 593 |
+
def __init__(self, config: ChameleonConfig, layer_idx: int):
|
| 594 |
+
super().__init__()
|
| 595 |
+
self.hidden_size = config.hidden_size
|
| 596 |
+
|
| 597 |
+
self.self_attn = CHAMELEON_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
| 598 |
+
|
| 599 |
+
self.mlp = ChameleonMLP(config)
|
| 600 |
+
self.input_layernorm = ChameleonRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 601 |
+
self.post_attention_layernorm = ChameleonRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 602 |
+
|
| 603 |
+
def forward(
|
| 604 |
+
self,
|
| 605 |
+
hidden_states: torch.Tensor,
|
| 606 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 607 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 608 |
+
past_key_value: Optional[Cache] = None,
|
| 609 |
+
output_attentions: Optional[bool] = False,
|
| 610 |
+
use_cache: Optional[bool] = False,
|
| 611 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 612 |
+
**kwargs,
|
| 613 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 614 |
+
"""
|
| 615 |
+
Args:
|
| 616 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 617 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
| 618 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
| 619 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
| 620 |
+
output_attentions (`bool`, *optional*):
|
| 621 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 622 |
+
returned tensors for more detail.
|
| 623 |
+
use_cache (`bool`, *optional*):
|
| 624 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 625 |
+
(see `past_key_values`).
|
| 626 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 627 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 628 |
+
Indices depicting the position of the input sequence tokens in the sequence
|
| 629 |
+
kwargs (`dict`, *optional*):
|
| 630 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
| 631 |
+
into the model
|
| 632 |
+
"""
|
| 633 |
+
residual = hidden_states
|
| 634 |
+
|
| 635 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 636 |
+
|
| 637 |
+
# Self Attention
|
| 638 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 639 |
+
hidden_states=hidden_states,
|
| 640 |
+
attention_mask=attention_mask,
|
| 641 |
+
position_ids=position_ids,
|
| 642 |
+
past_key_value=past_key_value,
|
| 643 |
+
output_attentions=output_attentions,
|
| 644 |
+
use_cache=use_cache,
|
| 645 |
+
cache_position=cache_position,
|
| 646 |
+
**kwargs,
|
| 647 |
+
)
|
| 648 |
+
hidden_states = residual + hidden_states
|
| 649 |
+
|
| 650 |
+
# Fully Connected
|
| 651 |
+
residual = hidden_states
|
| 652 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 653 |
+
hidden_states = self.mlp(hidden_states)
|
| 654 |
+
hidden_states = residual + hidden_states
|
| 655 |
+
|
| 656 |
+
outputs = (hidden_states,)
|
| 657 |
+
|
| 658 |
+
if output_attentions:
|
| 659 |
+
outputs += (self_attn_weights,)
|
| 660 |
+
|
| 661 |
+
if use_cache:
|
| 662 |
+
outputs += (present_key_value,)
|
| 663 |
+
|
| 664 |
+
return outputs
|
| 665 |
+
|
| 666 |
+
|
| 667 |
+
class ChameleonSwinDecoderLayer(nn.Module):
|
| 668 |
+
def __init__(self, config: ChameleonConfig, layer_idx: int):
|
| 669 |
+
super().__init__()
|
| 670 |
+
self.hidden_size = config.hidden_size
|
| 671 |
+
|
| 672 |
+
self.self_attn = CHAMELEON_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
| 673 |
+
|
| 674 |
+
self.mlp = ChameleonMLP(config)
|
| 675 |
+
self.input_layernorm = ChameleonRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 676 |
+
self.post_attention_layernorm = ChameleonRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 677 |
+
|
| 678 |
+
def forward(
|
| 679 |
+
self,
|
| 680 |
+
hidden_states: torch.Tensor,
|
| 681 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 682 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 683 |
+
past_key_value: Optional[Cache] = None,
|
| 684 |
+
output_attentions: Optional[bool] = False,
|
| 685 |
+
use_cache: Optional[bool] = False,
|
| 686 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 687 |
+
**kwargs,
|
| 688 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 689 |
+
"""
|
| 690 |
+
Args:
|
| 691 |
+
hidden_states (`torch.FloatTensor`):
|
| 692 |
+
input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 693 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
| 694 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
| 695 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
| 696 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 697 |
+
Indices of positions of each input sequence tokens in the position embeddings
|
| 698 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 699 |
+
output_attentions (`bool`, *optional*):
|
| 700 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 701 |
+
returned tensors for more detail.
|
| 702 |
+
use_cache (`bool`, *optional*):
|
| 703 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 704 |
+
(see `past_key_values`).
|
| 705 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 706 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 707 |
+
"""
|
| 708 |
+
|
| 709 |
+
residual = hidden_states
|
| 710 |
+
|
| 711 |
+
# Self Attention
|
| 712 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 713 |
+
hidden_states=hidden_states,
|
| 714 |
+
attention_mask=attention_mask,
|
| 715 |
+
position_ids=position_ids,
|
| 716 |
+
past_key_value=past_key_value,
|
| 717 |
+
output_attentions=output_attentions,
|
| 718 |
+
use_cache=use_cache,
|
| 719 |
+
cache_position=cache_position,
|
| 720 |
+
**kwargs,
|
| 721 |
+
)
|
| 722 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 723 |
+
hidden_states = residual + hidden_states
|
| 724 |
+
# Fully Connected
|
| 725 |
+
residual = hidden_states
|
| 726 |
+
hidden_states = self.mlp(hidden_states)
|
| 727 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 728 |
+
hidden_states = residual + hidden_states
|
| 729 |
+
outputs = (hidden_states,)
|
| 730 |
+
|
| 731 |
+
if output_attentions:
|
| 732 |
+
outputs += (self_attn_weights,)
|
| 733 |
+
|
| 734 |
+
if use_cache:
|
| 735 |
+
outputs += (present_key_value,)
|
| 736 |
+
|
| 737 |
+
return outputs
|
| 738 |
+
|
| 739 |
+
|
| 740 |
+
class ChameleonVQVAEVectorQuantizer(nn.Module):
|
| 741 |
+
"""
|
| 742 |
+
A module for vector quantization using learned embedding vectors.
|
| 743 |
+
|
| 744 |
+
This module implements the quantization process similar to te one described in
|
| 745 |
+
the VQ-VAE (Vector Quantized Variational AutoEncoder) paper. It quantizes continuous
|
| 746 |
+
input vectors into discrete codebook vectors, which are learned during training.
|
| 747 |
+
Current implementation improves over previous ones by avoiding costly matrix multiplications
|
| 748 |
+
and allowing for post-hoc remapping of indices.
|
| 749 |
+
"""
|
| 750 |
+
|
| 751 |
+
def __init__(self, config):
|
| 752 |
+
super().__init__()
|
| 753 |
+
self.num_embeddings = config.num_embeddings
|
| 754 |
+
self.embedding_dim = config.embed_dim
|
| 755 |
+
self.beta = getattr(config, "beta", 0.25)
|
| 756 |
+
|
| 757 |
+
self.embedding = nn.Embedding(self.num_embeddings, self.embedding_dim)
|
| 758 |
+
|
| 759 |
+
def forward(self, hidden_state: torch.Tensor):
|
| 760 |
+
hidden_state = hidden_state.permute(0, 2, 3, 1).contiguous()
|
| 761 |
+
hidden_state_flattened = hidden_state.view(-1, self.embedding_dim)
|
| 762 |
+
|
| 763 |
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
| 764 |
+
distances = (
|
| 765 |
+
torch.sum(hidden_state_flattened**2, dim=1, keepdim=True)
|
| 766 |
+
+ torch.sum(self.embedding.weight**2, dim=1)
|
| 767 |
+
- 2 * torch.einsum("bd,dn->bn", hidden_state_flattened, self.embedding.weight.transpose(0, 1))
|
| 768 |
+
)
|
| 769 |
+
|
| 770 |
+
min_encoding_indices = torch.argmin(distances, dim=1)
|
| 771 |
+
hidden_state_quant = self.embedding(min_encoding_indices).view(hidden_state.shape)
|
| 772 |
+
|
| 773 |
+
# compute loss for embedding
|
| 774 |
+
loss = torch.mean((hidden_state_quant.detach() - hidden_state) ** 2) + self.beta * torch.mean(
|
| 775 |
+
(hidden_state_quant - hidden_state.detach()) ** 2
|
| 776 |
+
)
|
| 777 |
+
|
| 778 |
+
# preserve gradients
|
| 779 |
+
hidden_state_quant = hidden_state + (hidden_state_quant - hidden_state).detach()
|
| 780 |
+
|
| 781 |
+
# reshape back to match original input shape
|
| 782 |
+
hidden_state_quant = hidden_state_quant.permute(0, 3, 1, 2).contiguous()
|
| 783 |
+
|
| 784 |
+
return hidden_state_quant, loss, min_encoding_indices
|
| 785 |
+
|
| 786 |
+
|
| 787 |
+
class ChameleonVQVAEEncoderConvDownsample(nn.Module):
|
| 788 |
+
def __init__(self, in_channels):
|
| 789 |
+
super().__init__()
|
| 790 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
| 791 |
+
|
| 792 |
+
def forward(self, hidden_states):
|
| 793 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 794 |
+
hidden_states = F.pad(hidden_states, pad=(0, 1, 0, 1), mode="constant", value=0)
|
| 795 |
+
hidden_states = self.conv(hidden_states)
|
| 796 |
+
return hidden_states
|
| 797 |
+
|
| 798 |
+
|
| 799 |
+
class ChameleonVQVAEEncoderResnetBlock(nn.Module):
|
| 800 |
+
def __init__(
|
| 801 |
+
self,
|
| 802 |
+
config,
|
| 803 |
+
in_channels,
|
| 804 |
+
out_channels=None,
|
| 805 |
+
conv_shortcut=False,
|
| 806 |
+
):
|
| 807 |
+
super().__init__()
|
| 808 |
+
self.in_channels = in_channels
|
| 809 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
| 810 |
+
self.use_conv_shortcut = conv_shortcut
|
| 811 |
+
|
| 812 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
| 813 |
+
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 814 |
+
self.norm2 = torch.nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
|
| 815 |
+
self.dropout = torch.nn.Dropout(config.dropout)
|
| 816 |
+
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 817 |
+
if self.in_channels != self.out_channels:
|
| 818 |
+
if self.use_conv_shortcut:
|
| 819 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 820 |
+
else:
|
| 821 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
| 822 |
+
|
| 823 |
+
def forward(self, hidden_states):
|
| 824 |
+
residual = hidden_states
|
| 825 |
+
hidden_states = self.norm1(hidden_states)
|
| 826 |
+
hidden_states *= torch.sigmoid(hidden_states)
|
| 827 |
+
hidden_states = self.conv1(hidden_states)
|
| 828 |
+
|
| 829 |
+
hidden_states = self.norm2(hidden_states)
|
| 830 |
+
hidden_states *= torch.sigmoid(hidden_states)
|
| 831 |
+
hidden_states = self.dropout(hidden_states)
|
| 832 |
+
hidden_states = self.conv2(hidden_states)
|
| 833 |
+
|
| 834 |
+
if self.in_channels != self.out_channels:
|
| 835 |
+
if self.use_conv_shortcut:
|
| 836 |
+
residual = self.conv_shortcut(residual)
|
| 837 |
+
else:
|
| 838 |
+
residual = self.nin_shortcut(residual)
|
| 839 |
+
|
| 840 |
+
return residual + hidden_states
|
| 841 |
+
|
| 842 |
+
|
| 843 |
+
class ChameleonVQVAEEncoderAttnBlock(nn.Module):
|
| 844 |
+
def __init__(self, in_channels):
|
| 845 |
+
super().__init__()
|
| 846 |
+
self.in_channels = in_channels
|
| 847 |
+
|
| 848 |
+
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
| 849 |
+
self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 850 |
+
self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 851 |
+
self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 852 |
+
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 853 |
+
|
| 854 |
+
def forward(self, hidden_states):
|
| 855 |
+
residual = hidden_states
|
| 856 |
+
hidden_states = self.norm(hidden_states)
|
| 857 |
+
query_states = self.q(hidden_states)
|
| 858 |
+
key_states = self.k(hidden_states)
|
| 859 |
+
value_states = self.v(hidden_states)
|
| 860 |
+
|
| 861 |
+
# compute attention
|
| 862 |
+
batch_size, channels, height, width = query_states.shape
|
| 863 |
+
query_states = query_states.reshape(batch_size, channels, height * width).permute(0, 2, 1)
|
| 864 |
+
key_states = key_states.reshape(batch_size, channels, height * width)
|
| 865 |
+
attn_weights = torch.bmm(query_states, key_states)
|
| 866 |
+
attn_weights = attn_weights * (int(channels) ** (-0.5))
|
| 867 |
+
attn_weights = F.softmax(attn_weights, dim=2)
|
| 868 |
+
|
| 869 |
+
# attend to values
|
| 870 |
+
value_states = value_states.reshape(batch_size, channels, height * width)
|
| 871 |
+
attn_weights = attn_weights.permute(0, 2, 1)
|
| 872 |
+
attn_output = torch.bmm(value_states, attn_weights).reshape(batch_size, channels, height, width)
|
| 873 |
+
|
| 874 |
+
attn_output = self.proj_out(attn_output)
|
| 875 |
+
return residual + attn_output
|
| 876 |
+
|
| 877 |
+
|
| 878 |
+
class ChameleonVQVAEEncoder(nn.Module):
|
| 879 |
+
def __init__(self, config):
|
| 880 |
+
super().__init__()
|
| 881 |
+
|
| 882 |
+
self.num_resolutions = len(config.channel_multiplier)
|
| 883 |
+
self.num_res_blocks = config.num_res_blocks
|
| 884 |
+
base_channels = config.base_channels
|
| 885 |
+
resolution = config.resolution
|
| 886 |
+
in_channels = config.in_channels
|
| 887 |
+
double_latent = config.double_latent
|
| 888 |
+
latent_channels = config.latent_channels
|
| 889 |
+
channel_multiplier = config.channel_multiplier
|
| 890 |
+
|
| 891 |
+
self.conv_in = torch.nn.Conv2d(in_channels, base_channels, kernel_size=3, stride=1, padding=1)
|
| 892 |
+
|
| 893 |
+
curr_res = resolution
|
| 894 |
+
in_channel_multiplier = (1,) + tuple(channel_multiplier)
|
| 895 |
+
self.in_channel_multiplier = in_channel_multiplier
|
| 896 |
+
self.down = nn.ModuleList()
|
| 897 |
+
for i_level in range(self.num_resolutions):
|
| 898 |
+
block = nn.ModuleList()
|
| 899 |
+
attn = nn.ModuleList()
|
| 900 |
+
block_in = base_channels * in_channel_multiplier[i_level]
|
| 901 |
+
block_out = base_channels * channel_multiplier[i_level]
|
| 902 |
+
for i_block in range(self.num_res_blocks):
|
| 903 |
+
block.append(
|
| 904 |
+
ChameleonVQVAEEncoderResnetBlock(
|
| 905 |
+
config=config,
|
| 906 |
+
in_channels=block_in,
|
| 907 |
+
out_channels=block_out,
|
| 908 |
+
)
|
| 909 |
+
)
|
| 910 |
+
block_in = block_out
|
| 911 |
+
if (
|
| 912 |
+
config.attn_resolutions is not None
|
| 913 |
+
and curr_res in config.attn_resolutions
|
| 914 |
+
and config.attn_type == "vanilla"
|
| 915 |
+
):
|
| 916 |
+
attn.append(ChameleonVQVAEEncoderAttnBlock(block_in))
|
| 917 |
+
|
| 918 |
+
down = nn.Module()
|
| 919 |
+
down.block = block
|
| 920 |
+
down.attn = attn
|
| 921 |
+
if i_level != self.num_resolutions - 1:
|
| 922 |
+
down.downsample = ChameleonVQVAEEncoderConvDownsample(block_in)
|
| 923 |
+
curr_res = curr_res // 2
|
| 924 |
+
self.down.append(down)
|
| 925 |
+
|
| 926 |
+
self.mid = nn.Module()
|
| 927 |
+
self.mid.block_1 = ChameleonVQVAEEncoderResnetBlock(
|
| 928 |
+
config=config,
|
| 929 |
+
in_channels=block_in,
|
| 930 |
+
out_channels=block_in,
|
| 931 |
+
)
|
| 932 |
+
self.mid.attn_1 = ChameleonVQVAEEncoderAttnBlock(block_in) if config.attn_type == "vanilla" else nn.Identity()
|
| 933 |
+
self.mid.block_2 = ChameleonVQVAEEncoderResnetBlock(
|
| 934 |
+
config=config,
|
| 935 |
+
in_channels=block_in,
|
| 936 |
+
out_channels=block_in,
|
| 937 |
+
)
|
| 938 |
+
|
| 939 |
+
self.norm_out = torch.nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
| 940 |
+
self.conv_out = torch.nn.Conv2d(
|
| 941 |
+
block_in,
|
| 942 |
+
2 * latent_channels if double_latent else latent_channels,
|
| 943 |
+
kernel_size=3,
|
| 944 |
+
stride=1,
|
| 945 |
+
padding=1,
|
| 946 |
+
)
|
| 947 |
+
|
| 948 |
+
def forward(self, pixel_values: torch.LongTensor):
|
| 949 |
+
# downsampling
|
| 950 |
+
hidden_states = [self.conv_in(pixel_values)]
|
| 951 |
+
for i_level in range(self.num_resolutions):
|
| 952 |
+
for i_block in range(self.num_res_blocks):
|
| 953 |
+
hidden_state = self.down[i_level].block[i_block](
|
| 954 |
+
hidden_states[-1],
|
| 955 |
+
)
|
| 956 |
+
if len(self.down[i_level].attn) > 0:
|
| 957 |
+
hidden_state = self.down[i_level].attn[i_block](hidden_state)
|
| 958 |
+
hidden_states.append(hidden_state)
|
| 959 |
+
if i_level != self.num_resolutions - 1:
|
| 960 |
+
hidden_states.append(self.down[i_level].downsample(hidden_states[-1]))
|
| 961 |
+
|
| 962 |
+
# middle
|
| 963 |
+
last_hidden_state = hidden_states[-1]
|
| 964 |
+
last_hidden_state = self.mid.block_1(last_hidden_state)
|
| 965 |
+
last_hidden_state = self.mid.attn_1(last_hidden_state)
|
| 966 |
+
last_hidden_state = self.mid.block_2(last_hidden_state)
|
| 967 |
+
|
| 968 |
+
# end
|
| 969 |
+
last_hidden_state = self.norm_out(last_hidden_state)
|
| 970 |
+
last_hidden_state *= torch.sigmoid(last_hidden_state)
|
| 971 |
+
last_hidden_state = self.conv_out(last_hidden_state)
|
| 972 |
+
return last_hidden_state
|
| 973 |
+
|
| 974 |
+
|
| 975 |
+
class ChameleonImageVocabularyMapping:
|
| 976 |
+
"""
|
| 977 |
+
A class for mapping discrete image tokens from VQGAN to BPE tokens.
|
| 978 |
+
"""
|
| 979 |
+
|
| 980 |
+
def __init__(self, vocab_map):
|
| 981 |
+
self.vocab_map = vocab_map
|
| 982 |
+
self.image_token_id = vocab_map.get("<image>")
|
| 983 |
+
|
| 984 |
+
@cached_property
|
| 985 |
+
def val2name(self):
|
| 986 |
+
return {v: k for k, v in self.vocab_map.items()}
|
| 987 |
+
|
| 988 |
+
@cached_property
|
| 989 |
+
def image_tokens(self):
|
| 990 |
+
return sorted([val for name, val in self.vocab_map.items() if name.startswith("IMGIMG")])
|
| 991 |
+
|
| 992 |
+
@cached_property
|
| 993 |
+
def bpe2img(self):
|
| 994 |
+
img_tkn_chr_mapping = {chr(ord("A") + i): str(i) for i in range(10)}
|
| 995 |
+
|
| 996 |
+
def remap(old_name: str) -> str:
|
| 997 |
+
return "".join(img_tkn_chr_mapping.get(c, c) for c in old_name[len("IMGIMG") : -1])
|
| 998 |
+
|
| 999 |
+
return {tok: int(remap(self.val2name[tok])) for tok in self.image_tokens}
|
| 1000 |
+
|
| 1001 |
+
@cached_property
|
| 1002 |
+
def img2bpe(self):
|
| 1003 |
+
return {v: k for k, v in self.bpe2img.items()}
|
| 1004 |
+
|
| 1005 |
+
@cached_property
|
| 1006 |
+
def bpe2img_search_tensors(self):
|
| 1007 |
+
return torch.tensor(sorted(self.bpe2img.keys())), torch.tensor(sorted(self.bpe2img.values()))
|
| 1008 |
+
|
| 1009 |
+
@cached_property
|
| 1010 |
+
def img2bpe_mapping_tensor(self):
|
| 1011 |
+
mapping = torch.zeros(max(self.img2bpe.keys()) + 1, dtype=torch.int)
|
| 1012 |
+
for k, v in self.img2bpe.items():
|
| 1013 |
+
mapping[k] = v
|
| 1014 |
+
return mapping
|
| 1015 |
+
|
| 1016 |
+
def convert_img2bpe(self, img_batch: torch.Tensor) -> torch.Tensor:
|
| 1017 |
+
device = img_batch.device
|
| 1018 |
+
img_tokens = self.img2bpe_mapping_tensor[img_batch.to("cpu")]
|
| 1019 |
+
return img_tokens.to(device)
|
| 1020 |
+
|
| 1021 |
+
|
| 1022 |
+
CHAMELEON_START_DOCSTRING = r"""
|
| 1023 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 1024 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 1025 |
+
etc.)
|
| 1026 |
+
|
| 1027 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 1028 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 1029 |
+
and behavior.
|
| 1030 |
+
|
| 1031 |
+
Parameters:
|
| 1032 |
+
config ([`ChameleonConfig`]):
|
| 1033 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 1034 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 1035 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 1036 |
+
"""
|
| 1037 |
+
|
| 1038 |
+
|
| 1039 |
+
@add_start_docstrings(
|
| 1040 |
+
"The bare chameleon Model outputting raw hidden-states without any specific head on top.",
|
| 1041 |
+
CHAMELEON_START_DOCSTRING,
|
| 1042 |
+
)
|
| 1043 |
+
class ChameleonPreTrainedModel(PreTrainedModel):
|
| 1044 |
+
config_class = ChameleonConfig
|
| 1045 |
+
base_model_prefix = "model"
|
| 1046 |
+
supports_gradient_checkpointing = True
|
| 1047 |
+
_no_split_modules = ["ChameleonDecoderLayer", "ChameleonSwinDecoderLayer"]
|
| 1048 |
+
_skip_keys_device_placement = ["past_key_values", "causal_mask"]
|
| 1049 |
+
_supports_flash_attn_2 = True
|
| 1050 |
+
_supports_sdpa = True
|
| 1051 |
+
_supports_quantized_cache = True
|
| 1052 |
+
_supports_cache_class = True
|
| 1053 |
+
_supports_static_cache = True
|
| 1054 |
+
_supports_param_buffer_assignment = False
|
| 1055 |
+
|
| 1056 |
+
def _init_weights(self, module):
|
| 1057 |
+
std = self.config.initializer_range
|
| 1058 |
+
|
| 1059 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 1060 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 1061 |
+
if module.bias is not None:
|
| 1062 |
+
module.bias.data.zero_()
|
| 1063 |
+
elif isinstance(module, (nn.GroupNorm, nn.LayerNorm)):
|
| 1064 |
+
module.bias.data.zero_()
|
| 1065 |
+
module.weight.data.fill_(1.0)
|
| 1066 |
+
elif isinstance(module, ChameleonRMSNorm):
|
| 1067 |
+
module.weight.data.fill_(1.0)
|
| 1068 |
+
elif isinstance(module, nn.Embedding):
|
| 1069 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 1070 |
+
if module.padding_idx is not None:
|
| 1071 |
+
module.weight.data[module.padding_idx].zero_()
|
| 1072 |
+
|
| 1073 |
+
|
| 1074 |
+
CHAMELEON_VQ_START_DOCSTRING = r"""
|
| 1075 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 1076 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 1077 |
+
etc.)
|
| 1078 |
+
|
| 1079 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 1080 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 1081 |
+
and behavior.
|
| 1082 |
+
|
| 1083 |
+
Parameters:
|
| 1084 |
+
config ([`ChameleonVQVAEConfig`]):
|
| 1085 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 1086 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 1087 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 1088 |
+
"""
|
| 1089 |
+
|
| 1090 |
+
|
| 1091 |
+
@add_start_docstrings(
|
| 1092 |
+
"""The VQ-VAE model used in Chameleon for encoding/decoding images into discrete tokens.
|
| 1093 |
+
This model follows the "Make-a-scene: Scene-based text-to-image generation with human priors" paper from
|
| 1094 |
+
[ Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman](https://arxiv.org/abs/2203.13131).
|
| 1095 |
+
""",
|
| 1096 |
+
CHAMELEON_VQ_START_DOCSTRING,
|
| 1097 |
+
)
|
| 1098 |
+
class ChameleonVQVAE(ChameleonPreTrainedModel):
|
| 1099 |
+
config_class = ChameleonVQVAEConfig
|
| 1100 |
+
_no_split_modules = ["ChameleonVQVAEVectorQuantizer"]
|
| 1101 |
+
|
| 1102 |
+
def __init__(self, config: ChameleonVQVAEConfig):
|
| 1103 |
+
super().__init__(config)
|
| 1104 |
+
|
| 1105 |
+
self.encoder = ChameleonVQVAEEncoder(config)
|
| 1106 |
+
self.quantize = ChameleonVQVAEVectorQuantizer(config)
|
| 1107 |
+
self.quant_conv = torch.nn.Conv2d(config.latent_channels, config.embed_dim, 1)
|
| 1108 |
+
self.post_quant_conv = torch.nn.Conv2d(config.embed_dim, config.latent_channels, 1)
|
| 1109 |
+
self.eval() # Chameleon's VQ model is frozen
|
| 1110 |
+
|
| 1111 |
+
def encode(self, pixel_values: torch.LongTensor):
|
| 1112 |
+
hidden_states = self.encoder(pixel_values)
|
| 1113 |
+
hidden_states = self.quant_conv(hidden_states)
|
| 1114 |
+
quant, emb_loss, indices = self.quantize(hidden_states)
|
| 1115 |
+
return quant, emb_loss, indices
|
| 1116 |
+
|
| 1117 |
+
|
| 1118 |
+
CHAMELEON_INPUTS_DOCSTRING = r"""
|
| 1119 |
+
Args:
|
| 1120 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 1121 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 1122 |
+
it.
|
| 1123 |
+
|
| 1124 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1125 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1126 |
+
|
| 1127 |
+
[What are input IDs?](../glossary#input-ids)
|
| 1128 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
|
| 1129 |
+
The tensors corresponding to the input images. Pixel values can be obtained using
|
| 1130 |
+
[`AutoImageProcessor`]. See [`ChameleonImageProcessor.__call__`] for details.
|
| 1131 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1132 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 1133 |
+
|
| 1134 |
+
- 1 for tokens that are **not masked**,
|
| 1135 |
+
- 0 for tokens that are **masked**.
|
| 1136 |
+
|
| 1137 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 1138 |
+
|
| 1139 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1140 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1141 |
+
|
| 1142 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 1143 |
+
`past_key_values`).
|
| 1144 |
+
|
| 1145 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 1146 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 1147 |
+
information on the default strategy.
|
| 1148 |
+
|
| 1149 |
+
- 1 indicates the head is **not masked**,
|
| 1150 |
+
- 0 indicates the head is **masked**.
|
| 1151 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1152 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 1153 |
+
config.n_positions - 1]`.
|
| 1154 |
+
|
| 1155 |
+
[What are position IDs?](../glossary#position-ids)
|
| 1156 |
+
past_key_values (`Cache`, *optional*):
|
| 1157 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 1158 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
| 1159 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 1160 |
+
|
| 1161 |
+
Should always be a [`~cache_utils.Cache`] instance and the model will output the same cache instance.
|
| 1162 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 1163 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 1164 |
+
of shape `(batch_size, sequence_length)`.
|
| 1165 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 1166 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 1167 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 1168 |
+
model's internal embedding lookup matrix.
|
| 1169 |
+
use_cache (`bool`, *optional*):
|
| 1170 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 1171 |
+
`past_key_values`).
|
| 1172 |
+
output_attentions (`bool`, *optional*):
|
| 1173 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 1174 |
+
tensors for more detail.
|
| 1175 |
+
output_hidden_states (`bool`, *optional*):
|
| 1176 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 1177 |
+
more detail.
|
| 1178 |
+
return_dict (`bool`, *optional*):
|
| 1179 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1180 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 1181 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
| 1182 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
| 1183 |
+
the complete sequence length.
|
| 1184 |
+
"""
|
| 1185 |
+
|
| 1186 |
+
|
| 1187 |
+
@add_start_docstrings(
|
| 1188 |
+
"The bare chameleon Model outputting raw hidden-states without any specific head on top.",
|
| 1189 |
+
CHAMELEON_START_DOCSTRING,
|
| 1190 |
+
)
|
| 1191 |
+
class ChameleonModel(ChameleonPreTrainedModel):
|
| 1192 |
+
"""
|
| 1193 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`ChameleonDecoderLayer`]
|
| 1194 |
+
|
| 1195 |
+
Args:
|
| 1196 |
+
config: ChameleonConfig
|
| 1197 |
+
"""
|
| 1198 |
+
|
| 1199 |
+
def __init__(self, config: ChameleonConfig):
|
| 1200 |
+
super().__init__(config)
|
| 1201 |
+
self.padding_idx = config.pad_token_id
|
| 1202 |
+
self.vocab_size = config.vocab_size
|
| 1203 |
+
|
| 1204 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 1205 |
+
self.vocabulary_mapping = ChameleonImageVocabularyMapping(config.vocabulary_map)
|
| 1206 |
+
decoder_layer = ChameleonDecoderLayer if not self.config.swin_norm else ChameleonSwinDecoderLayer
|
| 1207 |
+
self.layers = nn.ModuleList(
|
| 1208 |
+
[decoder_layer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 1209 |
+
)
|
| 1210 |
+
self.norm = ChameleonRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1211 |
+
self.vqmodel = ChameleonVQVAE._from_config(config.vq_config)
|
| 1212 |
+
self.gradient_checkpointing = False
|
| 1213 |
+
|
| 1214 |
+
# Initialize weights and apply final processing
|
| 1215 |
+
self.post_init()
|
| 1216 |
+
|
| 1217 |
+
def get_input_embeddings(self):
|
| 1218 |
+
return self.embed_tokens
|
| 1219 |
+
|
| 1220 |
+
def set_input_embeddings(self, value):
|
| 1221 |
+
self.embed_tokens = value
|
| 1222 |
+
|
| 1223 |
+
def get_image_tokens(self, pixel_values: torch.FloatTensor):
|
| 1224 |
+
"""
|
| 1225 |
+
Tokenizes images into discrete tokens with VQGAN module. Converts
|
| 1226 |
+
obtained image tokens into BPE tokens and wraps with "boi" and "eoi"
|
| 1227 |
+
special tokens.
|
| 1228 |
+
|
| 1229 |
+
Args:
|
| 1230 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
|
| 1231 |
+
The tensors corresponding to the input images.
|
| 1232 |
+
"""
|
| 1233 |
+
batch_size = pixel_values.shape[0]
|
| 1234 |
+
_, _, image_toks = self.vqmodel.encode(pixel_values)
|
| 1235 |
+
bpe_toks = self.vocabulary_mapping.convert_img2bpe(image_toks)
|
| 1236 |
+
bpe_toks = bpe_toks.view(batch_size, -1)
|
| 1237 |
+
return bpe_toks
|
| 1238 |
+
|
| 1239 |
+
@add_start_docstrings_to_model_forward(CHAMELEON_INPUTS_DOCSTRING)
|
| 1240 |
+
@add_code_sample_docstrings(
|
| 1241 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1242 |
+
output_type=BaseModelOutputWithPast,
|
| 1243 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1244 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
| 1245 |
+
)
|
| 1246 |
+
def forward(
|
| 1247 |
+
self,
|
| 1248 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1249 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1250 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1251 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1252 |
+
past_key_values: Optional[Cache] = None,
|
| 1253 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1254 |
+
use_cache: Optional[bool] = None,
|
| 1255 |
+
output_attentions: Optional[bool] = None,
|
| 1256 |
+
output_hidden_states: Optional[bool] = None,
|
| 1257 |
+
return_dict: Optional[bool] = None,
|
| 1258 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1259 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 1260 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1261 |
+
output_hidden_states = (
|
| 1262 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1263 |
+
)
|
| 1264 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1265 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1266 |
+
|
| 1267 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 1268 |
+
logger.warning_once(
|
| 1269 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
| 1270 |
+
)
|
| 1271 |
+
use_cache = False
|
| 1272 |
+
|
| 1273 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 1274 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 1275 |
+
|
| 1276 |
+
if pixel_values is not None and inputs_embeds is not None:
|
| 1277 |
+
raise ValueError(
|
| 1278 |
+
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
|
| 1279 |
+
)
|
| 1280 |
+
|
| 1281 |
+
if pixel_values is not None:
|
| 1282 |
+
image_tokens = self.get_image_tokens(pixel_values)
|
| 1283 |
+
special_image_mask = input_ids == self.vocabulary_mapping.image_token_id
|
| 1284 |
+
if not is_torchdynamo_compiling() and input_ids[special_image_mask].numel() != image_tokens.numel():
|
| 1285 |
+
n_image_tokens_in_text = (input_ids == self.vocabulary_mapping.image_token_id).sum()
|
| 1286 |
+
n_image_features = image_tokens.shape[0] * image_tokens.shape[1]
|
| 1287 |
+
raise ValueError(
|
| 1288 |
+
f"Image features and image tokens do not match: tokens: {n_image_tokens_in_text}, features {n_image_features}"
|
| 1289 |
+
)
|
| 1290 |
+
image_tokens = image_tokens.to(input_ids.device, input_ids.dtype)
|
| 1291 |
+
input_ids = input_ids.masked_scatter(special_image_mask, image_tokens)
|
| 1292 |
+
|
| 1293 |
+
if inputs_embeds is None:
|
| 1294 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 1295 |
+
|
| 1296 |
+
# torch.jit.trace() doesn't support cache objects in the output
|
| 1297 |
+
if use_cache and past_key_values is None and not torch.jit.is_tracing():
|
| 1298 |
+
past_key_values = DynamicCache()
|
| 1299 |
+
|
| 1300 |
+
if cache_position is None:
|
| 1301 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 1302 |
+
cache_position = torch.arange(
|
| 1303 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 1304 |
+
)
|
| 1305 |
+
|
| 1306 |
+
if position_ids is None:
|
| 1307 |
+
position_ids = cache_position.unsqueeze(0)
|
| 1308 |
+
|
| 1309 |
+
causal_mask = self._update_causal_mask(
|
| 1310 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
| 1311 |
+
)
|
| 1312 |
+
|
| 1313 |
+
# embed positions
|
| 1314 |
+
hidden_states = inputs_embeds
|
| 1315 |
+
|
| 1316 |
+
# decoder layers
|
| 1317 |
+
all_hidden_states = () if output_hidden_states else None
|
| 1318 |
+
all_self_attns = () if output_attentions else None
|
| 1319 |
+
next_decoder_cache = None
|
| 1320 |
+
|
| 1321 |
+
for decoder_layer in self.layers:
|
| 1322 |
+
if output_hidden_states:
|
| 1323 |
+
all_hidden_states += (hidden_states,)
|
| 1324 |
+
|
| 1325 |
+
if self.gradient_checkpointing and self.training:
|
| 1326 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 1327 |
+
decoder_layer.__call__,
|
| 1328 |
+
hidden_states,
|
| 1329 |
+
causal_mask,
|
| 1330 |
+
position_ids,
|
| 1331 |
+
past_key_values,
|
| 1332 |
+
output_attentions,
|
| 1333 |
+
use_cache,
|
| 1334 |
+
cache_position,
|
| 1335 |
+
)
|
| 1336 |
+
else:
|
| 1337 |
+
layer_outputs = decoder_layer(
|
| 1338 |
+
hidden_states,
|
| 1339 |
+
attention_mask=causal_mask,
|
| 1340 |
+
position_ids=position_ids,
|
| 1341 |
+
past_key_value=past_key_values,
|
| 1342 |
+
output_attentions=output_attentions,
|
| 1343 |
+
use_cache=use_cache,
|
| 1344 |
+
cache_position=cache_position,
|
| 1345 |
+
)
|
| 1346 |
+
|
| 1347 |
+
hidden_states = layer_outputs[0]
|
| 1348 |
+
|
| 1349 |
+
if use_cache:
|
| 1350 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 1351 |
+
|
| 1352 |
+
if output_attentions:
|
| 1353 |
+
all_self_attns += (layer_outputs[1],)
|
| 1354 |
+
|
| 1355 |
+
hidden_states = self.norm(hidden_states)
|
| 1356 |
+
|
| 1357 |
+
# add hidden states from the last decoder layer
|
| 1358 |
+
if output_hidden_states:
|
| 1359 |
+
all_hidden_states += (hidden_states,)
|
| 1360 |
+
|
| 1361 |
+
next_cache = None
|
| 1362 |
+
if use_cache:
|
| 1363 |
+
next_cache = next_decoder_cache
|
| 1364 |
+
|
| 1365 |
+
if not return_dict:
|
| 1366 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 1367 |
+
|
| 1368 |
+
return BaseModelOutputWithPast(
|
| 1369 |
+
last_hidden_state=hidden_states,
|
| 1370 |
+
past_key_values=next_cache,
|
| 1371 |
+
hidden_states=all_hidden_states,
|
| 1372 |
+
attentions=all_self_attns,
|
| 1373 |
+
)
|
| 1374 |
+
|
| 1375 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
|
| 1376 |
+
def _update_causal_mask(
|
| 1377 |
+
self,
|
| 1378 |
+
attention_mask: Union[torch.Tensor, "BlockMask"],
|
| 1379 |
+
input_tensor: torch.Tensor,
|
| 1380 |
+
cache_position: torch.Tensor,
|
| 1381 |
+
past_key_values: Cache,
|
| 1382 |
+
output_attentions: bool = False,
|
| 1383 |
+
):
|
| 1384 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 1385 |
+
if attention_mask is not None and (attention_mask == 0.0).any():
|
| 1386 |
+
return attention_mask
|
| 1387 |
+
return None
|
| 1388 |
+
if self.config._attn_implementation == "flex_attention":
|
| 1389 |
+
if isinstance(attention_mask, torch.Tensor):
|
| 1390 |
+
attention_mask = make_flex_block_causal_mask(attention_mask)
|
| 1391 |
+
return attention_mask
|
| 1392 |
+
|
| 1393 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
| 1394 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
| 1395 |
+
# to infer the attention mask.
|
| 1396 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 1397 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
| 1398 |
+
|
| 1399 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
| 1400 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
| 1401 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 1402 |
+
attention_mask,
|
| 1403 |
+
inputs_embeds=input_tensor,
|
| 1404 |
+
past_key_values_length=past_seen_tokens,
|
| 1405 |
+
is_training=self.training,
|
| 1406 |
+
):
|
| 1407 |
+
return None
|
| 1408 |
+
|
| 1409 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
| 1410 |
+
sequence_length = input_tensor.shape[1]
|
| 1411 |
+
if using_static_cache:
|
| 1412 |
+
target_length = past_key_values.get_max_cache_shape()
|
| 1413 |
+
else:
|
| 1414 |
+
target_length = (
|
| 1415 |
+
attention_mask.shape[-1]
|
| 1416 |
+
if isinstance(attention_mask, torch.Tensor)
|
| 1417 |
+
else past_seen_tokens + sequence_length + 1
|
| 1418 |
+
)
|
| 1419 |
+
|
| 1420 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
| 1421 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
| 1422 |
+
attention_mask,
|
| 1423 |
+
sequence_length=sequence_length,
|
| 1424 |
+
target_length=target_length,
|
| 1425 |
+
dtype=dtype,
|
| 1426 |
+
device=device,
|
| 1427 |
+
cache_position=cache_position,
|
| 1428 |
+
batch_size=input_tensor.shape[0],
|
| 1429 |
+
)
|
| 1430 |
+
|
| 1431 |
+
if (
|
| 1432 |
+
self.config._attn_implementation == "sdpa"
|
| 1433 |
+
and attention_mask is not None
|
| 1434 |
+
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
| 1435 |
+
and not output_attentions
|
| 1436 |
+
):
|
| 1437 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 1438 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 1439 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 1440 |
+
min_dtype = torch.finfo(dtype).min
|
| 1441 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
| 1442 |
+
|
| 1443 |
+
return causal_mask
|
| 1444 |
+
|
| 1445 |
+
@staticmethod
|
| 1446 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel._prepare_4d_causal_attention_mask_with_cache_position
|
| 1447 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 1448 |
+
attention_mask: torch.Tensor,
|
| 1449 |
+
sequence_length: int,
|
| 1450 |
+
target_length: int,
|
| 1451 |
+
dtype: torch.dtype,
|
| 1452 |
+
device: torch.device,
|
| 1453 |
+
cache_position: torch.Tensor,
|
| 1454 |
+
batch_size: int,
|
| 1455 |
+
**kwargs,
|
| 1456 |
+
):
|
| 1457 |
+
"""
|
| 1458 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 1459 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
| 1460 |
+
|
| 1461 |
+
Args:
|
| 1462 |
+
attention_mask (`torch.Tensor`):
|
| 1463 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
| 1464 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
| 1465 |
+
sequence_length (`int`):
|
| 1466 |
+
The sequence length being processed.
|
| 1467 |
+
target_length (`int`):
|
| 1468 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
| 1469 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
| 1470 |
+
dtype (`torch.dtype`):
|
| 1471 |
+
The dtype to use for the 4D attention mask.
|
| 1472 |
+
device (`torch.device`):
|
| 1473 |
+
The device to place the 4D attention mask on.
|
| 1474 |
+
cache_position (`torch.Tensor`):
|
| 1475 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 1476 |
+
batch_size (`torch.Tensor`):
|
| 1477 |
+
Batch size.
|
| 1478 |
+
"""
|
| 1479 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 1480 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 1481 |
+
causal_mask = attention_mask
|
| 1482 |
+
else:
|
| 1483 |
+
min_dtype = torch.finfo(dtype).min
|
| 1484 |
+
causal_mask = torch.full(
|
| 1485 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
| 1486 |
+
)
|
| 1487 |
+
if sequence_length != 1:
|
| 1488 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 1489 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
| 1490 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 1491 |
+
if attention_mask is not None:
|
| 1492 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 1493 |
+
mask_length = attention_mask.shape[-1]
|
| 1494 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
| 1495 |
+
causal_mask.device
|
| 1496 |
+
)
|
| 1497 |
+
padding_mask = padding_mask == 0
|
| 1498 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 1499 |
+
padding_mask, min_dtype
|
| 1500 |
+
)
|
| 1501 |
+
|
| 1502 |
+
return causal_mask
|
| 1503 |
+
|
| 1504 |
+
|
| 1505 |
+
@add_start_docstrings(
|
| 1506 |
+
"Chameleon Model with a head on top used for outputting logits for next token prediction.",
|
| 1507 |
+
CHAMELEON_START_DOCSTRING,
|
| 1508 |
+
)
|
| 1509 |
+
class ChameleonForConditionalGeneration(ChameleonPreTrainedModel, GenerationMixin):
|
| 1510 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1511 |
+
|
| 1512 |
+
def __init__(self, config):
|
| 1513 |
+
super().__init__(config)
|
| 1514 |
+
self.model = ChameleonModel(config)
|
| 1515 |
+
self.vocab_size = config.vocab_size
|
| 1516 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1517 |
+
|
| 1518 |
+
# Initialize weights and apply final processing
|
| 1519 |
+
self.post_init()
|
| 1520 |
+
|
| 1521 |
+
def get_input_embeddings(self):
|
| 1522 |
+
return self.model.embed_tokens
|
| 1523 |
+
|
| 1524 |
+
def set_input_embeddings(self, value):
|
| 1525 |
+
self.model.embed_tokens = value
|
| 1526 |
+
|
| 1527 |
+
def get_output_embeddings(self):
|
| 1528 |
+
return self.lm_head
|
| 1529 |
+
|
| 1530 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1531 |
+
self.lm_head = new_embeddings
|
| 1532 |
+
|
| 1533 |
+
def set_decoder(self, decoder):
|
| 1534 |
+
self.model = decoder
|
| 1535 |
+
|
| 1536 |
+
def get_decoder(self):
|
| 1537 |
+
return self.model
|
| 1538 |
+
|
| 1539 |
+
@add_start_docstrings_to_model_forward(CHAMELEON_INPUTS_DOCSTRING)
|
| 1540 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1541 |
+
def forward(
|
| 1542 |
+
self,
|
| 1543 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1544 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1545 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1546 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1547 |
+
past_key_values: Optional[Cache] = None,
|
| 1548 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1549 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1550 |
+
use_cache: Optional[bool] = None,
|
| 1551 |
+
output_attentions: Optional[bool] = None,
|
| 1552 |
+
output_hidden_states: Optional[bool] = None,
|
| 1553 |
+
return_dict: Optional[bool] = None,
|
| 1554 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1555 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1556 |
+
r"""
|
| 1557 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1558 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1559 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1560 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1561 |
+
|
| 1562 |
+
Returns:
|
| 1563 |
+
|
| 1564 |
+
Example:
|
| 1565 |
+
|
| 1566 |
+
```python
|
| 1567 |
+
>>> from transformers import ChameleonProcessor, ChameleonForConditionalGeneration
|
| 1568 |
+
>>> import torch
|
| 1569 |
+
>>> import requests
|
| 1570 |
+
>>> from PIL import Image
|
| 1571 |
+
|
| 1572 |
+
>>> model = ChameleonForConditionalGeneration.from_pretrained("facebook/chameleon-7b", torch_dtype=torch.bfloat16)
|
| 1573 |
+
>>> processor = ChameleonProcessor.from_pretrained("facebook/chameleon-7b")
|
| 1574 |
+
|
| 1575 |
+
>>> prompt = "I used to know a lot about constellations when I was younger, but as I grew older, I forgot most of what I knew. These are the only two constellations that I really remember now.<image><image>I would like for you to tell me about 3 more constellations and give me a little bit of history about the constellation."
|
| 1576 |
+
>>> image = Image.open(requests.get("https://nineplanets.org/wp-content/uploads/2020/12/the-big-dipper-1.jpg", stream=True).raw)
|
| 1577 |
+
>>> image_2 = Image.open(requests.get("https://www.kxan.com/wp-content/uploads/sites/40/2020/10/ORION.jpg", stream=True).raw)
|
| 1578 |
+
|
| 1579 |
+
>>> inputs = processor(images=[image, image_2], text=prompt, return_tensors="pt").to(model.device, torch.bfloat16)
|
| 1580 |
+
|
| 1581 |
+
>>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False)
|
| 1582 |
+
>>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 1583 |
+
```"""
|
| 1584 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1585 |
+
output_hidden_states = (
|
| 1586 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1587 |
+
)
|
| 1588 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1589 |
+
|
| 1590 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1591 |
+
outputs = self.model(
|
| 1592 |
+
input_ids=input_ids,
|
| 1593 |
+
pixel_values=pixel_values,
|
| 1594 |
+
attention_mask=attention_mask,
|
| 1595 |
+
position_ids=position_ids,
|
| 1596 |
+
past_key_values=past_key_values,
|
| 1597 |
+
inputs_embeds=inputs_embeds,
|
| 1598 |
+
use_cache=use_cache,
|
| 1599 |
+
output_attentions=output_attentions,
|
| 1600 |
+
output_hidden_states=output_hidden_states,
|
| 1601 |
+
return_dict=return_dict,
|
| 1602 |
+
cache_position=cache_position,
|
| 1603 |
+
)
|
| 1604 |
+
|
| 1605 |
+
hidden_states = outputs[0]
|
| 1606 |
+
logits = self.lm_head(hidden_states)
|
| 1607 |
+
|
| 1608 |
+
# Disallow image tokens which does not include special begin-image and end-image tokens
|
| 1609 |
+
image_tokens = self.model.vocabulary_mapping.image_tokens
|
| 1610 |
+
logits[:, :, image_tokens] = torch.finfo(logits.dtype).min
|
| 1611 |
+
|
| 1612 |
+
loss = None
|
| 1613 |
+
if labels is not None:
|
| 1614 |
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
| 1615 |
+
logits = logits.float()
|
| 1616 |
+
# Shift so that tokens < n predict n
|
| 1617 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 1618 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1619 |
+
# Flatten the tokens
|
| 1620 |
+
loss_fct = CrossEntropyLoss()
|
| 1621 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 1622 |
+
shift_labels = shift_labels.view(-1)
|
| 1623 |
+
# Enable model parallelism
|
| 1624 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 1625 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 1626 |
+
|
| 1627 |
+
if not return_dict:
|
| 1628 |
+
output = (logits,) + outputs[1:]
|
| 1629 |
+
return (loss,) + output if loss is not None else output
|
| 1630 |
+
|
| 1631 |
+
return CausalLMOutputWithPast(
|
| 1632 |
+
loss=loss,
|
| 1633 |
+
logits=logits,
|
| 1634 |
+
past_key_values=outputs.past_key_values,
|
| 1635 |
+
hidden_states=outputs.hidden_states,
|
| 1636 |
+
attentions=outputs.attentions,
|
| 1637 |
+
)
|
| 1638 |
+
|
| 1639 |
+
def prepare_inputs_for_generation(
|
| 1640 |
+
self,
|
| 1641 |
+
input_ids,
|
| 1642 |
+
pixel_values=None,
|
| 1643 |
+
past_key_values=None,
|
| 1644 |
+
attention_mask=None,
|
| 1645 |
+
inputs_embeds=None,
|
| 1646 |
+
cache_position=None,
|
| 1647 |
+
position_ids=None,
|
| 1648 |
+
use_cache=True,
|
| 1649 |
+
**kwargs,
|
| 1650 |
+
):
|
| 1651 |
+
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
|
| 1652 |
+
|
| 1653 |
+
model_inputs = super().prepare_inputs_for_generation(
|
| 1654 |
+
input_ids,
|
| 1655 |
+
pixel_values=pixel_values,
|
| 1656 |
+
past_key_values=past_key_values,
|
| 1657 |
+
attention_mask=attention_mask,
|
| 1658 |
+
inputs_embeds=inputs_embeds,
|
| 1659 |
+
cache_position=cache_position,
|
| 1660 |
+
position_ids=position_ids,
|
| 1661 |
+
use_cache=use_cache,
|
| 1662 |
+
**kwargs,
|
| 1663 |
+
)
|
| 1664 |
+
|
| 1665 |
+
if cache_position[0] != 0:
|
| 1666 |
+
# If we're in cached decoding stage, pixel values should be `None` because input ids do not contain special image token anymore
|
| 1667 |
+
# Otherwise we need pixel values to be passed to model
|
| 1668 |
+
model_inputs["pixel_values"] = None
|
| 1669 |
+
|
| 1670 |
+
return model_inputs
|
| 1671 |
+
|
| 1672 |
+
|
| 1673 |
+
__all__ = ["ChameleonForConditionalGeneration", "ChameleonModel", "ChameleonPreTrainedModel", "ChameleonVQVAE"]
|
docs/transformers/build/lib/transformers/models/chameleon/processing_chameleon.py
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 Meta Inc. and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""
|
| 16 |
+
Processor class for Chameleon.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from typing import List, Optional, Union
|
| 20 |
+
|
| 21 |
+
from ...feature_extraction_utils import BatchFeature
|
| 22 |
+
from ...image_utils import ImageInput
|
| 23 |
+
from ...processing_utils import ProcessingKwargs, ProcessorMixin, TextKwargs, Unpack, _validate_images_text_input_order
|
| 24 |
+
from ...tokenization_utils_base import PreTokenizedInput, TextInput
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class ChameleonTextKwargs(TextKwargs, total=False):
|
| 28 |
+
return_for_text_completion: bool
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class ChameleonProcessorKwargs(ProcessingKwargs, total=False):
|
| 32 |
+
text_kwargs: ChameleonTextKwargs
|
| 33 |
+
_defaults = {
|
| 34 |
+
"text_kwargs": {
|
| 35 |
+
"padding": False,
|
| 36 |
+
"return_for_text_completion": False,
|
| 37 |
+
},
|
| 38 |
+
"common_kwargs": {
|
| 39 |
+
"return_tensors": "pt",
|
| 40 |
+
},
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class ChameleonProcessor(ProcessorMixin):
|
| 45 |
+
r"""
|
| 46 |
+
Constructs a Chameleon processor which wraps a Chameleon image processor and a Chameleon tokenizer into a single
|
| 47 |
+
processor.
|
| 48 |
+
|
| 49 |
+
[`ChameleonProcessor`] offers all the functionalities of [`ChameleonImageProcessor`] and [`LlamaTokenizerFast`].
|
| 50 |
+
See the [`~ChameleonProcessor.__call__`] and [`~ChameleonProcessor.decode`] for more information.
|
| 51 |
+
|
| 52 |
+
Args:
|
| 53 |
+
image_processor ([`ChameleonImageProcessor`]):
|
| 54 |
+
The image processor is a required input.
|
| 55 |
+
tokenizer ([`LlamaTokenizerFast`]):
|
| 56 |
+
The tokenizer is a required input.
|
| 57 |
+
image_seq_length (`int`, *optional*, defaults to 1024):
|
| 58 |
+
Sequence length of one image embedding.
|
| 59 |
+
image_token (`str`, *optional*, defaults to `"<image>"`):
|
| 60 |
+
The special token used to indicate image in the text.
|
| 61 |
+
"""
|
| 62 |
+
|
| 63 |
+
attributes = ["image_processor", "tokenizer"]
|
| 64 |
+
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
|
| 65 |
+
valid_kwargs = ["image_seq_length", "image_token"]
|
| 66 |
+
image_processor_class = "ChameleonImageProcessor"
|
| 67 |
+
|
| 68 |
+
def __init__(self, image_processor, tokenizer, image_seq_length: int = 1024, image_token: str = "<image>"):
|
| 69 |
+
self.image_seq_length = image_seq_length
|
| 70 |
+
self.image_token = tokenizer.image_token if hasattr(tokenizer, "image_token") else image_token
|
| 71 |
+
self.image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
|
| 72 |
+
self.image_start_token = (
|
| 73 |
+
tokenizer.boi_token if hasattr(tokenizer, "boi_token") else "<racm3:break>"
|
| 74 |
+
) # fixed tokens for start and end, so can hardcode
|
| 75 |
+
self.image_end_token = tokenizer.eoi_token if hasattr(tokenizer, "eoi_token") else "<eoss>"
|
| 76 |
+
|
| 77 |
+
super().__init__(image_processor, tokenizer)
|
| 78 |
+
|
| 79 |
+
def __call__(
|
| 80 |
+
self,
|
| 81 |
+
images: Optional[ImageInput] = None,
|
| 82 |
+
text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
|
| 83 |
+
audio=None,
|
| 84 |
+
videos=None,
|
| 85 |
+
**kwargs: Unpack[ChameleonProcessorKwargs],
|
| 86 |
+
) -> BatchFeature:
|
| 87 |
+
"""
|
| 88 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
| 89 |
+
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
|
| 90 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
| 91 |
+
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
|
| 92 |
+
of the above two methods for more information.
|
| 93 |
+
|
| 94 |
+
Args:
|
| 95 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
| 96 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
| 97 |
+
tensor. Both channels-first and channels-last formats are supported.
|
| 98 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
| 99 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
| 100 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
| 101 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
| 102 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
| 103 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
| 104 |
+
|
| 105 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
| 106 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
| 107 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
| 108 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
| 109 |
+
|
| 110 |
+
Returns:
|
| 111 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
| 112 |
+
|
| 113 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
| 114 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
| 115 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
| 116 |
+
`None`).
|
| 117 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
| 118 |
+
"""
|
| 119 |
+
# check if images and text inputs are reversed for BC
|
| 120 |
+
images, text = _validate_images_text_input_order(images, text)
|
| 121 |
+
if isinstance(text, str):
|
| 122 |
+
text = [text]
|
| 123 |
+
elif not isinstance(text, list) and not isinstance(text[0], str):
|
| 124 |
+
raise TypeError("Invalid input text. Please provide a string, or a list of strings")
|
| 125 |
+
if text is None and images is None:
|
| 126 |
+
raise ValueError("You must provide either text or images")
|
| 127 |
+
|
| 128 |
+
output_kwargs = self._merge_kwargs(
|
| 129 |
+
ChameleonProcessorKwargs,
|
| 130 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
| 131 |
+
**kwargs,
|
| 132 |
+
)
|
| 133 |
+
return_for_text_completion = output_kwargs["text_kwargs"].pop("return_for_text_completion", False)
|
| 134 |
+
|
| 135 |
+
# Replace the image token with the expanded image token sequence
|
| 136 |
+
prompt_strings = []
|
| 137 |
+
one_img_tokens = self.image_start_token + (self.image_token * self.image_seq_length) + self.image_end_token
|
| 138 |
+
for sample in text:
|
| 139 |
+
sample = sample.replace(self.image_token, one_img_tokens)
|
| 140 |
+
if not return_for_text_completion:
|
| 141 |
+
sample += self.tokenizer.sep_token # special Chameleon treatment to add sep for chat mode
|
| 142 |
+
prompt_strings.append(sample)
|
| 143 |
+
|
| 144 |
+
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
|
| 145 |
+
data = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"])
|
| 146 |
+
self._check_special_mm_tokens(prompt_strings, data, modalities=["image"])
|
| 147 |
+
|
| 148 |
+
if images is not None:
|
| 149 |
+
data["pixel_values"] = self.image_processor(images, **output_kwargs["images_kwargs"])["pixel_values"]
|
| 150 |
+
|
| 151 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
| 152 |
+
|
| 153 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
| 154 |
+
def batch_decode(self, *args, **kwargs):
|
| 155 |
+
"""
|
| 156 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 157 |
+
refer to the docstring of this method for more information.
|
| 158 |
+
"""
|
| 159 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 160 |
+
|
| 161 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
|
| 162 |
+
def decode(self, *args, **kwargs):
|
| 163 |
+
"""
|
| 164 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
| 165 |
+
the docstring of this method for more information.
|
| 166 |
+
"""
|
| 167 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 168 |
+
|
| 169 |
+
@property
|
| 170 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|
| 171 |
+
def model_input_names(self):
|
| 172 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 173 |
+
image_processor_input_names = self.image_processor.model_input_names
|
| 174 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
__all__ = ["ChameleonProcessor"]
|
docs/transformers/build/lib/transformers/models/chinese_clip/configuration_chinese_clip.py
ADDED
|
@@ -0,0 +1,434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""Chinese-CLIP model configuration"""
|
| 16 |
+
|
| 17 |
+
from collections import OrderedDict
|
| 18 |
+
from typing import TYPE_CHECKING, Any, Mapping, Optional
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
if TYPE_CHECKING:
|
| 22 |
+
from ...processing_utils import ProcessorMixin
|
| 23 |
+
from ...utils import TensorType
|
| 24 |
+
|
| 25 |
+
from ...configuration_utils import PretrainedConfig
|
| 26 |
+
from ...onnx import OnnxConfig
|
| 27 |
+
from ...utils import logging
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
logger = logging.get_logger(__name__)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class ChineseCLIPTextConfig(PretrainedConfig):
|
| 34 |
+
r"""
|
| 35 |
+
This is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used to instantiate a
|
| 36 |
+
Chinese CLIP model according to the specified arguments, defining the model architecture. Instantiating a
|
| 37 |
+
configuration with the defaults will yield a similar configuration to that of the Chinese CLIP
|
| 38 |
+
[OFA-Sys/chinese-clip-vit-base-patch16](https:
|
| 39 |
+
//huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) architecture.
|
| 40 |
+
|
| 41 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 42 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
Args:
|
| 46 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
| 47 |
+
Vocabulary size of the CHINESE_CLIP model. Defines the number of different tokens that can be represented
|
| 48 |
+
by the `inputs_ids` passed when calling [`ChineseCLIPModel`].
|
| 49 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
| 50 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 51 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
| 52 |
+
Number of hidden layers in the Transformer encoder.
|
| 53 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
| 54 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 55 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
| 56 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
| 57 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
| 58 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 59 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
| 60 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
| 61 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
| 62 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
| 63 |
+
The dropout ratio for the attention probabilities.
|
| 64 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
| 65 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 66 |
+
just in case (e.g., 512 or 1024 or 2048).
|
| 67 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
| 68 |
+
The vocabulary size of the `token_type_ids` passed when calling [`ChineseCLIPModel`].
|
| 69 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 70 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 71 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
| 72 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
| 73 |
+
testing).
|
| 74 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
| 75 |
+
The epsilon used by the layer normalization layers.
|
| 76 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
| 77 |
+
Padding token id.
|
| 78 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
| 79 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
| 80 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
| 81 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
| 82 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
| 83 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
| 84 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 85 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 86 |
+
relevant if `config.is_decoder=True`.
|
| 87 |
+
|
| 88 |
+
Example:
|
| 89 |
+
|
| 90 |
+
```python
|
| 91 |
+
>>> from transformers import ChineseCLIPTextConfig, ChineseCLIPTextModel
|
| 92 |
+
|
| 93 |
+
>>> # Initializing a ChineseCLIPTextConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
|
| 94 |
+
>>> configuration = ChineseCLIPTextConfig()
|
| 95 |
+
|
| 96 |
+
>>> # Initializing a ChineseCLIPTextModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
|
| 97 |
+
>>> model = ChineseCLIPTextModel(configuration)
|
| 98 |
+
|
| 99 |
+
>>> # Accessing the model configuration
|
| 100 |
+
>>> configuration = model.config
|
| 101 |
+
```"""
|
| 102 |
+
|
| 103 |
+
model_type = "chinese_clip_text_model"
|
| 104 |
+
base_config_key = "text_config"
|
| 105 |
+
|
| 106 |
+
def __init__(
|
| 107 |
+
self,
|
| 108 |
+
vocab_size=30522,
|
| 109 |
+
hidden_size=768,
|
| 110 |
+
num_hidden_layers=12,
|
| 111 |
+
num_attention_heads=12,
|
| 112 |
+
intermediate_size=3072,
|
| 113 |
+
hidden_act="gelu",
|
| 114 |
+
hidden_dropout_prob=0.1,
|
| 115 |
+
attention_probs_dropout_prob=0.1,
|
| 116 |
+
max_position_embeddings=512,
|
| 117 |
+
type_vocab_size=2,
|
| 118 |
+
initializer_range=0.02,
|
| 119 |
+
initializer_factor=1.0,
|
| 120 |
+
layer_norm_eps=1e-12,
|
| 121 |
+
pad_token_id=0,
|
| 122 |
+
position_embedding_type="absolute",
|
| 123 |
+
use_cache=True,
|
| 124 |
+
**kwargs,
|
| 125 |
+
):
|
| 126 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
| 127 |
+
|
| 128 |
+
self.vocab_size = vocab_size
|
| 129 |
+
self.hidden_size = hidden_size
|
| 130 |
+
self.num_hidden_layers = num_hidden_layers
|
| 131 |
+
self.num_attention_heads = num_attention_heads
|
| 132 |
+
self.hidden_act = hidden_act
|
| 133 |
+
self.intermediate_size = intermediate_size
|
| 134 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
| 135 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
| 136 |
+
self.max_position_embeddings = max_position_embeddings
|
| 137 |
+
self.type_vocab_size = type_vocab_size
|
| 138 |
+
self.initializer_range = initializer_range
|
| 139 |
+
self.initializer_factor = initializer_factor
|
| 140 |
+
self.layer_norm_eps = layer_norm_eps
|
| 141 |
+
self.position_embedding_type = position_embedding_type
|
| 142 |
+
self.use_cache = use_cache
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
class ChineseCLIPVisionConfig(PretrainedConfig):
|
| 146 |
+
r"""
|
| 147 |
+
This is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used to instantiate an
|
| 148 |
+
ChineseCLIP model according to the specified arguments, defining the model architecture. Instantiating a
|
| 149 |
+
configuration with the defaults will yield a similar configuration to that of the ChineseCLIP
|
| 150 |
+
[OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) architecture.
|
| 151 |
+
|
| 152 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 153 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
Args:
|
| 157 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
| 158 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 159 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
| 160 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 161 |
+
projection_dim (`int`, *optional*, defaults to 512):
|
| 162 |
+
Dimensionality of text and vision projection layers.
|
| 163 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
| 164 |
+
Number of hidden layers in the Transformer encoder.
|
| 165 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
| 166 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 167 |
+
num_channels (`int`, *optional*, defaults to 3):
|
| 168 |
+
The number of input channels.
|
| 169 |
+
image_size (`int`, *optional*, defaults to 224):
|
| 170 |
+
The size (resolution) of each image.
|
| 171 |
+
patch_size (`int`, *optional*, defaults to 32):
|
| 172 |
+
The size (resolution) of each patch.
|
| 173 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
|
| 174 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 175 |
+
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
| 176 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
| 177 |
+
The epsilon used by the layer normalization layers.
|
| 178 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 179 |
+
The dropout ratio for the attention probabilities.
|
| 180 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 181 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 182 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
| 183 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
| 184 |
+
testing).
|
| 185 |
+
Example:
|
| 186 |
+
```python
|
| 187 |
+
>>> from transformers import ChineseCLIPVisionConfig, ChineseCLIPVisionModel
|
| 188 |
+
|
| 189 |
+
>>> # Initializing a ChineseCLIPVisionConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
|
| 190 |
+
>>> configuration = ChineseCLIPVisionConfig()
|
| 191 |
+
|
| 192 |
+
>>> # Initializing a ChineseCLIPVisionModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
|
| 193 |
+
>>> model = ChineseCLIPVisionModel(configuration)
|
| 194 |
+
|
| 195 |
+
>>> # Accessing the model configuration
|
| 196 |
+
>>> configuration = model.config
|
| 197 |
+
```"""
|
| 198 |
+
|
| 199 |
+
model_type = "chinese_clip_vision_model"
|
| 200 |
+
base_config_key = "vision_config"
|
| 201 |
+
|
| 202 |
+
def __init__(
|
| 203 |
+
self,
|
| 204 |
+
hidden_size=768,
|
| 205 |
+
intermediate_size=3072,
|
| 206 |
+
projection_dim=512,
|
| 207 |
+
num_hidden_layers=12,
|
| 208 |
+
num_attention_heads=12,
|
| 209 |
+
num_channels=3,
|
| 210 |
+
image_size=224,
|
| 211 |
+
patch_size=32,
|
| 212 |
+
hidden_act="quick_gelu",
|
| 213 |
+
layer_norm_eps=1e-5,
|
| 214 |
+
attention_dropout=0.0,
|
| 215 |
+
initializer_range=0.02,
|
| 216 |
+
initializer_factor=1.0,
|
| 217 |
+
**kwargs,
|
| 218 |
+
):
|
| 219 |
+
super().__init__(**kwargs)
|
| 220 |
+
|
| 221 |
+
self.hidden_size = hidden_size
|
| 222 |
+
self.intermediate_size = intermediate_size
|
| 223 |
+
self.projection_dim = projection_dim
|
| 224 |
+
self.num_hidden_layers = num_hidden_layers
|
| 225 |
+
self.num_attention_heads = num_attention_heads
|
| 226 |
+
self.num_channels = num_channels
|
| 227 |
+
self.patch_size = patch_size
|
| 228 |
+
self.image_size = image_size
|
| 229 |
+
self.initializer_range = initializer_range
|
| 230 |
+
self.initializer_factor = initializer_factor
|
| 231 |
+
self.attention_dropout = attention_dropout
|
| 232 |
+
self.layer_norm_eps = layer_norm_eps
|
| 233 |
+
self.hidden_act = hidden_act
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
class ChineseCLIPConfig(PretrainedConfig):
|
| 237 |
+
r"""
|
| 238 |
+
[`ChineseCLIPConfig`] is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used
|
| 239 |
+
to instantiate Chinese-CLIP model according to the specified arguments, defining the text model and vision model
|
| 240 |
+
configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the
|
| 241 |
+
Chinese-CLIP [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16)
|
| 242 |
+
architecture.
|
| 243 |
+
|
| 244 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 245 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 246 |
+
|
| 247 |
+
Args:
|
| 248 |
+
text_config (`dict`, *optional*):
|
| 249 |
+
Dictionary of configuration options used to initialize [`ChineseCLIPTextConfig`].
|
| 250 |
+
vision_config (`dict`, *optional*):
|
| 251 |
+
Dictionary of configuration options used to initialize [`ChineseCLIPVisionConfig`].
|
| 252 |
+
projection_dim (`int`, *optional*, defaults to 512):
|
| 253 |
+
Dimensionality of text and vision projection layers.
|
| 254 |
+
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
|
| 255 |
+
The initial value of the *logit_scale* parameter. Default is used as per the original ChineseCLIP
|
| 256 |
+
implementation.
|
| 257 |
+
kwargs (*optional*):
|
| 258 |
+
Dictionary of keyword arguments.
|
| 259 |
+
|
| 260 |
+
Example:
|
| 261 |
+
|
| 262 |
+
```python
|
| 263 |
+
>>> from transformers import ChineseCLIPConfig, ChineseCLIPModel
|
| 264 |
+
|
| 265 |
+
>>> # Initializing a ChineseCLIPConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
|
| 266 |
+
>>> configuration = ChineseCLIPConfig()
|
| 267 |
+
|
| 268 |
+
>>> # Initializing a ChineseCLIPModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
|
| 269 |
+
>>> model = ChineseCLIPModel(configuration)
|
| 270 |
+
|
| 271 |
+
>>> # Accessing the model configuration
|
| 272 |
+
>>> configuration = model.config
|
| 273 |
+
|
| 274 |
+
>>> # We can also initialize a ChineseCLIPConfig from a ChineseCLIPTextConfig and a ChineseCLIPVisionConfig
|
| 275 |
+
|
| 276 |
+
>>> # Initializing a ChineseCLIPTextConfig and ChineseCLIPVisionConfig configuration
|
| 277 |
+
>>> config_text = ChineseCLIPTextConfig()
|
| 278 |
+
>>> config_vision = ChineseCLIPVisionConfig()
|
| 279 |
+
|
| 280 |
+
>>> config = ChineseCLIPConfig.from_text_vision_configs(config_text, config_vision)
|
| 281 |
+
```"""
|
| 282 |
+
|
| 283 |
+
model_type = "chinese_clip"
|
| 284 |
+
sub_configs = {"text_config": ChineseCLIPTextConfig, "vision_config": ChineseCLIPVisionConfig}
|
| 285 |
+
|
| 286 |
+
def __init__(
|
| 287 |
+
self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs
|
| 288 |
+
):
|
| 289 |
+
# If `_config_dict` exist, we use them for the backward compatibility.
|
| 290 |
+
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
|
| 291 |
+
# of confusion!).
|
| 292 |
+
text_config_dict = kwargs.pop("text_config_dict", None)
|
| 293 |
+
vision_config_dict = kwargs.pop("vision_config_dict", None)
|
| 294 |
+
|
| 295 |
+
super().__init__(**kwargs)
|
| 296 |
+
|
| 297 |
+
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
|
| 298 |
+
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
|
| 299 |
+
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
|
| 300 |
+
if text_config_dict is not None:
|
| 301 |
+
if text_config is None:
|
| 302 |
+
text_config = {}
|
| 303 |
+
|
| 304 |
+
# This is the complete result when using `text_config_dict`.
|
| 305 |
+
_text_config_dict = ChineseCLIPTextConfig(**text_config_dict).to_dict()
|
| 306 |
+
|
| 307 |
+
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
|
| 308 |
+
for key, value in _text_config_dict.items():
|
| 309 |
+
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
|
| 310 |
+
# If specified in `text_config_dict`
|
| 311 |
+
if key in text_config_dict:
|
| 312 |
+
message = (
|
| 313 |
+
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
|
| 314 |
+
f'The value `text_config_dict["{key}"]` will be used instead.'
|
| 315 |
+
)
|
| 316 |
+
# If inferred from default argument values (just to be super careful)
|
| 317 |
+
else:
|
| 318 |
+
message = (
|
| 319 |
+
f"`text_config_dict` is provided which will be used to initialize `ChineseCLIPTextConfig`. "
|
| 320 |
+
f'The value `text_config["{key}"]` will be overridden.'
|
| 321 |
+
)
|
| 322 |
+
logger.info(message)
|
| 323 |
+
|
| 324 |
+
# Update all values in `text_config` with the ones in `_text_config_dict`.
|
| 325 |
+
text_config.update(_text_config_dict)
|
| 326 |
+
|
| 327 |
+
if vision_config_dict is not None:
|
| 328 |
+
if vision_config is None:
|
| 329 |
+
vision_config = {}
|
| 330 |
+
|
| 331 |
+
# This is the complete result when using `vision_config_dict`.
|
| 332 |
+
_vision_config_dict = ChineseCLIPVisionConfig(**vision_config_dict).to_dict()
|
| 333 |
+
# convert keys to string instead of integer
|
| 334 |
+
if "id2label" in _vision_config_dict:
|
| 335 |
+
_vision_config_dict["id2label"] = {
|
| 336 |
+
str(key): value for key, value in _vision_config_dict["id2label"].items()
|
| 337 |
+
}
|
| 338 |
+
|
| 339 |
+
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
|
| 340 |
+
for key, value in _vision_config_dict.items():
|
| 341 |
+
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
|
| 342 |
+
# If specified in `vision_config_dict`
|
| 343 |
+
if key in vision_config_dict:
|
| 344 |
+
message = (
|
| 345 |
+
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
|
| 346 |
+
f'values. The value `vision_config_dict["{key}"]` will be used instead.'
|
| 347 |
+
)
|
| 348 |
+
# If inferred from default argument values (just to be super careful)
|
| 349 |
+
else:
|
| 350 |
+
message = (
|
| 351 |
+
f"`vision_config_dict` is provided which will be used to initialize "
|
| 352 |
+
f'`ChineseCLIPVisionConfig`. The value `vision_config["{key}"]` will be overridden.'
|
| 353 |
+
)
|
| 354 |
+
logger.info(message)
|
| 355 |
+
|
| 356 |
+
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
|
| 357 |
+
vision_config.update(_vision_config_dict)
|
| 358 |
+
|
| 359 |
+
if text_config is None:
|
| 360 |
+
text_config = {}
|
| 361 |
+
logger.info("`text_config` is `None`. Initializing the `ChineseCLIPTextConfig` with default values.")
|
| 362 |
+
|
| 363 |
+
if vision_config is None:
|
| 364 |
+
vision_config = {}
|
| 365 |
+
logger.info("`vision_config` is `None`. initializing the `ChineseCLIPVisionConfig` with default values.")
|
| 366 |
+
|
| 367 |
+
self.text_config = ChineseCLIPTextConfig(**text_config)
|
| 368 |
+
self.vision_config = ChineseCLIPVisionConfig(**vision_config)
|
| 369 |
+
|
| 370 |
+
self.projection_dim = projection_dim
|
| 371 |
+
self.logit_scale_init_value = logit_scale_init_value
|
| 372 |
+
self.initializer_factor = 1.0
|
| 373 |
+
self.initializer_range = 0.02
|
| 374 |
+
|
| 375 |
+
@classmethod
|
| 376 |
+
def from_text_vision_configs(
|
| 377 |
+
cls, text_config: ChineseCLIPTextConfig, vision_config: ChineseCLIPVisionConfig, **kwargs
|
| 378 |
+
):
|
| 379 |
+
r"""
|
| 380 |
+
Instantiate a [`ChineseCLIPConfig`] (or a derived class) from Chinese-CLIP text model configuration and
|
| 381 |
+
Chinese-CLIP vision model configuration. Returns:
|
| 382 |
+
[`ChineseCLIPConfig`]: An instance of a configuration object
|
| 383 |
+
"""
|
| 384 |
+
|
| 385 |
+
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
class ChineseCLIPOnnxConfig(OnnxConfig):
|
| 389 |
+
@property
|
| 390 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
| 391 |
+
return OrderedDict(
|
| 392 |
+
[
|
| 393 |
+
("input_ids", {0: "batch", 1: "sequence"}),
|
| 394 |
+
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
| 395 |
+
("attention_mask", {0: "batch", 1: "sequence"}),
|
| 396 |
+
]
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
@property
|
| 400 |
+
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
| 401 |
+
return OrderedDict(
|
| 402 |
+
[
|
| 403 |
+
("logits_per_image", {0: "batch"}),
|
| 404 |
+
("logits_per_text", {0: "batch"}),
|
| 405 |
+
("text_embeds", {0: "batch"}),
|
| 406 |
+
("image_embeds", {0: "batch"}),
|
| 407 |
+
]
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
@property
|
| 411 |
+
def atol_for_validation(self) -> float:
|
| 412 |
+
return 1e-4
|
| 413 |
+
|
| 414 |
+
def generate_dummy_inputs(
|
| 415 |
+
self,
|
| 416 |
+
processor: "ProcessorMixin",
|
| 417 |
+
batch_size: int = -1,
|
| 418 |
+
seq_length: int = -1,
|
| 419 |
+
framework: Optional["TensorType"] = None,
|
| 420 |
+
) -> Mapping[str, Any]:
|
| 421 |
+
text_input_dict = super().generate_dummy_inputs(
|
| 422 |
+
processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework
|
| 423 |
+
)
|
| 424 |
+
image_input_dict = super().generate_dummy_inputs(
|
| 425 |
+
processor.image_processor, batch_size=batch_size, framework=framework
|
| 426 |
+
)
|
| 427 |
+
return {**text_input_dict, **image_input_dict}
|
| 428 |
+
|
| 429 |
+
@property
|
| 430 |
+
def default_onnx_opset(self) -> int:
|
| 431 |
+
return 14
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
__all__ = ["ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig"]
|
docs/transformers/build/lib/transformers/models/chinese_clip/convert_chinese_clip_original_pytorch_to_hf.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
import argparse
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
|
| 20 |
+
from transformers import ChineseCLIPConfig, ChineseCLIPModel
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def copy_attn_layer(hf_attn_layer, pt_weights, prefix):
|
| 24 |
+
q_proj, k_proj, v_proj = pt_weights[f"{prefix}.in_proj_weight"].chunk(3, dim=0)
|
| 25 |
+
q_proj_bias, k_proj_bias, v_proj_bias = pt_weights[f"{prefix}.in_proj_bias"].chunk(3, dim=0)
|
| 26 |
+
|
| 27 |
+
out_proj_weights = pt_weights[f"{prefix}.out_proj.weight"]
|
| 28 |
+
out_proj_bias = pt_weights[f"{prefix}.out_proj.bias"]
|
| 29 |
+
|
| 30 |
+
hf_attn_layer.q_proj.weight.data = q_proj
|
| 31 |
+
hf_attn_layer.q_proj.bias.data = q_proj_bias
|
| 32 |
+
|
| 33 |
+
hf_attn_layer.k_proj.weight.data = k_proj
|
| 34 |
+
hf_attn_layer.k_proj.bias.data = k_proj_bias
|
| 35 |
+
|
| 36 |
+
hf_attn_layer.v_proj.weight.data = v_proj
|
| 37 |
+
hf_attn_layer.v_proj.bias.data = v_proj_bias
|
| 38 |
+
|
| 39 |
+
hf_attn_layer.out_proj.weight.data = out_proj_weights
|
| 40 |
+
hf_attn_layer.out_proj.bias.data = out_proj_bias
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def copy_mlp(hf_mlp, pt_weights, prefix):
|
| 44 |
+
copy_linear(hf_mlp.fc1, pt_weights, f"{prefix}.c_fc")
|
| 45 |
+
copy_linear(hf_mlp.fc2, pt_weights, f"{prefix}.c_proj")
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def copy_linear(hf_linear, pt_weights, prefix):
|
| 49 |
+
hf_linear.weight.data = pt_weights[f"{prefix}.weight"].data
|
| 50 |
+
hf_linear.bias.data = pt_weights[f"{prefix}.bias"].data
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def copy_layer(hf_layer, pt_weights, prefix):
|
| 54 |
+
# copy layer norms
|
| 55 |
+
copy_linear(hf_layer.layer_norm1, pt_weights, f"{prefix}.ln_1")
|
| 56 |
+
copy_linear(hf_layer.layer_norm2, pt_weights, f"{prefix}.ln_2")
|
| 57 |
+
|
| 58 |
+
# copy MLP
|
| 59 |
+
copy_mlp(hf_layer.mlp, pt_weights, f"{prefix}.mlp")
|
| 60 |
+
|
| 61 |
+
# copy attn
|
| 62 |
+
copy_attn_layer(hf_layer.self_attn, pt_weights, f"{prefix}.attn")
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def copy_layers(hf_layers, pt_weights, prefix):
|
| 66 |
+
for layer_id, hf_layer in enumerate(hf_layers):
|
| 67 |
+
copy_layer(hf_layer, pt_weights, f"{prefix}.{layer_id}")
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def copy_text_model_and_projection(hf_model, pt_weights):
|
| 71 |
+
# copy projection
|
| 72 |
+
hf_model.text_projection.weight.data = pt_weights["text_projection"].data.T
|
| 73 |
+
|
| 74 |
+
# copy text encoder
|
| 75 |
+
for name, param in hf_model.text_model.named_parameters():
|
| 76 |
+
param.data = pt_weights[f"bert.{name}"].data
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def copy_vision_model_and_projection(hf_model, pt_weights):
|
| 80 |
+
# copy projection
|
| 81 |
+
hf_model.visual_projection.weight.data = pt_weights["visual.proj"].data.T
|
| 82 |
+
|
| 83 |
+
# copy layer norms
|
| 84 |
+
copy_linear(hf_model.vision_model.pre_layrnorm, pt_weights, "visual.ln_pre")
|
| 85 |
+
copy_linear(hf_model.vision_model.post_layernorm, pt_weights, "visual.ln_post")
|
| 86 |
+
|
| 87 |
+
# copy embeddings
|
| 88 |
+
hf_model.vision_model.embeddings.patch_embedding.weight.data = pt_weights["visual.conv1.weight"].data
|
| 89 |
+
hf_model.vision_model.embeddings.class_embedding.data = pt_weights["visual.class_embedding"].data
|
| 90 |
+
hf_model.vision_model.embeddings.position_embedding.weight.data = pt_weights["visual.positional_embedding"].data
|
| 91 |
+
|
| 92 |
+
# copy encoder
|
| 93 |
+
copy_layers(hf_model.vision_model.encoder.layers, pt_weights, "visual.transformer.resblocks")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
@torch.no_grad()
|
| 97 |
+
def convert_chinese_clip_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path=None):
|
| 98 |
+
"""
|
| 99 |
+
Copy/paste/tweak model's weights to transformers design.
|
| 100 |
+
"""
|
| 101 |
+
|
| 102 |
+
assert config_path is not None, "Please specify the ChineseCLIP model config of the corresponding model size."
|
| 103 |
+
config = ChineseCLIPConfig.from_pretrained(config_path)
|
| 104 |
+
|
| 105 |
+
hf_model = ChineseCLIPModel(config).eval()
|
| 106 |
+
|
| 107 |
+
pt_weights = torch.load(checkpoint_path, map_location="cpu", weights_only=True)["state_dict"]
|
| 108 |
+
pt_weights = {(name[7:] if name.startswith("module.") else name): value for name, value in pt_weights.items()}
|
| 109 |
+
|
| 110 |
+
copy_text_model_and_projection(hf_model, pt_weights)
|
| 111 |
+
copy_vision_model_and_projection(hf_model, pt_weights)
|
| 112 |
+
hf_model.logit_scale.data = pt_weights["logit_scale"].data
|
| 113 |
+
|
| 114 |
+
hf_model.save_pretrained(pytorch_dump_folder_path)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
if __name__ == "__main__":
|
| 118 |
+
parser = argparse.ArgumentParser()
|
| 119 |
+
parser.add_argument(
|
| 120 |
+
"--pytorch_dump_folder_path",
|
| 121 |
+
default=None,
|
| 122 |
+
type=str,
|
| 123 |
+
help="Path to the output folder storing converted hf PyTorch model.",
|
| 124 |
+
)
|
| 125 |
+
parser.add_argument(
|
| 126 |
+
"--checkpoint_path", default=None, type=str, help="Path to original github format ChineseCLIP checkpoint."
|
| 127 |
+
)
|
| 128 |
+
parser.add_argument(
|
| 129 |
+
"--config_path", default=None, required=True, type=str, help="Path to hf config.json of model to convert."
|
| 130 |
+
)
|
| 131 |
+
args = parser.parse_args()
|
| 132 |
+
|
| 133 |
+
convert_chinese_clip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
|
| 134 |
+
print("The conversion is finished!")
|
docs/transformers/build/lib/transformers/models/chinese_clip/feature_extraction_chinese_clip.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2021 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""Feature extractor class for Chinese-CLIP."""
|
| 16 |
+
|
| 17 |
+
import warnings
|
| 18 |
+
|
| 19 |
+
from ...utils import logging
|
| 20 |
+
from ...utils.import_utils import requires
|
| 21 |
+
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
logger = logging.get_logger(__name__)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
@requires(backends=("vision",))
|
| 28 |
+
class ChineseCLIPFeatureExtractor(ChineseCLIPImageProcessor):
|
| 29 |
+
def __init__(self, *args, **kwargs) -> None:
|
| 30 |
+
warnings.warn(
|
| 31 |
+
"The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
|
| 32 |
+
" Please use ChineseCLIPImageProcessor instead.",
|
| 33 |
+
FutureWarning,
|
| 34 |
+
)
|
| 35 |
+
super().__init__(*args, **kwargs)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
__all__ = ["ChineseCLIPFeatureExtractor"]
|
docs/transformers/build/lib/transformers/models/chinese_clip/image_processing_chinese_clip.py
ADDED
|
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""Image processor class for Chinese-CLIP."""
|
| 16 |
+
|
| 17 |
+
from typing import Dict, List, Optional, Union
|
| 18 |
+
|
| 19 |
+
import numpy as np
|
| 20 |
+
|
| 21 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
| 22 |
+
from ...image_transforms import (
|
| 23 |
+
convert_to_rgb,
|
| 24 |
+
get_resize_output_image_size,
|
| 25 |
+
resize,
|
| 26 |
+
to_channel_dimension_format,
|
| 27 |
+
)
|
| 28 |
+
from ...image_utils import (
|
| 29 |
+
OPENAI_CLIP_MEAN,
|
| 30 |
+
OPENAI_CLIP_STD,
|
| 31 |
+
ChannelDimension,
|
| 32 |
+
ImageInput,
|
| 33 |
+
PILImageResampling,
|
| 34 |
+
infer_channel_dimension_format,
|
| 35 |
+
is_scaled_image,
|
| 36 |
+
make_list_of_images,
|
| 37 |
+
to_numpy_array,
|
| 38 |
+
valid_images,
|
| 39 |
+
validate_preprocess_arguments,
|
| 40 |
+
)
|
| 41 |
+
from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
if is_vision_available():
|
| 45 |
+
import PIL
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
from ...utils.import_utils import requires
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
logger = logging.get_logger(__name__)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
@requires(backends=("vision",))
|
| 55 |
+
class ChineseCLIPImageProcessor(BaseImageProcessor):
|
| 56 |
+
r"""
|
| 57 |
+
Constructs a Chinese-CLIP image processor.
|
| 58 |
+
|
| 59 |
+
Args:
|
| 60 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
| 61 |
+
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
|
| 62 |
+
`do_resize` in the `preprocess` method.
|
| 63 |
+
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
|
| 64 |
+
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
|
| 65 |
+
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
|
| 66 |
+
method.
|
| 67 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
| 68 |
+
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
|
| 69 |
+
do_center_crop (`bool`, *optional*, defaults to `True`):
|
| 70 |
+
Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
|
| 71 |
+
`preprocess` method.
|
| 72 |
+
crop_size (`Dict[str, int]` *optional*, defaults to 224):
|
| 73 |
+
Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
|
| 74 |
+
method.
|
| 75 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
| 76 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
|
| 77 |
+
the `preprocess` method.
|
| 78 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
| 79 |
+
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
|
| 80 |
+
method.
|
| 81 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
| 82 |
+
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
|
| 83 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
|
| 84 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
| 85 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
| 86 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
|
| 87 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
| 88 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
| 89 |
+
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
| 90 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
| 91 |
+
Whether to convert the image to RGB.
|
| 92 |
+
"""
|
| 93 |
+
|
| 94 |
+
model_input_names = ["pixel_values"]
|
| 95 |
+
|
| 96 |
+
def __init__(
|
| 97 |
+
self,
|
| 98 |
+
do_resize: bool = True,
|
| 99 |
+
size: Dict[str, int] = None,
|
| 100 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
| 101 |
+
do_center_crop: bool = True,
|
| 102 |
+
crop_size: Dict[str, int] = None,
|
| 103 |
+
do_rescale: bool = True,
|
| 104 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
| 105 |
+
do_normalize: bool = True,
|
| 106 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 107 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 108 |
+
do_convert_rgb: bool = True,
|
| 109 |
+
**kwargs,
|
| 110 |
+
) -> None:
|
| 111 |
+
super().__init__(**kwargs)
|
| 112 |
+
size = size if size is not None else {"shortest_edge": 224}
|
| 113 |
+
size = get_size_dict(size, default_to_square=False)
|
| 114 |
+
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
|
| 115 |
+
crop_size = get_size_dict(crop_size)
|
| 116 |
+
|
| 117 |
+
self.do_resize = do_resize
|
| 118 |
+
self.size = size
|
| 119 |
+
self.resample = resample
|
| 120 |
+
self.do_center_crop = do_center_crop
|
| 121 |
+
self.crop_size = crop_size
|
| 122 |
+
self.do_rescale = do_rescale
|
| 123 |
+
self.rescale_factor = rescale_factor
|
| 124 |
+
self.do_normalize = do_normalize
|
| 125 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
| 126 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
| 127 |
+
self.do_convert_rgb = do_convert_rgb
|
| 128 |
+
|
| 129 |
+
def resize(
|
| 130 |
+
self,
|
| 131 |
+
image: np.ndarray,
|
| 132 |
+
size: Dict[str, int],
|
| 133 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
| 134 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 135 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 136 |
+
**kwargs,
|
| 137 |
+
) -> np.ndarray:
|
| 138 |
+
"""
|
| 139 |
+
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
|
| 140 |
+
resized to keep the input aspect ratio.
|
| 141 |
+
|
| 142 |
+
Args:
|
| 143 |
+
image (`np.ndarray`):
|
| 144 |
+
Image to resize.
|
| 145 |
+
size (`Dict[str, int]`):
|
| 146 |
+
Size of the output image.
|
| 147 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
| 148 |
+
Resampling filter to use when resiizing the image.
|
| 149 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
| 150 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
| 151 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 152 |
+
The channel dimension format of the input image. If not provided, it will be inferred from the input
|
| 153 |
+
image.
|
| 154 |
+
"""
|
| 155 |
+
size = get_size_dict(size, default_to_square=False)
|
| 156 |
+
output_size = get_resize_output_image_size(
|
| 157 |
+
image, size=(size["height"], size["width"]), default_to_square=False, input_data_format=input_data_format
|
| 158 |
+
)
|
| 159 |
+
return resize(
|
| 160 |
+
image,
|
| 161 |
+
size=output_size,
|
| 162 |
+
resample=resample,
|
| 163 |
+
data_format=data_format,
|
| 164 |
+
input_data_format=input_data_format,
|
| 165 |
+
**kwargs,
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
@filter_out_non_signature_kwargs()
|
| 169 |
+
def preprocess(
|
| 170 |
+
self,
|
| 171 |
+
images: ImageInput,
|
| 172 |
+
do_resize: Optional[bool] = None,
|
| 173 |
+
size: Dict[str, int] = None,
|
| 174 |
+
resample: PILImageResampling = None,
|
| 175 |
+
do_center_crop: Optional[bool] = None,
|
| 176 |
+
crop_size: Optional[int] = None,
|
| 177 |
+
do_rescale: Optional[bool] = None,
|
| 178 |
+
rescale_factor: Optional[float] = None,
|
| 179 |
+
do_normalize: Optional[bool] = None,
|
| 180 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 181 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 182 |
+
do_convert_rgb: Optional[bool] = None,
|
| 183 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 184 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 185 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 186 |
+
) -> PIL.Image.Image:
|
| 187 |
+
"""
|
| 188 |
+
Preprocess an image or batch of images.
|
| 189 |
+
|
| 190 |
+
Args:
|
| 191 |
+
images (`ImageInput`):
|
| 192 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
| 193 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
| 194 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
| 195 |
+
Whether to resize the image.
|
| 196 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
| 197 |
+
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
|
| 198 |
+
the longest edge resized to keep the input aspect ratio.
|
| 199 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
| 200 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
| 201 |
+
has an effect if `do_resize` is set to `True`.
|
| 202 |
+
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
|
| 203 |
+
Whether to center crop the image.
|
| 204 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
|
| 205 |
+
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
|
| 206 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
| 207 |
+
Whether to rescale the image.
|
| 208 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 209 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
| 210 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 211 |
+
Whether to normalize the image.
|
| 212 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 213 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
| 214 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 215 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
| 216 |
+
`True`.
|
| 217 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
| 218 |
+
Whether to convert the image to RGB.
|
| 219 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
| 220 |
+
The type of tensors to return. Can be one of:
|
| 221 |
+
- Unset: Return a list of `np.ndarray`.
|
| 222 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
| 223 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
| 224 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
| 225 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
| 226 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
| 227 |
+
The channel dimension format for the output image. Can be one of:
|
| 228 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 229 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 230 |
+
- Unset: Use the channel dimension format of the input image.
|
| 231 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 232 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
| 233 |
+
from the input image. Can be one of:
|
| 234 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 235 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 236 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 237 |
+
"""
|
| 238 |
+
|
| 239 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
| 240 |
+
size = size if size is not None else self.size
|
| 241 |
+
size = get_size_dict(size, default_to_square=False)
|
| 242 |
+
resample = resample if resample is not None else self.resample
|
| 243 |
+
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
|
| 244 |
+
crop_size = crop_size if crop_size is not None else self.crop_size
|
| 245 |
+
crop_size = get_size_dict(crop_size)
|
| 246 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
| 247 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
| 248 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
| 249 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
| 250 |
+
image_std = image_std if image_std is not None else self.image_std
|
| 251 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
| 252 |
+
|
| 253 |
+
images = make_list_of_images(images)
|
| 254 |
+
|
| 255 |
+
if not valid_images(images):
|
| 256 |
+
raise ValueError(
|
| 257 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
| 258 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
| 259 |
+
)
|
| 260 |
+
validate_preprocess_arguments(
|
| 261 |
+
do_rescale=do_rescale,
|
| 262 |
+
rescale_factor=rescale_factor,
|
| 263 |
+
do_normalize=do_normalize,
|
| 264 |
+
image_mean=image_mean,
|
| 265 |
+
image_std=image_std,
|
| 266 |
+
do_center_crop=do_center_crop,
|
| 267 |
+
crop_size=crop_size,
|
| 268 |
+
do_resize=do_resize,
|
| 269 |
+
size=size,
|
| 270 |
+
resample=resample,
|
| 271 |
+
)
|
| 272 |
+
if do_convert_rgb:
|
| 273 |
+
images = [convert_to_rgb(image) for image in images]
|
| 274 |
+
|
| 275 |
+
# All transformations expect numpy arrays.
|
| 276 |
+
images = [to_numpy_array(image) for image in images]
|
| 277 |
+
|
| 278 |
+
if do_rescale and is_scaled_image(images[0]):
|
| 279 |
+
logger.warning_once(
|
| 280 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
| 281 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
if input_data_format is None:
|
| 285 |
+
# We assume that all images have the same channel dimension format.
|
| 286 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
| 287 |
+
|
| 288 |
+
all_images = []
|
| 289 |
+
for image in images:
|
| 290 |
+
if do_resize:
|
| 291 |
+
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
|
| 292 |
+
|
| 293 |
+
if do_center_crop:
|
| 294 |
+
image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)
|
| 295 |
+
|
| 296 |
+
if do_rescale:
|
| 297 |
+
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
| 298 |
+
|
| 299 |
+
if do_normalize:
|
| 300 |
+
image = self.normalize(
|
| 301 |
+
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
all_images.append(image)
|
| 305 |
+
images = [
|
| 306 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
| 307 |
+
for image in all_images
|
| 308 |
+
]
|
| 309 |
+
|
| 310 |
+
data = {"pixel_values": images}
|
| 311 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
__all__ = ["ChineseCLIPImageProcessor"]
|
docs/transformers/build/lib/transformers/models/chinese_clip/image_processing_chinese_clip_fast.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2025 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""Fast Image processor class for Chinese-CLIP."""
|
| 16 |
+
|
| 17 |
+
from ...image_processing_utils_fast import BASE_IMAGE_PROCESSOR_FAST_DOCSTRING, BaseImageProcessorFast
|
| 18 |
+
from ...image_utils import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, PILImageResampling
|
| 19 |
+
from ...utils import add_start_docstrings
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
@add_start_docstrings(
|
| 23 |
+
"Constructs a fast ChineseCLIP image processor.",
|
| 24 |
+
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING,
|
| 25 |
+
)
|
| 26 |
+
class ChineseCLIPImageProcessorFast(BaseImageProcessorFast):
|
| 27 |
+
resample = PILImageResampling.BICUBIC
|
| 28 |
+
image_mean = OPENAI_CLIP_MEAN
|
| 29 |
+
image_std = OPENAI_CLIP_STD
|
| 30 |
+
size = {"shortest_edge": 224}
|
| 31 |
+
default_to_square = False
|
| 32 |
+
crop_size = {"height": 224, "width": 224}
|
| 33 |
+
do_resize = True
|
| 34 |
+
do_center_crop = True
|
| 35 |
+
do_rescale = True
|
| 36 |
+
do_normalize = True
|
| 37 |
+
do_convert_rgb = True
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
__all__ = ["ChineseCLIPImageProcessorFast"]
|
docs/transformers/build/lib/transformers/models/chinese_clip/modeling_chinese_clip.py
ADDED
|
@@ -0,0 +1,1630 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""PyTorch Chinese-CLIP model."""
|
| 16 |
+
|
| 17 |
+
import math
|
| 18 |
+
from dataclasses import dataclass
|
| 19 |
+
from typing import Any, List, Optional, Tuple, Union
|
| 20 |
+
|
| 21 |
+
import torch
|
| 22 |
+
import torch.utils.checkpoint
|
| 23 |
+
from torch import nn
|
| 24 |
+
|
| 25 |
+
from ...activations import ACT2FN
|
| 26 |
+
from ...modeling_outputs import (
|
| 27 |
+
BaseModelOutput,
|
| 28 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 29 |
+
BaseModelOutputWithPooling,
|
| 30 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
| 31 |
+
)
|
| 32 |
+
from ...modeling_utils import PreTrainedModel
|
| 33 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
| 34 |
+
from ...utils import (
|
| 35 |
+
ModelOutput,
|
| 36 |
+
add_code_sample_docstrings,
|
| 37 |
+
add_start_docstrings,
|
| 38 |
+
add_start_docstrings_to_model_forward,
|
| 39 |
+
logging,
|
| 40 |
+
replace_return_docstrings,
|
| 41 |
+
torch_int,
|
| 42 |
+
)
|
| 43 |
+
from .configuration_chinese_clip import ChineseCLIPConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
logger = logging.get_logger(__name__)
|
| 47 |
+
|
| 48 |
+
_CHECKPOINT_FOR_DOC = "OFA-Sys/chinese-clip-vit-base-patch16"
|
| 49 |
+
_CONFIG_FOR_DOC = "ChineseCLIPConfig"
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
|
| 53 |
+
# Copied from transformers.models.clip.modeling_clip.contrastive_loss
|
| 54 |
+
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
| 55 |
+
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def chinese_clip_loss(similarity: torch.Tensor) -> torch.Tensor:
|
| 59 |
+
caption_loss = contrastive_loss(similarity)
|
| 60 |
+
image_loss = contrastive_loss(similarity.t())
|
| 61 |
+
return (caption_loss + image_loss) / 2.0
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
@dataclass
|
| 65 |
+
class ChineseCLIPOutput(ModelOutput):
|
| 66 |
+
"""
|
| 67 |
+
Args:
|
| 68 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
| 69 |
+
Contrastive loss for image-text similarity.
|
| 70 |
+
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
| 71 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
| 72 |
+
similarity scores.
|
| 73 |
+
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
| 74 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
| 75 |
+
similarity scores.
|
| 76 |
+
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
| 77 |
+
The text embeddings obtained by applying the projection layer to the pooled output of
|
| 78 |
+
[`ChineseCLIPTextModel`].
|
| 79 |
+
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
| 80 |
+
The image embeddings obtained by applying the projection layer to the pooled output of
|
| 81 |
+
[`ChineseCLIPVisionModel`].
|
| 82 |
+
text_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`):
|
| 83 |
+
The output of the [`ChineseCLIPTextModel`].
|
| 84 |
+
vision_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`):
|
| 85 |
+
The output of the [`ChineseCLIPVisionModel`].
|
| 86 |
+
"""
|
| 87 |
+
|
| 88 |
+
loss: Optional[torch.FloatTensor] = None
|
| 89 |
+
logits_per_image: Optional[torch.FloatTensor] = None
|
| 90 |
+
logits_per_text: Optional[torch.FloatTensor] = None
|
| 91 |
+
text_embeds: Optional[torch.FloatTensor] = None
|
| 92 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
| 93 |
+
text_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None
|
| 94 |
+
vision_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None
|
| 95 |
+
|
| 96 |
+
def to_tuple(self) -> Tuple[Any]:
|
| 97 |
+
return tuple(
|
| 98 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
| 99 |
+
for k in self.keys()
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert->ChineseCLIPText
|
| 104 |
+
class ChineseCLIPTextEmbeddings(nn.Module):
|
| 105 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
| 106 |
+
|
| 107 |
+
def __init__(self, config):
|
| 108 |
+
super().__init__()
|
| 109 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
| 110 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
| 111 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
| 112 |
+
|
| 113 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
| 114 |
+
# any TensorFlow checkpoint file
|
| 115 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 116 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 117 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
| 118 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
| 119 |
+
self.register_buffer(
|
| 120 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
| 121 |
+
)
|
| 122 |
+
self.register_buffer(
|
| 123 |
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
def forward(
|
| 127 |
+
self,
|
| 128 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 129 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 130 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 131 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 132 |
+
past_key_values_length: int = 0,
|
| 133 |
+
) -> torch.Tensor:
|
| 134 |
+
if input_ids is not None:
|
| 135 |
+
input_shape = input_ids.size()
|
| 136 |
+
else:
|
| 137 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 138 |
+
|
| 139 |
+
seq_length = input_shape[1]
|
| 140 |
+
|
| 141 |
+
if position_ids is None:
|
| 142 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
| 143 |
+
|
| 144 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
| 145 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
| 146 |
+
# issue #5664
|
| 147 |
+
if token_type_ids is None:
|
| 148 |
+
if hasattr(self, "token_type_ids"):
|
| 149 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
| 150 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
| 151 |
+
token_type_ids = buffered_token_type_ids_expanded
|
| 152 |
+
else:
|
| 153 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
| 154 |
+
|
| 155 |
+
if inputs_embeds is None:
|
| 156 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 157 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
| 158 |
+
|
| 159 |
+
embeddings = inputs_embeds + token_type_embeddings
|
| 160 |
+
if self.position_embedding_type == "absolute":
|
| 161 |
+
position_embeddings = self.position_embeddings(position_ids)
|
| 162 |
+
embeddings += position_embeddings
|
| 163 |
+
embeddings = self.LayerNorm(embeddings)
|
| 164 |
+
embeddings = self.dropout(embeddings)
|
| 165 |
+
return embeddings
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->ChineseCLIP
|
| 169 |
+
class ChineseCLIPVisionEmbeddings(nn.Module):
|
| 170 |
+
def __init__(self, config: ChineseCLIPVisionConfig):
|
| 171 |
+
super().__init__()
|
| 172 |
+
self.config = config
|
| 173 |
+
self.embed_dim = config.hidden_size
|
| 174 |
+
self.image_size = config.image_size
|
| 175 |
+
self.patch_size = config.patch_size
|
| 176 |
+
|
| 177 |
+
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
| 178 |
+
|
| 179 |
+
self.patch_embedding = nn.Conv2d(
|
| 180 |
+
in_channels=config.num_channels,
|
| 181 |
+
out_channels=self.embed_dim,
|
| 182 |
+
kernel_size=self.patch_size,
|
| 183 |
+
stride=self.patch_size,
|
| 184 |
+
bias=False,
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
| 188 |
+
self.num_positions = self.num_patches + 1
|
| 189 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
| 190 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
| 191 |
+
|
| 192 |
+
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
| 193 |
+
"""
|
| 194 |
+
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
|
| 195 |
+
images. This method is also adapted to support torch.jit tracing.
|
| 196 |
+
|
| 197 |
+
Adapted from:
|
| 198 |
+
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
|
| 199 |
+
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
|
| 200 |
+
"""
|
| 201 |
+
|
| 202 |
+
num_patches = embeddings.shape[1] - 1
|
| 203 |
+
position_embedding = self.position_embedding.weight.unsqueeze(0)
|
| 204 |
+
num_positions = position_embedding.shape[1] - 1
|
| 205 |
+
|
| 206 |
+
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
|
| 207 |
+
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
|
| 208 |
+
return self.position_embedding(self.position_ids)
|
| 209 |
+
|
| 210 |
+
class_pos_embed = position_embedding[:, :1]
|
| 211 |
+
patch_pos_embed = position_embedding[:, 1:]
|
| 212 |
+
|
| 213 |
+
dim = embeddings.shape[-1]
|
| 214 |
+
|
| 215 |
+
new_height = height // self.patch_size
|
| 216 |
+
new_width = width // self.patch_size
|
| 217 |
+
|
| 218 |
+
sqrt_num_positions = torch_int(num_positions**0.5)
|
| 219 |
+
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
|
| 220 |
+
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
|
| 221 |
+
|
| 222 |
+
patch_pos_embed = nn.functional.interpolate(
|
| 223 |
+
patch_pos_embed,
|
| 224 |
+
size=(new_height, new_width),
|
| 225 |
+
mode="bicubic",
|
| 226 |
+
align_corners=False,
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
| 230 |
+
|
| 231 |
+
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
|
| 232 |
+
|
| 233 |
+
def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding=False) -> torch.Tensor:
|
| 234 |
+
batch_size, _, height, width = pixel_values.shape
|
| 235 |
+
if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size):
|
| 236 |
+
raise ValueError(
|
| 237 |
+
f"Input image size ({height}*{width}) doesn't match model ({self.image_size}*{self.image_size})."
|
| 238 |
+
)
|
| 239 |
+
target_dtype = self.patch_embedding.weight.dtype
|
| 240 |
+
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
| 241 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
| 242 |
+
|
| 243 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
| 244 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
| 245 |
+
if interpolate_pos_encoding:
|
| 246 |
+
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
| 247 |
+
else:
|
| 248 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
| 249 |
+
return embeddings
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->ChineseCLIPText
|
| 253 |
+
class ChineseCLIPTextSelfAttention(nn.Module):
|
| 254 |
+
def __init__(self, config, position_embedding_type=None):
|
| 255 |
+
super().__init__()
|
| 256 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
| 257 |
+
raise ValueError(
|
| 258 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
| 259 |
+
f"heads ({config.num_attention_heads})"
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
self.num_attention_heads = config.num_attention_heads
|
| 263 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
| 264 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
| 265 |
+
|
| 266 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
| 267 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
| 268 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
| 269 |
+
|
| 270 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 271 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
| 272 |
+
config, "position_embedding_type", "absolute"
|
| 273 |
+
)
|
| 274 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
| 275 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 276 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
| 277 |
+
|
| 278 |
+
self.is_decoder = config.is_decoder
|
| 279 |
+
|
| 280 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
| 281 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
| 282 |
+
x = x.view(new_x_shape)
|
| 283 |
+
return x.permute(0, 2, 1, 3)
|
| 284 |
+
|
| 285 |
+
def forward(
|
| 286 |
+
self,
|
| 287 |
+
hidden_states: torch.Tensor,
|
| 288 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 289 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 290 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 291 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 292 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 293 |
+
output_attentions: Optional[bool] = False,
|
| 294 |
+
) -> Tuple[torch.Tensor]:
|
| 295 |
+
mixed_query_layer = self.query(hidden_states)
|
| 296 |
+
|
| 297 |
+
# If this is instantiated as a cross-attention module, the keys
|
| 298 |
+
# and values come from an encoder; the attention mask needs to be
|
| 299 |
+
# such that the encoder's padding tokens are not attended to.
|
| 300 |
+
is_cross_attention = encoder_hidden_states is not None
|
| 301 |
+
|
| 302 |
+
if is_cross_attention and past_key_value is not None:
|
| 303 |
+
# reuse k,v, cross_attentions
|
| 304 |
+
key_layer = past_key_value[0]
|
| 305 |
+
value_layer = past_key_value[1]
|
| 306 |
+
attention_mask = encoder_attention_mask
|
| 307 |
+
elif is_cross_attention:
|
| 308 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
| 309 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
| 310 |
+
attention_mask = encoder_attention_mask
|
| 311 |
+
elif past_key_value is not None:
|
| 312 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
| 313 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
| 314 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
| 315 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
| 316 |
+
else:
|
| 317 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
| 318 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
| 319 |
+
|
| 320 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
| 321 |
+
|
| 322 |
+
use_cache = past_key_value is not None
|
| 323 |
+
if self.is_decoder:
|
| 324 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
| 325 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
| 326 |
+
# key/value_states (first "if" case)
|
| 327 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
| 328 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
| 329 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
| 330 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
| 331 |
+
past_key_value = (key_layer, value_layer)
|
| 332 |
+
|
| 333 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
| 334 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
| 335 |
+
|
| 336 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
| 337 |
+
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
|
| 338 |
+
if use_cache:
|
| 339 |
+
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
|
| 340 |
+
-1, 1
|
| 341 |
+
)
|
| 342 |
+
else:
|
| 343 |
+
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
| 344 |
+
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
| 345 |
+
distance = position_ids_l - position_ids_r
|
| 346 |
+
|
| 347 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
| 348 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
| 349 |
+
|
| 350 |
+
if self.position_embedding_type == "relative_key":
|
| 351 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
| 352 |
+
attention_scores = attention_scores + relative_position_scores
|
| 353 |
+
elif self.position_embedding_type == "relative_key_query":
|
| 354 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
| 355 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
| 356 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
| 357 |
+
|
| 358 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
| 359 |
+
if attention_mask is not None:
|
| 360 |
+
# Apply the attention mask is (precomputed for all layers in ChineseCLIPTextModel forward() function)
|
| 361 |
+
attention_scores = attention_scores + attention_mask
|
| 362 |
+
|
| 363 |
+
# Normalize the attention scores to probabilities.
|
| 364 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
| 365 |
+
|
| 366 |
+
# This is actually dropping out entire tokens to attend to, which might
|
| 367 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
| 368 |
+
attention_probs = self.dropout(attention_probs)
|
| 369 |
+
|
| 370 |
+
# Mask heads if we want to
|
| 371 |
+
if head_mask is not None:
|
| 372 |
+
attention_probs = attention_probs * head_mask
|
| 373 |
+
|
| 374 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
| 375 |
+
|
| 376 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
| 377 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
| 378 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
| 379 |
+
|
| 380 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
| 381 |
+
|
| 382 |
+
if self.is_decoder:
|
| 383 |
+
outputs = outputs + (past_key_value,)
|
| 384 |
+
return outputs
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->ChineseCLIPText
|
| 388 |
+
class ChineseCLIPTextSelfOutput(nn.Module):
|
| 389 |
+
def __init__(self, config):
|
| 390 |
+
super().__init__()
|
| 391 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 392 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 393 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 394 |
+
|
| 395 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
| 396 |
+
hidden_states = self.dense(hidden_states)
|
| 397 |
+
hidden_states = self.dropout(hidden_states)
|
| 398 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 399 |
+
return hidden_states
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
CHINESE_CLIP_TEXT_SELF_ATTENTION_CLASSES = {
|
| 403 |
+
"eager": ChineseCLIPTextSelfAttention,
|
| 404 |
+
}
|
| 405 |
+
|
| 406 |
+
|
| 407 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->ChineseCLIPText,BERT->CHINESE_CLIP_TEXT
|
| 408 |
+
class ChineseCLIPTextAttention(nn.Module):
|
| 409 |
+
def __init__(self, config, position_embedding_type=None):
|
| 410 |
+
super().__init__()
|
| 411 |
+
self.self = CHINESE_CLIP_TEXT_SELF_ATTENTION_CLASSES[config._attn_implementation](
|
| 412 |
+
config, position_embedding_type=position_embedding_type
|
| 413 |
+
)
|
| 414 |
+
self.output = ChineseCLIPTextSelfOutput(config)
|
| 415 |
+
self.pruned_heads = set()
|
| 416 |
+
|
| 417 |
+
def prune_heads(self, heads):
|
| 418 |
+
if len(heads) == 0:
|
| 419 |
+
return
|
| 420 |
+
heads, index = find_pruneable_heads_and_indices(
|
| 421 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
# Prune linear layers
|
| 425 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
| 426 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
| 427 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
| 428 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
| 429 |
+
|
| 430 |
+
# Update hyper params and store pruned heads
|
| 431 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
| 432 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
| 433 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
| 434 |
+
|
| 435 |
+
def forward(
|
| 436 |
+
self,
|
| 437 |
+
hidden_states: torch.Tensor,
|
| 438 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 439 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 440 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 441 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 442 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 443 |
+
output_attentions: Optional[bool] = False,
|
| 444 |
+
) -> Tuple[torch.Tensor]:
|
| 445 |
+
self_outputs = self.self(
|
| 446 |
+
hidden_states,
|
| 447 |
+
attention_mask,
|
| 448 |
+
head_mask,
|
| 449 |
+
encoder_hidden_states,
|
| 450 |
+
encoder_attention_mask,
|
| 451 |
+
past_key_value,
|
| 452 |
+
output_attentions,
|
| 453 |
+
)
|
| 454 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
| 455 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
| 456 |
+
return outputs
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
class ChineseCLIPVisionAttention(nn.Module):
|
| 460 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 461 |
+
|
| 462 |
+
def __init__(self, config):
|
| 463 |
+
super().__init__()
|
| 464 |
+
self.config = config
|
| 465 |
+
self.embed_dim = config.hidden_size
|
| 466 |
+
self.num_heads = config.num_attention_heads
|
| 467 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 468 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 469 |
+
raise ValueError(
|
| 470 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
| 471 |
+
f" {self.num_heads})."
|
| 472 |
+
)
|
| 473 |
+
self.scale = self.head_dim**-0.5
|
| 474 |
+
self.dropout = config.attention_dropout
|
| 475 |
+
|
| 476 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 477 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 478 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 479 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 480 |
+
|
| 481 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 482 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 483 |
+
|
| 484 |
+
def forward(
|
| 485 |
+
self,
|
| 486 |
+
hidden_states: torch.Tensor,
|
| 487 |
+
output_attentions: Optional[bool] = False,
|
| 488 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 489 |
+
"""Input shape: Batch x Time x Channel"""
|
| 490 |
+
|
| 491 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
| 492 |
+
|
| 493 |
+
# get query proj
|
| 494 |
+
query_states = self.q_proj(hidden_states) * self.scale
|
| 495 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
| 496 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
| 497 |
+
|
| 498 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
| 499 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
| 500 |
+
key_states = key_states.view(*proj_shape)
|
| 501 |
+
value_states = value_states.view(*proj_shape)
|
| 502 |
+
|
| 503 |
+
src_len = key_states.size(1)
|
| 504 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
| 505 |
+
|
| 506 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
| 507 |
+
raise ValueError(
|
| 508 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
| 509 |
+
f" {attn_weights.size()}"
|
| 510 |
+
)
|
| 511 |
+
|
| 512 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
| 513 |
+
|
| 514 |
+
if output_attentions:
|
| 515 |
+
# this operation is a bit akward, but it's required to
|
| 516 |
+
# make sure that attn_weights keeps its gradient.
|
| 517 |
+
# In order to do so, attn_weights have to reshaped
|
| 518 |
+
# twice and have to be reused in the following
|
| 519 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
| 520 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
| 521 |
+
else:
|
| 522 |
+
attn_weights_reshaped = None
|
| 523 |
+
|
| 524 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
| 525 |
+
|
| 526 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
| 527 |
+
|
| 528 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
| 529 |
+
raise ValueError(
|
| 530 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
| 531 |
+
f" {attn_output.size()}"
|
| 532 |
+
)
|
| 533 |
+
|
| 534 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
| 535 |
+
attn_output = attn_output.transpose(1, 2)
|
| 536 |
+
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
| 537 |
+
|
| 538 |
+
attn_output = self.out_proj(attn_output)
|
| 539 |
+
|
| 540 |
+
return attn_output, attn_weights_reshaped
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->ChineseCLIPText
|
| 544 |
+
class ChineseCLIPTextIntermediate(nn.Module):
|
| 545 |
+
def __init__(self, config):
|
| 546 |
+
super().__init__()
|
| 547 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 548 |
+
if isinstance(config.hidden_act, str):
|
| 549 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
| 550 |
+
else:
|
| 551 |
+
self.intermediate_act_fn = config.hidden_act
|
| 552 |
+
|
| 553 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 554 |
+
hidden_states = self.dense(hidden_states)
|
| 555 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
| 556 |
+
return hidden_states
|
| 557 |
+
|
| 558 |
+
|
| 559 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->ChineseCLIPText
|
| 560 |
+
class ChineseCLIPTextOutput(nn.Module):
|
| 561 |
+
def __init__(self, config):
|
| 562 |
+
super().__init__()
|
| 563 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 564 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 565 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 566 |
+
|
| 567 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
| 568 |
+
hidden_states = self.dense(hidden_states)
|
| 569 |
+
hidden_states = self.dropout(hidden_states)
|
| 570 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 571 |
+
return hidden_states
|
| 572 |
+
|
| 573 |
+
|
| 574 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->ChineseCLIPVision
|
| 575 |
+
class ChineseCLIPVisionMLP(nn.Module):
|
| 576 |
+
def __init__(self, config):
|
| 577 |
+
super().__init__()
|
| 578 |
+
self.config = config
|
| 579 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
| 580 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 581 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 582 |
+
|
| 583 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 584 |
+
hidden_states = self.fc1(hidden_states)
|
| 585 |
+
hidden_states = self.activation_fn(hidden_states)
|
| 586 |
+
hidden_states = self.fc2(hidden_states)
|
| 587 |
+
return hidden_states
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->ChineseCLIPText
|
| 591 |
+
class ChineseCLIPTextLayer(nn.Module):
|
| 592 |
+
def __init__(self, config):
|
| 593 |
+
super().__init__()
|
| 594 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
| 595 |
+
self.seq_len_dim = 1
|
| 596 |
+
self.attention = ChineseCLIPTextAttention(config)
|
| 597 |
+
self.is_decoder = config.is_decoder
|
| 598 |
+
self.add_cross_attention = config.add_cross_attention
|
| 599 |
+
if self.add_cross_attention:
|
| 600 |
+
if not self.is_decoder:
|
| 601 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
| 602 |
+
self.crossattention = ChineseCLIPTextAttention(config, position_embedding_type="absolute")
|
| 603 |
+
self.intermediate = ChineseCLIPTextIntermediate(config)
|
| 604 |
+
self.output = ChineseCLIPTextOutput(config)
|
| 605 |
+
|
| 606 |
+
def forward(
|
| 607 |
+
self,
|
| 608 |
+
hidden_states: torch.Tensor,
|
| 609 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 610 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 611 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 612 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 613 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 614 |
+
output_attentions: Optional[bool] = False,
|
| 615 |
+
) -> Tuple[torch.Tensor]:
|
| 616 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
| 617 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
| 618 |
+
self_attention_outputs = self.attention(
|
| 619 |
+
hidden_states,
|
| 620 |
+
attention_mask,
|
| 621 |
+
head_mask,
|
| 622 |
+
output_attentions=output_attentions,
|
| 623 |
+
past_key_value=self_attn_past_key_value,
|
| 624 |
+
)
|
| 625 |
+
attention_output = self_attention_outputs[0]
|
| 626 |
+
|
| 627 |
+
# if decoder, the last output is tuple of self-attn cache
|
| 628 |
+
if self.is_decoder:
|
| 629 |
+
outputs = self_attention_outputs[1:-1]
|
| 630 |
+
present_key_value = self_attention_outputs[-1]
|
| 631 |
+
else:
|
| 632 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
| 633 |
+
|
| 634 |
+
cross_attn_present_key_value = None
|
| 635 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
| 636 |
+
if not hasattr(self, "crossattention"):
|
| 637 |
+
raise ValueError(
|
| 638 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
| 639 |
+
" by setting `config.add_cross_attention=True`"
|
| 640 |
+
)
|
| 641 |
+
|
| 642 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
| 643 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
| 644 |
+
cross_attention_outputs = self.crossattention(
|
| 645 |
+
attention_output,
|
| 646 |
+
attention_mask,
|
| 647 |
+
head_mask,
|
| 648 |
+
encoder_hidden_states,
|
| 649 |
+
encoder_attention_mask,
|
| 650 |
+
cross_attn_past_key_value,
|
| 651 |
+
output_attentions,
|
| 652 |
+
)
|
| 653 |
+
attention_output = cross_attention_outputs[0]
|
| 654 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
| 655 |
+
|
| 656 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
| 657 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
| 658 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
| 659 |
+
|
| 660 |
+
layer_output = apply_chunking_to_forward(
|
| 661 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
| 662 |
+
)
|
| 663 |
+
outputs = (layer_output,) + outputs
|
| 664 |
+
|
| 665 |
+
# if decoder, return the attn key/values as the last output
|
| 666 |
+
if self.is_decoder:
|
| 667 |
+
outputs = outputs + (present_key_value,)
|
| 668 |
+
|
| 669 |
+
return outputs
|
| 670 |
+
|
| 671 |
+
def feed_forward_chunk(self, attention_output):
|
| 672 |
+
intermediate_output = self.intermediate(attention_output)
|
| 673 |
+
layer_output = self.output(intermediate_output, attention_output)
|
| 674 |
+
return layer_output
|
| 675 |
+
|
| 676 |
+
|
| 677 |
+
class ChineseCLIPVisionLayer(nn.Module):
|
| 678 |
+
def __init__(self, config: ChineseCLIPConfig):
|
| 679 |
+
super().__init__()
|
| 680 |
+
self.embed_dim = config.hidden_size
|
| 681 |
+
self.self_attn = ChineseCLIPVisionAttention(config)
|
| 682 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 683 |
+
self.mlp = ChineseCLIPVisionMLP(config)
|
| 684 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 685 |
+
|
| 686 |
+
def forward(
|
| 687 |
+
self,
|
| 688 |
+
hidden_states: torch.Tensor,
|
| 689 |
+
output_attentions: Optional[bool] = False,
|
| 690 |
+
) -> Tuple[torch.FloatTensor]:
|
| 691 |
+
"""
|
| 692 |
+
Args:
|
| 693 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 694 |
+
output_attentions (`bool`, *optional*):
|
| 695 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 696 |
+
returned tensors for more detail.
|
| 697 |
+
"""
|
| 698 |
+
residual = hidden_states
|
| 699 |
+
|
| 700 |
+
hidden_states = self.layer_norm1(hidden_states)
|
| 701 |
+
hidden_states, attn_weights = self.self_attn(
|
| 702 |
+
hidden_states=hidden_states,
|
| 703 |
+
output_attentions=output_attentions,
|
| 704 |
+
)
|
| 705 |
+
hidden_states = residual + hidden_states
|
| 706 |
+
|
| 707 |
+
residual = hidden_states
|
| 708 |
+
hidden_states = self.layer_norm2(hidden_states)
|
| 709 |
+
hidden_states = self.mlp(hidden_states)
|
| 710 |
+
hidden_states = residual + hidden_states
|
| 711 |
+
|
| 712 |
+
outputs = (hidden_states,)
|
| 713 |
+
|
| 714 |
+
if output_attentions:
|
| 715 |
+
outputs += (attn_weights,)
|
| 716 |
+
|
| 717 |
+
return outputs
|
| 718 |
+
|
| 719 |
+
|
| 720 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->ChineseCLIPText
|
| 721 |
+
class ChineseCLIPTextPooler(nn.Module):
|
| 722 |
+
def __init__(self, config):
|
| 723 |
+
super().__init__()
|
| 724 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 725 |
+
self.activation = nn.Tanh()
|
| 726 |
+
|
| 727 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 728 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
| 729 |
+
# to the first token.
|
| 730 |
+
first_token_tensor = hidden_states[:, 0]
|
| 731 |
+
pooled_output = self.dense(first_token_tensor)
|
| 732 |
+
pooled_output = self.activation(pooled_output)
|
| 733 |
+
return pooled_output
|
| 734 |
+
|
| 735 |
+
|
| 736 |
+
class ChineseCLIPPreTrainedModel(PreTrainedModel):
|
| 737 |
+
"""
|
| 738 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 739 |
+
models.
|
| 740 |
+
"""
|
| 741 |
+
|
| 742 |
+
config_class = ChineseCLIPConfig
|
| 743 |
+
base_model_prefix = "chinese_clip"
|
| 744 |
+
supports_gradient_checkpointing = True
|
| 745 |
+
|
| 746 |
+
def _init_weights(self, module):
|
| 747 |
+
"""Initialize the weights"""
|
| 748 |
+
factor = self.config.initializer_factor
|
| 749 |
+
if isinstance(module, ChineseCLIPVisionEmbeddings):
|
| 750 |
+
factor = self.config.initializer_factor
|
| 751 |
+
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
|
| 752 |
+
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
|
| 753 |
+
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
|
| 754 |
+
elif isinstance(module, ChineseCLIPTextEmbeddings):
|
| 755 |
+
nn.init.normal_(module.word_embeddings.weight, mean=0.0, std=self.config.initializer_range)
|
| 756 |
+
nn.init.normal_(module.position_embeddings.weight, mean=0.0, std=self.config.initializer_range)
|
| 757 |
+
nn.init.normal_(module.token_type_embeddings.weight, mean=0.0, std=self.config.initializer_range)
|
| 758 |
+
for embedding in [module.word_embeddings, module.position_embeddings, module.token_type_embeddings]:
|
| 759 |
+
if embedding.padding_idx is not None:
|
| 760 |
+
embedding.weight.data[embedding.padding_idx].zero_()
|
| 761 |
+
elif isinstance(module, ChineseCLIPVisionAttention):
|
| 762 |
+
factor = self.config.initializer_factor
|
| 763 |
+
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
| 764 |
+
out_proj_std = (module.embed_dim**-0.5) * factor
|
| 765 |
+
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
|
| 766 |
+
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
|
| 767 |
+
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
|
| 768 |
+
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
|
| 769 |
+
elif isinstance(module, ChineseCLIPVisionMLP):
|
| 770 |
+
factor = self.config.initializer_factor
|
| 771 |
+
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
| 772 |
+
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
|
| 773 |
+
nn.init.normal_(module.fc1.weight, std=fc_std)
|
| 774 |
+
nn.init.normal_(module.fc2.weight, std=in_proj_std)
|
| 775 |
+
elif isinstance(module, ChineseCLIPModel):
|
| 776 |
+
nn.init.normal_(
|
| 777 |
+
module.text_projection.weight,
|
| 778 |
+
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
|
| 779 |
+
)
|
| 780 |
+
nn.init.normal_(
|
| 781 |
+
module.visual_projection.weight,
|
| 782 |
+
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
|
| 783 |
+
)
|
| 784 |
+
|
| 785 |
+
if isinstance(module, nn.LayerNorm):
|
| 786 |
+
module.bias.data.zero_()
|
| 787 |
+
module.weight.data.fill_(1.0)
|
| 788 |
+
if isinstance(module, nn.Linear):
|
| 789 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 790 |
+
if module.bias is not None:
|
| 791 |
+
module.bias.data.zero_()
|
| 792 |
+
|
| 793 |
+
|
| 794 |
+
CHINESE_CLIP_START_DOCSTRING = r"""
|
| 795 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
| 796 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
| 797 |
+
behavior.
|
| 798 |
+
|
| 799 |
+
Parameters:
|
| 800 |
+
config ([`ChineseCLIPConfig`]): Model configuration class with all the parameters of the model.
|
| 801 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 802 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 803 |
+
"""
|
| 804 |
+
|
| 805 |
+
CHINESE_CLIP_TEXT_INPUTS_DOCSTRING = r"""
|
| 806 |
+
Args:
|
| 807 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 808 |
+
Indices of input sequence tokens in the vocabulary.
|
| 809 |
+
|
| 810 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 811 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 812 |
+
|
| 813 |
+
[What are input IDs?](../glossary#input-ids)
|
| 814 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 815 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 816 |
+
|
| 817 |
+
- 1 for tokens that are **not masked**,
|
| 818 |
+
- 0 for tokens that are **masked**.
|
| 819 |
+
|
| 820 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 821 |
+
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 822 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
| 823 |
+
1]`:
|
| 824 |
+
|
| 825 |
+
- 0 corresponds to a *sentence A* token,
|
| 826 |
+
- 1 corresponds to a *sentence B* token.
|
| 827 |
+
|
| 828 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
| 829 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 830 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 831 |
+
config.max_position_embeddings - 1]`.
|
| 832 |
+
|
| 833 |
+
[What are position IDs?](../glossary#position-ids)
|
| 834 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
| 835 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
| 836 |
+
|
| 837 |
+
- 1 indicates the head is **not masked**,
|
| 838 |
+
- 0 indicates the head is **masked**.
|
| 839 |
+
|
| 840 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 841 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 842 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 843 |
+
model's internal embedding lookup matrix.
|
| 844 |
+
output_attentions (`bool`, *optional*):
|
| 845 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 846 |
+
tensors for more detail.
|
| 847 |
+
output_hidden_states (`bool`, *optional*):
|
| 848 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 849 |
+
more detail.
|
| 850 |
+
interpolate_pos_encoding (`bool`, *optional*, defaults `False`):
|
| 851 |
+
Whether to interpolate the pre-trained position encodings.
|
| 852 |
+
return_dict (`bool`, *optional*):
|
| 853 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 854 |
+
"""
|
| 855 |
+
|
| 856 |
+
CHINESE_CLIP_VISION_INPUTS_DOCSTRING = r"""
|
| 857 |
+
Args:
|
| 858 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 859 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
| 860 |
+
[`AutoImageProcessor`]. See [`ChineseCLIPImageProcessor.__call__`] for details.
|
| 861 |
+
output_attentions (`bool`, *optional*):
|
| 862 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 863 |
+
tensors for more detail.
|
| 864 |
+
output_hidden_states (`bool`, *optional*):
|
| 865 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 866 |
+
more detail.
|
| 867 |
+
interpolate_pos_encoding (`bool`, *optional*, defaults `False`):
|
| 868 |
+
Whether to interpolate the pre-trained position encodings.
|
| 869 |
+
return_dict (`bool`, *optional*):
|
| 870 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 871 |
+
"""
|
| 872 |
+
|
| 873 |
+
CHINESE_CLIP_INPUTS_DOCSTRING = r"""
|
| 874 |
+
Args:
|
| 875 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 876 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 877 |
+
it.
|
| 878 |
+
|
| 879 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 880 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 881 |
+
|
| 882 |
+
[What are input IDs?](../glossary#input-ids)
|
| 883 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 884 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 885 |
+
|
| 886 |
+
- 1 for tokens that are **not masked**,
|
| 887 |
+
- 0 for tokens that are **masked**.
|
| 888 |
+
|
| 889 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 890 |
+
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 891 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
| 892 |
+
1]`:
|
| 893 |
+
|
| 894 |
+
- 0 corresponds to a *sentence A* token,
|
| 895 |
+
- 1 corresponds to a *sentence B* token.
|
| 896 |
+
|
| 897 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
| 898 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 899 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 900 |
+
config.max_position_embeddings - 1]`.
|
| 901 |
+
|
| 902 |
+
[What are position IDs?](../glossary#position-ids)
|
| 903 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 904 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
| 905 |
+
[`AutoImageProcessor`]. See [`ChineseCLIPImageProcessor.__call__`] for details.
|
| 906 |
+
return_loss (`bool`, *optional*):
|
| 907 |
+
Whether or not to return the contrastive loss.
|
| 908 |
+
output_attentions (`bool`, *optional*):
|
| 909 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 910 |
+
tensors for more detail.
|
| 911 |
+
output_hidden_states (`bool`, *optional*):
|
| 912 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 913 |
+
more detail.
|
| 914 |
+
return_dict (`bool`, *optional*):
|
| 915 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 916 |
+
"""
|
| 917 |
+
|
| 918 |
+
|
| 919 |
+
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->ChineseCLIPText
|
| 920 |
+
class ChineseCLIPTextEncoder(nn.Module):
|
| 921 |
+
def __init__(self, config):
|
| 922 |
+
super().__init__()
|
| 923 |
+
self.config = config
|
| 924 |
+
self.layer = nn.ModuleList([ChineseCLIPTextLayer(config) for _ in range(config.num_hidden_layers)])
|
| 925 |
+
self.gradient_checkpointing = False
|
| 926 |
+
|
| 927 |
+
def forward(
|
| 928 |
+
self,
|
| 929 |
+
hidden_states: torch.Tensor,
|
| 930 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 931 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 932 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 933 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 934 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 935 |
+
use_cache: Optional[bool] = None,
|
| 936 |
+
output_attentions: Optional[bool] = False,
|
| 937 |
+
output_hidden_states: Optional[bool] = False,
|
| 938 |
+
return_dict: Optional[bool] = True,
|
| 939 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
| 940 |
+
all_hidden_states = () if output_hidden_states else None
|
| 941 |
+
all_self_attentions = () if output_attentions else None
|
| 942 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
| 943 |
+
|
| 944 |
+
if self.gradient_checkpointing and self.training:
|
| 945 |
+
if use_cache:
|
| 946 |
+
logger.warning_once(
|
| 947 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 948 |
+
)
|
| 949 |
+
use_cache = False
|
| 950 |
+
|
| 951 |
+
next_decoder_cache = () if use_cache else None
|
| 952 |
+
for i, layer_module in enumerate(self.layer):
|
| 953 |
+
if output_hidden_states:
|
| 954 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 955 |
+
|
| 956 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
| 957 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
| 958 |
+
|
| 959 |
+
if self.gradient_checkpointing and self.training:
|
| 960 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 961 |
+
layer_module.__call__,
|
| 962 |
+
hidden_states,
|
| 963 |
+
attention_mask,
|
| 964 |
+
layer_head_mask,
|
| 965 |
+
encoder_hidden_states,
|
| 966 |
+
encoder_attention_mask,
|
| 967 |
+
past_key_value,
|
| 968 |
+
output_attentions,
|
| 969 |
+
)
|
| 970 |
+
else:
|
| 971 |
+
layer_outputs = layer_module(
|
| 972 |
+
hidden_states,
|
| 973 |
+
attention_mask,
|
| 974 |
+
layer_head_mask,
|
| 975 |
+
encoder_hidden_states,
|
| 976 |
+
encoder_attention_mask,
|
| 977 |
+
past_key_value,
|
| 978 |
+
output_attentions,
|
| 979 |
+
)
|
| 980 |
+
|
| 981 |
+
hidden_states = layer_outputs[0]
|
| 982 |
+
if use_cache:
|
| 983 |
+
next_decoder_cache += (layer_outputs[-1],)
|
| 984 |
+
if output_attentions:
|
| 985 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
| 986 |
+
if self.config.add_cross_attention:
|
| 987 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
| 988 |
+
|
| 989 |
+
if output_hidden_states:
|
| 990 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 991 |
+
|
| 992 |
+
if not return_dict:
|
| 993 |
+
return tuple(
|
| 994 |
+
v
|
| 995 |
+
for v in [
|
| 996 |
+
hidden_states,
|
| 997 |
+
next_decoder_cache,
|
| 998 |
+
all_hidden_states,
|
| 999 |
+
all_self_attentions,
|
| 1000 |
+
all_cross_attentions,
|
| 1001 |
+
]
|
| 1002 |
+
if v is not None
|
| 1003 |
+
)
|
| 1004 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
| 1005 |
+
last_hidden_state=hidden_states,
|
| 1006 |
+
past_key_values=next_decoder_cache,
|
| 1007 |
+
hidden_states=all_hidden_states,
|
| 1008 |
+
attentions=all_self_attentions,
|
| 1009 |
+
cross_attentions=all_cross_attentions,
|
| 1010 |
+
)
|
| 1011 |
+
|
| 1012 |
+
|
| 1013 |
+
class ChineseCLIPVisionEncoder(nn.Module):
|
| 1014 |
+
"""
|
| 1015 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
| 1016 |
+
[`ChineseCLIPVisionEncoderLayer`].
|
| 1017 |
+
|
| 1018 |
+
Args:
|
| 1019 |
+
config: ChineseCLIPConfig
|
| 1020 |
+
"""
|
| 1021 |
+
|
| 1022 |
+
def __init__(self, config: ChineseCLIPConfig):
|
| 1023 |
+
super().__init__()
|
| 1024 |
+
self.config = config
|
| 1025 |
+
self.layers = nn.ModuleList([ChineseCLIPVisionLayer(config) for _ in range(config.num_hidden_layers)])
|
| 1026 |
+
self.gradient_checkpointing = False
|
| 1027 |
+
|
| 1028 |
+
def forward(
|
| 1029 |
+
self,
|
| 1030 |
+
inputs_embeds,
|
| 1031 |
+
output_attentions: Optional[bool] = None,
|
| 1032 |
+
output_hidden_states: Optional[bool] = None,
|
| 1033 |
+
return_dict: Optional[bool] = None,
|
| 1034 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 1035 |
+
r"""
|
| 1036 |
+
Args:
|
| 1037 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 1038 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
| 1039 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
| 1040 |
+
than the model's internal embedding lookup matrix.
|
| 1041 |
+
output_attentions (`bool`, *optional*):
|
| 1042 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 1043 |
+
returned tensors for more detail.
|
| 1044 |
+
output_hidden_states (`bool`, *optional*):
|
| 1045 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
| 1046 |
+
for more detail.
|
| 1047 |
+
return_dict (`bool`, *optional*):
|
| 1048 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1049 |
+
"""
|
| 1050 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1051 |
+
output_hidden_states = (
|
| 1052 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1053 |
+
)
|
| 1054 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1055 |
+
|
| 1056 |
+
encoder_states = () if output_hidden_states else None
|
| 1057 |
+
all_attentions = () if output_attentions else None
|
| 1058 |
+
|
| 1059 |
+
hidden_states = inputs_embeds
|
| 1060 |
+
for idx, encoder_layer in enumerate(self.layers):
|
| 1061 |
+
if output_hidden_states:
|
| 1062 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 1063 |
+
if self.gradient_checkpointing and self.training:
|
| 1064 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 1065 |
+
encoder_layer.__call__,
|
| 1066 |
+
hidden_states,
|
| 1067 |
+
output_attentions,
|
| 1068 |
+
)
|
| 1069 |
+
else:
|
| 1070 |
+
layer_outputs = encoder_layer(
|
| 1071 |
+
hidden_states,
|
| 1072 |
+
output_attentions=output_attentions,
|
| 1073 |
+
)
|
| 1074 |
+
|
| 1075 |
+
hidden_states = layer_outputs[0]
|
| 1076 |
+
|
| 1077 |
+
if output_attentions:
|
| 1078 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
| 1079 |
+
|
| 1080 |
+
if output_hidden_states:
|
| 1081 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 1082 |
+
|
| 1083 |
+
if not return_dict:
|
| 1084 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
| 1085 |
+
return BaseModelOutput(
|
| 1086 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
| 1087 |
+
)
|
| 1088 |
+
|
| 1089 |
+
|
| 1090 |
+
class ChineseCLIPVisionTransformer(nn.Module):
|
| 1091 |
+
def __init__(self, config: ChineseCLIPVisionConfig):
|
| 1092 |
+
super().__init__()
|
| 1093 |
+
self.config = config
|
| 1094 |
+
embed_dim = config.hidden_size
|
| 1095 |
+
|
| 1096 |
+
self.embeddings = ChineseCLIPVisionEmbeddings(config)
|
| 1097 |
+
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
| 1098 |
+
self.encoder = ChineseCLIPVisionEncoder(config)
|
| 1099 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
| 1100 |
+
|
| 1101 |
+
@add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
|
| 1102 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ChineseCLIPVisionConfig)
|
| 1103 |
+
def forward(
|
| 1104 |
+
self,
|
| 1105 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1106 |
+
output_attentions: Optional[bool] = None,
|
| 1107 |
+
output_hidden_states: Optional[bool] = None,
|
| 1108 |
+
interpolate_pos_encoding: bool = False,
|
| 1109 |
+
return_dict: Optional[bool] = None,
|
| 1110 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 1111 |
+
r"""
|
| 1112 |
+
Returns:
|
| 1113 |
+
"""
|
| 1114 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1115 |
+
output_hidden_states = (
|
| 1116 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1117 |
+
)
|
| 1118 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1119 |
+
|
| 1120 |
+
if pixel_values is None:
|
| 1121 |
+
raise ValueError("You have to specify pixel_values")
|
| 1122 |
+
|
| 1123 |
+
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
|
| 1124 |
+
hidden_states = self.pre_layrnorm(hidden_states)
|
| 1125 |
+
|
| 1126 |
+
encoder_outputs = self.encoder(
|
| 1127 |
+
inputs_embeds=hidden_states,
|
| 1128 |
+
output_attentions=output_attentions,
|
| 1129 |
+
output_hidden_states=output_hidden_states,
|
| 1130 |
+
return_dict=return_dict,
|
| 1131 |
+
)
|
| 1132 |
+
|
| 1133 |
+
last_hidden_state = encoder_outputs[0]
|
| 1134 |
+
pooled_output = last_hidden_state[:, 0, :]
|
| 1135 |
+
pooled_output = self.post_layernorm(pooled_output)
|
| 1136 |
+
|
| 1137 |
+
if not return_dict:
|
| 1138 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
| 1139 |
+
|
| 1140 |
+
return BaseModelOutputWithPooling(
|
| 1141 |
+
last_hidden_state=last_hidden_state,
|
| 1142 |
+
pooler_output=pooled_output,
|
| 1143 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 1144 |
+
attentions=encoder_outputs.attentions,
|
| 1145 |
+
)
|
| 1146 |
+
|
| 1147 |
+
|
| 1148 |
+
@add_start_docstrings(
|
| 1149 |
+
"The text model from CHINESE_CLIP without any head or projection on top.",
|
| 1150 |
+
CHINESE_CLIP_START_DOCSTRING,
|
| 1151 |
+
)
|
| 1152 |
+
class ChineseCLIPTextModel(ChineseCLIPPreTrainedModel):
|
| 1153 |
+
"""
|
| 1154 |
+
|
| 1155 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
| 1156 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
| 1157 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
| 1158 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
| 1159 |
+
|
| 1160 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
| 1161 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
| 1162 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
| 1163 |
+
"""
|
| 1164 |
+
|
| 1165 |
+
config_class = ChineseCLIPTextConfig
|
| 1166 |
+
_no_split_modules = ["ChineseCLIPTextEmbeddings"]
|
| 1167 |
+
|
| 1168 |
+
def __init__(self, config, add_pooling_layer=True):
|
| 1169 |
+
super().__init__(config)
|
| 1170 |
+
self.config = config
|
| 1171 |
+
|
| 1172 |
+
self.embeddings = ChineseCLIPTextEmbeddings(config)
|
| 1173 |
+
self.encoder = ChineseCLIPTextEncoder(config)
|
| 1174 |
+
|
| 1175 |
+
self.pooler = ChineseCLIPTextPooler(config) if add_pooling_layer else None
|
| 1176 |
+
|
| 1177 |
+
# Initialize weights and apply final processing
|
| 1178 |
+
self.post_init()
|
| 1179 |
+
|
| 1180 |
+
def get_input_embeddings(self):
|
| 1181 |
+
return self.embeddings.word_embeddings
|
| 1182 |
+
|
| 1183 |
+
def set_input_embeddings(self, value):
|
| 1184 |
+
self.embeddings.word_embeddings = value
|
| 1185 |
+
|
| 1186 |
+
def _prune_heads(self, heads_to_prune):
|
| 1187 |
+
"""
|
| 1188 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
| 1189 |
+
class PreTrainedModel
|
| 1190 |
+
"""
|
| 1191 |
+
for layer, heads in heads_to_prune.items():
|
| 1192 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
| 1193 |
+
|
| 1194 |
+
@add_start_docstrings_to_model_forward(CHINESE_CLIP_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1195 |
+
@add_code_sample_docstrings(
|
| 1196 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1197 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
| 1198 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1199 |
+
)
|
| 1200 |
+
def forward(
|
| 1201 |
+
self,
|
| 1202 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1203 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1204 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1205 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1206 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1207 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1208 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 1209 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 1210 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1211 |
+
use_cache: Optional[bool] = None,
|
| 1212 |
+
output_attentions: Optional[bool] = None,
|
| 1213 |
+
output_hidden_states: Optional[bool] = None,
|
| 1214 |
+
return_dict: Optional[bool] = None,
|
| 1215 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
| 1216 |
+
r"""
|
| 1217 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 1218 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
| 1219 |
+
the model is configured as a decoder.
|
| 1220 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1221 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
| 1222 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
| 1223 |
+
|
| 1224 |
+
- 1 for tokens that are **not masked**,
|
| 1225 |
+
- 0 for tokens that are **masked**.
|
| 1226 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
| 1227 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
| 1228 |
+
|
| 1229 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 1230 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 1231 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 1232 |
+
use_cache (`bool`, *optional*):
|
| 1233 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 1234 |
+
`past_key_values`).
|
| 1235 |
+
"""
|
| 1236 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1237 |
+
output_hidden_states = (
|
| 1238 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1239 |
+
)
|
| 1240 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1241 |
+
|
| 1242 |
+
if self.config.is_decoder:
|
| 1243 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1244 |
+
else:
|
| 1245 |
+
use_cache = False
|
| 1246 |
+
|
| 1247 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 1248 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 1249 |
+
elif input_ids is not None:
|
| 1250 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
| 1251 |
+
input_shape = input_ids.size()
|
| 1252 |
+
elif inputs_embeds is not None:
|
| 1253 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 1254 |
+
else:
|
| 1255 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 1256 |
+
|
| 1257 |
+
batch_size, seq_length = input_shape
|
| 1258 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 1259 |
+
|
| 1260 |
+
# past_key_values_length
|
| 1261 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
| 1262 |
+
|
| 1263 |
+
if attention_mask is None:
|
| 1264 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
| 1265 |
+
|
| 1266 |
+
if token_type_ids is None:
|
| 1267 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
| 1268 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
| 1269 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
| 1270 |
+
token_type_ids = buffered_token_type_ids_expanded
|
| 1271 |
+
else:
|
| 1272 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
| 1273 |
+
|
| 1274 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 1275 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 1276 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
| 1277 |
+
|
| 1278 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 1279 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 1280 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
| 1281 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
| 1282 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
| 1283 |
+
if encoder_attention_mask is None:
|
| 1284 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
| 1285 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
| 1286 |
+
else:
|
| 1287 |
+
encoder_extended_attention_mask = None
|
| 1288 |
+
|
| 1289 |
+
# Prepare head mask if needed
|
| 1290 |
+
# 1.0 in head_mask indicate we keep the head
|
| 1291 |
+
# attention_probs has shape bsz x n_heads x N x N
|
| 1292 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
| 1293 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
| 1294 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
| 1295 |
+
|
| 1296 |
+
embedding_output = self.embeddings(
|
| 1297 |
+
input_ids=input_ids,
|
| 1298 |
+
position_ids=position_ids,
|
| 1299 |
+
token_type_ids=token_type_ids,
|
| 1300 |
+
inputs_embeds=inputs_embeds,
|
| 1301 |
+
past_key_values_length=past_key_values_length,
|
| 1302 |
+
)
|
| 1303 |
+
encoder_outputs = self.encoder(
|
| 1304 |
+
embedding_output,
|
| 1305 |
+
attention_mask=extended_attention_mask,
|
| 1306 |
+
head_mask=head_mask,
|
| 1307 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1308 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
| 1309 |
+
past_key_values=past_key_values,
|
| 1310 |
+
use_cache=use_cache,
|
| 1311 |
+
output_attentions=output_attentions,
|
| 1312 |
+
output_hidden_states=output_hidden_states,
|
| 1313 |
+
return_dict=return_dict,
|
| 1314 |
+
)
|
| 1315 |
+
sequence_output = encoder_outputs[0]
|
| 1316 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
| 1317 |
+
|
| 1318 |
+
if not return_dict:
|
| 1319 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
| 1320 |
+
|
| 1321 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
| 1322 |
+
last_hidden_state=sequence_output,
|
| 1323 |
+
pooler_output=pooled_output,
|
| 1324 |
+
past_key_values=encoder_outputs.past_key_values,
|
| 1325 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 1326 |
+
attentions=encoder_outputs.attentions,
|
| 1327 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
| 1328 |
+
)
|
| 1329 |
+
|
| 1330 |
+
|
| 1331 |
+
@add_start_docstrings(
|
| 1332 |
+
"""The vision model from CHINESE_CLIP without any head or projection on top.""",
|
| 1333 |
+
CHINESE_CLIP_START_DOCSTRING,
|
| 1334 |
+
)
|
| 1335 |
+
class ChineseCLIPVisionModel(ChineseCLIPPreTrainedModel):
|
| 1336 |
+
config_class = ChineseCLIPVisionConfig
|
| 1337 |
+
main_input_name = "pixel_values"
|
| 1338 |
+
_no_split_modules = ["ChineseCLIPVisionEmbeddings", "ChineseCLIPVisionAttention"]
|
| 1339 |
+
|
| 1340 |
+
def __init__(self, config: ChineseCLIPVisionConfig):
|
| 1341 |
+
super().__init__(config)
|
| 1342 |
+
self.vision_model = ChineseCLIPVisionTransformer(config)
|
| 1343 |
+
# Initialize weights and apply final processing
|
| 1344 |
+
self.post_init()
|
| 1345 |
+
|
| 1346 |
+
def get_input_embeddings(self) -> nn.Module:
|
| 1347 |
+
return self.vision_model.embeddings.patch_embedding
|
| 1348 |
+
|
| 1349 |
+
@add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
|
| 1350 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ChineseCLIPVisionConfig)
|
| 1351 |
+
def forward(
|
| 1352 |
+
self,
|
| 1353 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1354 |
+
output_attentions: Optional[bool] = None,
|
| 1355 |
+
output_hidden_states: Optional[bool] = None,
|
| 1356 |
+
interpolate_pos_encoding: bool = False,
|
| 1357 |
+
return_dict: Optional[bool] = None,
|
| 1358 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 1359 |
+
r"""
|
| 1360 |
+
Returns:
|
| 1361 |
+
|
| 1362 |
+
Examples:
|
| 1363 |
+
|
| 1364 |
+
```python
|
| 1365 |
+
>>> from PIL import Image
|
| 1366 |
+
>>> import requests
|
| 1367 |
+
>>> from transformers import CLIPProcessor, ChineseCLIPVisionModel
|
| 1368 |
+
|
| 1369 |
+
>>> model = ChineseCLIPVisionModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
| 1370 |
+
>>> processor = CLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
| 1371 |
+
|
| 1372 |
+
>>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
|
| 1373 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 1374 |
+
|
| 1375 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
| 1376 |
+
|
| 1377 |
+
>>> outputs = model(**inputs)
|
| 1378 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
| 1379 |
+
>>> pooled_output = outputs.pooler_output # pooled CLS states
|
| 1380 |
+
```"""
|
| 1381 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1382 |
+
|
| 1383 |
+
return self.vision_model(
|
| 1384 |
+
pixel_values=pixel_values,
|
| 1385 |
+
output_attentions=output_attentions,
|
| 1386 |
+
output_hidden_states=output_hidden_states,
|
| 1387 |
+
interpolate_pos_encoding=interpolate_pos_encoding,
|
| 1388 |
+
return_dict=return_dict,
|
| 1389 |
+
)
|
| 1390 |
+
|
| 1391 |
+
|
| 1392 |
+
@add_start_docstrings(CHINESE_CLIP_START_DOCSTRING)
|
| 1393 |
+
class ChineseCLIPModel(ChineseCLIPPreTrainedModel):
|
| 1394 |
+
config_class = ChineseCLIPConfig
|
| 1395 |
+
|
| 1396 |
+
def __init__(self, config: ChineseCLIPConfig):
|
| 1397 |
+
super().__init__(config)
|
| 1398 |
+
|
| 1399 |
+
if not isinstance(config.text_config, ChineseCLIPTextConfig):
|
| 1400 |
+
raise TypeError(
|
| 1401 |
+
"config.text_config is expected to be of type ChineseCLIPTextConfig but is of type"
|
| 1402 |
+
f" {type(config.text_config)}."
|
| 1403 |
+
)
|
| 1404 |
+
|
| 1405 |
+
if not isinstance(config.vision_config, ChineseCLIPVisionConfig):
|
| 1406 |
+
raise TypeError(
|
| 1407 |
+
"config.vision_config is expected to be of type ChineseCLIPVisionConfig but is of type"
|
| 1408 |
+
f" {type(config.vision_config)}."
|
| 1409 |
+
)
|
| 1410 |
+
|
| 1411 |
+
text_config = config.text_config
|
| 1412 |
+
vision_config = config.vision_config
|
| 1413 |
+
|
| 1414 |
+
self.projection_dim = config.projection_dim
|
| 1415 |
+
self.text_embed_dim = text_config.hidden_size
|
| 1416 |
+
self.vision_embed_dim = vision_config.hidden_size
|
| 1417 |
+
|
| 1418 |
+
self.text_model = ChineseCLIPTextModel(text_config, add_pooling_layer=False)
|
| 1419 |
+
self.vision_model = ChineseCLIPVisionTransformer(vision_config)
|
| 1420 |
+
|
| 1421 |
+
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
|
| 1422 |
+
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
|
| 1423 |
+
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
|
| 1424 |
+
|
| 1425 |
+
# Initialize weights and apply final processing
|
| 1426 |
+
self.post_init()
|
| 1427 |
+
|
| 1428 |
+
@add_start_docstrings_to_model_forward(CHINESE_CLIP_TEXT_INPUTS_DOCSTRING)
|
| 1429 |
+
def get_text_features(
|
| 1430 |
+
self,
|
| 1431 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1432 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1433 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1434 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1435 |
+
output_attentions: Optional[bool] = None,
|
| 1436 |
+
output_hidden_states: Optional[bool] = None,
|
| 1437 |
+
return_dict: Optional[bool] = None,
|
| 1438 |
+
) -> torch.FloatTensor:
|
| 1439 |
+
r"""
|
| 1440 |
+
Returns:
|
| 1441 |
+
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
| 1442 |
+
applying the projection layer to the final [CLS] hidden state of Text-Transformer.
|
| 1443 |
+
|
| 1444 |
+
Examples:
|
| 1445 |
+
|
| 1446 |
+
```python
|
| 1447 |
+
>>> from transformers import AutoTokenizer, ChineseCLIPModel
|
| 1448 |
+
|
| 1449 |
+
>>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
| 1450 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
| 1451 |
+
|
| 1452 |
+
>>> inputs = tokenizer(["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], padding=True, return_tensors="pt")
|
| 1453 |
+
>>> text_features = model.get_text_features(**inputs)
|
| 1454 |
+
>>> text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)
|
| 1455 |
+
```"""
|
| 1456 |
+
# Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
| 1457 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1458 |
+
output_hidden_states = (
|
| 1459 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1460 |
+
)
|
| 1461 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1462 |
+
|
| 1463 |
+
text_outputs = self.text_model(
|
| 1464 |
+
input_ids=input_ids,
|
| 1465 |
+
attention_mask=attention_mask,
|
| 1466 |
+
token_type_ids=token_type_ids,
|
| 1467 |
+
position_ids=position_ids,
|
| 1468 |
+
output_attentions=output_attentions,
|
| 1469 |
+
output_hidden_states=output_hidden_states,
|
| 1470 |
+
return_dict=return_dict,
|
| 1471 |
+
)
|
| 1472 |
+
|
| 1473 |
+
pooled_output = text_outputs[0][:, 0, :]
|
| 1474 |
+
text_features = self.text_projection(pooled_output)
|
| 1475 |
+
|
| 1476 |
+
return text_features
|
| 1477 |
+
|
| 1478 |
+
@add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
|
| 1479 |
+
def get_image_features(
|
| 1480 |
+
self,
|
| 1481 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1482 |
+
output_attentions: Optional[bool] = None,
|
| 1483 |
+
output_hidden_states: Optional[bool] = None,
|
| 1484 |
+
interpolate_pos_encoding: bool = False,
|
| 1485 |
+
return_dict: Optional[bool] = None,
|
| 1486 |
+
) -> torch.FloatTensor:
|
| 1487 |
+
r"""
|
| 1488 |
+
Returns:
|
| 1489 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
| 1490 |
+
applying the projection layer to the final [CLS] hidden state of Vision-Transformer.
|
| 1491 |
+
|
| 1492 |
+
Examples:
|
| 1493 |
+
|
| 1494 |
+
```python
|
| 1495 |
+
>>> from PIL import Image
|
| 1496 |
+
>>> import requests
|
| 1497 |
+
>>> from transformers import AutoProcessor, ChineseCLIPModel
|
| 1498 |
+
|
| 1499 |
+
>>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
| 1500 |
+
>>> processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
| 1501 |
+
|
| 1502 |
+
>>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
|
| 1503 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 1504 |
+
|
| 1505 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
| 1506 |
+
|
| 1507 |
+
>>> image_features = model.get_image_features(**inputs)
|
| 1508 |
+
>>> image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)
|
| 1509 |
+
```"""
|
| 1510 |
+
# Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
| 1511 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1512 |
+
output_hidden_states = (
|
| 1513 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1514 |
+
)
|
| 1515 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1516 |
+
|
| 1517 |
+
vision_outputs = self.vision_model(
|
| 1518 |
+
pixel_values=pixel_values,
|
| 1519 |
+
output_attentions=output_attentions,
|
| 1520 |
+
output_hidden_states=output_hidden_states,
|
| 1521 |
+
interpolate_pos_encoding=interpolate_pos_encoding,
|
| 1522 |
+
return_dict=return_dict,
|
| 1523 |
+
)
|
| 1524 |
+
|
| 1525 |
+
pooled_output = vision_outputs[1] # pooled_output
|
| 1526 |
+
image_features = self.visual_projection(pooled_output)
|
| 1527 |
+
|
| 1528 |
+
return image_features
|
| 1529 |
+
|
| 1530 |
+
@add_start_docstrings_to_model_forward(CHINESE_CLIP_INPUTS_DOCSTRING)
|
| 1531 |
+
@replace_return_docstrings(output_type=ChineseCLIPOutput, config_class=ChineseCLIPConfig)
|
| 1532 |
+
def forward(
|
| 1533 |
+
self,
|
| 1534 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1535 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1536 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1537 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1538 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1539 |
+
return_loss: Optional[bool] = None,
|
| 1540 |
+
output_attentions: Optional[bool] = None,
|
| 1541 |
+
output_hidden_states: Optional[bool] = None,
|
| 1542 |
+
interpolate_pos_encoding: bool = False,
|
| 1543 |
+
return_dict: Optional[bool] = None,
|
| 1544 |
+
) -> Union[Tuple, ChineseCLIPOutput]:
|
| 1545 |
+
r"""
|
| 1546 |
+
Returns:
|
| 1547 |
+
|
| 1548 |
+
Examples:
|
| 1549 |
+
|
| 1550 |
+
```python
|
| 1551 |
+
>>> from PIL import Image
|
| 1552 |
+
>>> import requests
|
| 1553 |
+
>>> from transformers import AutoProcessor, ChineseCLIPModel
|
| 1554 |
+
|
| 1555 |
+
>>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
| 1556 |
+
>>> processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
| 1557 |
+
|
| 1558 |
+
>>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
|
| 1559 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 1560 |
+
|
| 1561 |
+
>>> inputs = processor(text=["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], images=image, return_tensors="pt", padding=True)
|
| 1562 |
+
|
| 1563 |
+
>>> outputs = model(**inputs)
|
| 1564 |
+
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
| 1565 |
+
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
| 1566 |
+
```"""
|
| 1567 |
+
# Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
| 1568 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1569 |
+
output_hidden_states = (
|
| 1570 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1571 |
+
)
|
| 1572 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1573 |
+
|
| 1574 |
+
vision_outputs = self.vision_model(
|
| 1575 |
+
pixel_values=pixel_values,
|
| 1576 |
+
output_attentions=output_attentions,
|
| 1577 |
+
output_hidden_states=output_hidden_states,
|
| 1578 |
+
interpolate_pos_encoding=interpolate_pos_encoding,
|
| 1579 |
+
return_dict=return_dict,
|
| 1580 |
+
)
|
| 1581 |
+
|
| 1582 |
+
text_outputs = self.text_model(
|
| 1583 |
+
input_ids=input_ids,
|
| 1584 |
+
attention_mask=attention_mask,
|
| 1585 |
+
token_type_ids=token_type_ids,
|
| 1586 |
+
position_ids=position_ids,
|
| 1587 |
+
output_attentions=output_attentions,
|
| 1588 |
+
output_hidden_states=output_hidden_states,
|
| 1589 |
+
return_dict=return_dict,
|
| 1590 |
+
)
|
| 1591 |
+
|
| 1592 |
+
image_embeds = vision_outputs[1]
|
| 1593 |
+
image_embeds = self.visual_projection(image_embeds)
|
| 1594 |
+
|
| 1595 |
+
text_embeds = text_outputs[0][:, 0, :]
|
| 1596 |
+
text_embeds = self.text_projection(text_embeds)
|
| 1597 |
+
|
| 1598 |
+
# normalized features
|
| 1599 |
+
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
| 1600 |
+
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
| 1601 |
+
|
| 1602 |
+
# cosine similarity as logits
|
| 1603 |
+
logit_scale = self.logit_scale.exp()
|
| 1604 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
| 1605 |
+
logits_per_image = logits_per_text.t()
|
| 1606 |
+
|
| 1607 |
+
loss = None
|
| 1608 |
+
if return_loss:
|
| 1609 |
+
loss = chinese_clip_loss(logits_per_text)
|
| 1610 |
+
|
| 1611 |
+
if not return_dict:
|
| 1612 |
+
# fix the None pooled_output of text_outputs to conform with dict_output
|
| 1613 |
+
pooled_output = text_outputs[1]
|
| 1614 |
+
if pooled_output is None:
|
| 1615 |
+
text_outputs = (text_outputs[0],) + text_outputs[2:]
|
| 1616 |
+
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
| 1617 |
+
return ((loss,) + output) if loss is not None else output
|
| 1618 |
+
|
| 1619 |
+
return ChineseCLIPOutput(
|
| 1620 |
+
loss=loss,
|
| 1621 |
+
logits_per_image=logits_per_image,
|
| 1622 |
+
logits_per_text=logits_per_text,
|
| 1623 |
+
text_embeds=text_embeds,
|
| 1624 |
+
image_embeds=image_embeds,
|
| 1625 |
+
text_model_output=text_outputs,
|
| 1626 |
+
vision_model_output=vision_outputs,
|
| 1627 |
+
)
|
| 1628 |
+
|
| 1629 |
+
|
| 1630 |
+
__all__ = ["ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel"]
|
docs/transformers/build/lib/transformers/models/chinese_clip/processing_chinese_clip.py
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""
|
| 16 |
+
Image/Text processor class for Chinese-CLIP
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import warnings
|
| 20 |
+
from typing import List, Union
|
| 21 |
+
|
| 22 |
+
from ...image_utils import ImageInput
|
| 23 |
+
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
|
| 24 |
+
from ...tokenization_utils_base import BatchEncoding, PreTokenizedInput, TextInput
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class ChineseClipProcessorKwargs(ProcessingKwargs, total=False):
|
| 28 |
+
_defaults = {}
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class ChineseCLIPProcessor(ProcessorMixin):
|
| 32 |
+
r"""
|
| 33 |
+
Constructs a Chinese-CLIP processor which wraps a Chinese-CLIP image processor and a Chinese-CLIP tokenizer into a
|
| 34 |
+
single processor.
|
| 35 |
+
|
| 36 |
+
[`ChineseCLIPProcessor`] offers all the functionalities of [`ChineseCLIPImageProcessor`] and [`BertTokenizerFast`].
|
| 37 |
+
See the [`~ChineseCLIPProcessor.__call__`] and [`~ChineseCLIPProcessor.decode`] for more information.
|
| 38 |
+
|
| 39 |
+
Args:
|
| 40 |
+
image_processor ([`ChineseCLIPImageProcessor`], *optional*):
|
| 41 |
+
The image processor is a required input.
|
| 42 |
+
tokenizer ([`BertTokenizerFast`], *optional*):
|
| 43 |
+
The tokenizer is a required input.
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
attributes = ["image_processor", "tokenizer"]
|
| 47 |
+
image_processor_class = ("ChineseCLIPImageProcessor", "ChineseCLIPImageProcessorFast")
|
| 48 |
+
tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
|
| 49 |
+
|
| 50 |
+
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
|
| 51 |
+
feature_extractor = None
|
| 52 |
+
if "feature_extractor" in kwargs:
|
| 53 |
+
warnings.warn(
|
| 54 |
+
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
|
| 55 |
+
" instead.",
|
| 56 |
+
FutureWarning,
|
| 57 |
+
)
|
| 58 |
+
feature_extractor = kwargs.pop("feature_extractor")
|
| 59 |
+
|
| 60 |
+
image_processor = image_processor if image_processor is not None else feature_extractor
|
| 61 |
+
if image_processor is None:
|
| 62 |
+
raise ValueError("You need to specify an `image_processor`.")
|
| 63 |
+
if tokenizer is None:
|
| 64 |
+
raise ValueError("You need to specify a `tokenizer`.")
|
| 65 |
+
|
| 66 |
+
super().__init__(image_processor, tokenizer)
|
| 67 |
+
self.current_processor = self.image_processor
|
| 68 |
+
|
| 69 |
+
def __call__(
|
| 70 |
+
self,
|
| 71 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
| 72 |
+
images: ImageInput = None,
|
| 73 |
+
audio=None,
|
| 74 |
+
videos=None,
|
| 75 |
+
**kwargs: Unpack[ChineseClipProcessorKwargs],
|
| 76 |
+
) -> BatchEncoding:
|
| 77 |
+
"""
|
| 78 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
| 79 |
+
and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
|
| 80 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
| 81 |
+
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
|
| 82 |
+
of the above two methods for more information.
|
| 83 |
+
|
| 84 |
+
Args:
|
| 85 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
| 86 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
| 87 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
| 88 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
| 89 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
| 90 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
| 91 |
+
tensor. Both channels-first and channels-last formats are supported.
|
| 92 |
+
|
| 93 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
| 94 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
| 95 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
| 96 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
| 97 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
| 98 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
| 99 |
+
Returns:
|
| 100 |
+
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
| 101 |
+
|
| 102 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
| 103 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
| 104 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
| 105 |
+
`None`).
|
| 106 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
| 107 |
+
"""
|
| 108 |
+
|
| 109 |
+
if text is None and images is None:
|
| 110 |
+
raise ValueError("You have to specify either text or images. Both cannot be none.")
|
| 111 |
+
output_kwargs = self._merge_kwargs(
|
| 112 |
+
ChineseClipProcessorKwargs,
|
| 113 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
| 114 |
+
**kwargs,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
if text is not None:
|
| 118 |
+
encoding = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
| 119 |
+
if images is not None:
|
| 120 |
+
image_features = self.image_processor(images, **output_kwargs["images_kwargs"])
|
| 121 |
+
|
| 122 |
+
# BC for explicit return_tensors
|
| 123 |
+
if "return_tensors" in output_kwargs["common_kwargs"]:
|
| 124 |
+
return_tensors = output_kwargs["common_kwargs"].pop("return_tensors", None)
|
| 125 |
+
|
| 126 |
+
if text is not None and images is not None:
|
| 127 |
+
encoding["pixel_values"] = image_features.pixel_values
|
| 128 |
+
return encoding
|
| 129 |
+
elif text is not None:
|
| 130 |
+
return encoding
|
| 131 |
+
else:
|
| 132 |
+
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
|
| 133 |
+
|
| 134 |
+
def batch_decode(self, *args, **kwargs):
|
| 135 |
+
"""
|
| 136 |
+
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 137 |
+
refer to the docstring of this method for more information.
|
| 138 |
+
"""
|
| 139 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 140 |
+
|
| 141 |
+
def decode(self, *args, **kwargs):
|
| 142 |
+
"""
|
| 143 |
+
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
| 144 |
+
the docstring of this method for more information.
|
| 145 |
+
"""
|
| 146 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 147 |
+
|
| 148 |
+
@property
|
| 149 |
+
def model_input_names(self):
|
| 150 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 151 |
+
image_processor_input_names = self.image_processor.model_input_names
|
| 152 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
| 153 |
+
|
| 154 |
+
@property
|
| 155 |
+
def feature_extractor_class(self):
|
| 156 |
+
warnings.warn(
|
| 157 |
+
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
|
| 158 |
+
FutureWarning,
|
| 159 |
+
)
|
| 160 |
+
return self.image_processor_class
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
__all__ = ["ChineseCLIPProcessor"]
|
docs/transformers/build/lib/transformers/models/clap/__init__.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from typing import TYPE_CHECKING
|
| 15 |
+
|
| 16 |
+
from ...utils import _LazyModule
|
| 17 |
+
from ...utils.import_utils import define_import_structure
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
if TYPE_CHECKING:
|
| 21 |
+
from .configuration_clap import *
|
| 22 |
+
from .feature_extraction_clap import *
|
| 23 |
+
from .modeling_clap import *
|
| 24 |
+
from .processing_clap import *
|
| 25 |
+
else:
|
| 26 |
+
import sys
|
| 27 |
+
|
| 28 |
+
_file = globals()["__file__"]
|
| 29 |
+
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
|
docs/transformers/build/lib/transformers/models/clap/configuration_clap.py
ADDED
|
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""CLAP model configuration"""
|
| 16 |
+
|
| 17 |
+
from ...configuration_utils import PretrainedConfig
|
| 18 |
+
from ...utils import logging
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
logger = logging.get_logger(__name__)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class ClapTextConfig(PretrainedConfig):
|
| 25 |
+
r"""
|
| 26 |
+
This is the configuration class to store the configuration of a [`ClapTextModel`]. It is used to instantiate a CLAP
|
| 27 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 28 |
+
defaults will yield a similar configuration to that of the CLAP
|
| 29 |
+
[calp-hsat-fused](https://huggingface.co/laion/clap-hsat-fused) architecture.
|
| 30 |
+
|
| 31 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 32 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
| 37 |
+
Vocabulary size of the CLAP model. Defines the number of different tokens that can be represented by the
|
| 38 |
+
`inputs_ids` passed when calling [`ClapTextModel`].
|
| 39 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
| 40 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 41 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
| 42 |
+
Number of hidden layers in the Transformer encoder.
|
| 43 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
| 44 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 45 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
| 46 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
| 47 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"relu"`):
|
| 48 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"relu"`,
|
| 49 |
+
`"relu"`, `"silu"` and `"relu_new"` are supported.
|
| 50 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
| 51 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
| 52 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
| 53 |
+
The dropout ratio for the attention probabilities.
|
| 54 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
| 55 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 56 |
+
just in case (e.g., 512 or 1024 or 2048).
|
| 57 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
| 58 |
+
The vocabulary size of the `token_type_ids` passed when calling [`ClapTextModel`].
|
| 59 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
| 60 |
+
The epsilon used by the layer normalization layers.
|
| 61 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
| 62 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
| 63 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
| 64 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
| 65 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
| 66 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
| 67 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
| 68 |
+
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
| 69 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 70 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 71 |
+
relevant if `config.is_decoder=True`.
|
| 72 |
+
projection_hidden_act (`str`, *optional*, defaults to `"relu"`):
|
| 73 |
+
The non-linear activation function (function or string) in the projection layer. If string, `"gelu"`,
|
| 74 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
| 75 |
+
projection_dim (`int`, *optional*, defaults to 512)
|
| 76 |
+
Dimension of the projection head of the `ClapTextModelWithProjection`.
|
| 77 |
+
|
| 78 |
+
Examples:
|
| 79 |
+
|
| 80 |
+
```python
|
| 81 |
+
>>> from transformers import ClapTextConfig, ClapTextModel
|
| 82 |
+
|
| 83 |
+
>>> # Initializing a CLAP text configuration
|
| 84 |
+
>>> configuration = ClapTextConfig()
|
| 85 |
+
|
| 86 |
+
>>> # Initializing a model (with random weights) from the configuration
|
| 87 |
+
>>> model = ClapTextModel(configuration)
|
| 88 |
+
|
| 89 |
+
>>> # Accessing the model configuration
|
| 90 |
+
>>> configuration = model.config
|
| 91 |
+
```"""
|
| 92 |
+
|
| 93 |
+
model_type = "clap_text_model"
|
| 94 |
+
base_config_key = "text_config"
|
| 95 |
+
|
| 96 |
+
def __init__(
|
| 97 |
+
self,
|
| 98 |
+
vocab_size=50265,
|
| 99 |
+
hidden_size=768,
|
| 100 |
+
num_hidden_layers=12,
|
| 101 |
+
num_attention_heads=12,
|
| 102 |
+
intermediate_size=3072,
|
| 103 |
+
hidden_act="gelu",
|
| 104 |
+
hidden_dropout_prob=0.1,
|
| 105 |
+
attention_probs_dropout_prob=0.1,
|
| 106 |
+
max_position_embeddings=514,
|
| 107 |
+
type_vocab_size=1,
|
| 108 |
+
initializer_factor=1.0,
|
| 109 |
+
layer_norm_eps=1e-12,
|
| 110 |
+
projection_dim=512,
|
| 111 |
+
pad_token_id=1,
|
| 112 |
+
bos_token_id=0,
|
| 113 |
+
eos_token_id=2,
|
| 114 |
+
position_embedding_type="absolute",
|
| 115 |
+
use_cache=True,
|
| 116 |
+
projection_hidden_act="relu",
|
| 117 |
+
**kwargs,
|
| 118 |
+
):
|
| 119 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
| 120 |
+
|
| 121 |
+
self.vocab_size = vocab_size
|
| 122 |
+
self.hidden_size = hidden_size
|
| 123 |
+
self.num_hidden_layers = num_hidden_layers
|
| 124 |
+
self.num_attention_heads = num_attention_heads
|
| 125 |
+
self.hidden_act = hidden_act
|
| 126 |
+
self.intermediate_size = intermediate_size
|
| 127 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
| 128 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
| 129 |
+
self.max_position_embeddings = max_position_embeddings
|
| 130 |
+
self.type_vocab_size = type_vocab_size
|
| 131 |
+
self.initializer_factor = initializer_factor
|
| 132 |
+
self.layer_norm_eps = layer_norm_eps
|
| 133 |
+
self.position_embedding_type = position_embedding_type
|
| 134 |
+
self.use_cache = use_cache
|
| 135 |
+
self.projection_hidden_act = projection_hidden_act
|
| 136 |
+
self.projection_dim = projection_dim
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
class ClapAudioConfig(PretrainedConfig):
|
| 140 |
+
r"""
|
| 141 |
+
This is the configuration class to store the configuration of a [`ClapAudioModel`]. It is used to instantiate a
|
| 142 |
+
CLAP audio encoder according to the specified arguments, defining the model architecture. Instantiating a
|
| 143 |
+
configuration with the defaults will yield a similar configuration to that of the audio encoder of the CLAP
|
| 144 |
+
[laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) architecture.
|
| 145 |
+
|
| 146 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 147 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 148 |
+
|
| 149 |
+
Args:
|
| 150 |
+
window_size (`int`, *optional*, defaults to 8):
|
| 151 |
+
Image size of the spectrogram
|
| 152 |
+
num_mel_bins (`int`, *optional*, defaults to 64):
|
| 153 |
+
Number of mel features used per frames. Should correspond to the value used in the `ClapProcessor` class.
|
| 154 |
+
spec_size (`int`, *optional*, defaults to 256):
|
| 155 |
+
Desired input size of the spectrogram that the model supports. It can be different from the output of the
|
| 156 |
+
`ClapFeatureExtractor`, in which case the input features will be resized. Corresponds to the `image_size`
|
| 157 |
+
of the audio models.
|
| 158 |
+
hidden_act (`str`, *optional*, defaults to `"gelu"`):
|
| 159 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 160 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
| 161 |
+
patch_size (`int`, *optional*, defaults to 4):
|
| 162 |
+
Patch size for the audio spectrogram
|
| 163 |
+
patch_stride (`list`, *optional*, defaults to `[4, 4]`):
|
| 164 |
+
Patch stride for the audio spectrogram
|
| 165 |
+
num_classes (`int`, *optional*, defaults to 527):
|
| 166 |
+
Number of classes used for the head training
|
| 167 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
| 168 |
+
Hidden size of the output of the audio encoder. Correspond to the dimension of the penultimate layer's
|
| 169 |
+
output,which is sent to the projection MLP layer.
|
| 170 |
+
projection_dim (`int`, *optional*, defaults to 512):
|
| 171 |
+
Hidden size of the projection layer.
|
| 172 |
+
depths (`list`, *optional*, defaults to `[2, 2, 6, 2]`):
|
| 173 |
+
Depths used for the Swin Layers of the audio model
|
| 174 |
+
num_attention_heads (`list`, *optional*, defaults to `[4, 8, 16, 32]`):
|
| 175 |
+
Number of attention heads used for the Swin Layers of the audio model
|
| 176 |
+
enable_fusion (`bool`, *optional*, defaults to `False`):
|
| 177 |
+
Whether or not to enable patch fusion. This is the main contribution of the authors, and should give the
|
| 178 |
+
best results.
|
| 179 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
| 180 |
+
The dropout probability for all fully connected layers in the encoder.
|
| 181 |
+
fusion_type (`[type]`, *optional*):
|
| 182 |
+
Fusion type used for the patch fusion.
|
| 183 |
+
patch_embed_input_channels (`int`, *optional*, defaults to 1):
|
| 184 |
+
Number of channels used for the input spectrogram
|
| 185 |
+
flatten_patch_embeds (`bool`, *optional*, defaults to `True`):
|
| 186 |
+
Whether or not to flatten the patch embeddings
|
| 187 |
+
patch_embeds_hidden_size (`int`, *optional*, defaults to 96):
|
| 188 |
+
Hidden size of the patch embeddings. It is used as the number of output channels.
|
| 189 |
+
enable_patch_layer_norm (`bool`, *optional*, defaults to `True`):
|
| 190 |
+
Whether or not to enable layer normalization for the patch embeddings
|
| 191 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
| 192 |
+
Drop path rate for the patch fusion
|
| 193 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
| 194 |
+
The dropout ratio for the attention probabilities.
|
| 195 |
+
qkv_bias (`bool`, *optional*, defaults to `True`):
|
| 196 |
+
Whether or not to add a bias to the query, key, value projections.
|
| 197 |
+
mlp_ratio (`float`, *optional*, defaults to 4.0):
|
| 198 |
+
Ratio of the mlp hidden dim to embedding dim.
|
| 199 |
+
aff_block_r (`int`, *optional*, defaults to 4):
|
| 200 |
+
downsize_ratio used in the AudioFF block
|
| 201 |
+
num_hidden_layers (`int`, *optional*, defaults to 4):
|
| 202 |
+
Number of hidden layers in the Transformer encoder.
|
| 203 |
+
projection_hidden_act (`str`, *optional*, defaults to `"relu"`):
|
| 204 |
+
The non-linear activation function (function or string) in the projection layer. If string, `"gelu"`,
|
| 205 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
| 206 |
+
layer_norm_eps (`[type]`, *optional*, defaults to 1e-05):
|
| 207 |
+
The epsilon used by the layer normalization layers.
|
| 208 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
| 209 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
| 210 |
+
testing).
|
| 211 |
+
|
| 212 |
+
Example:
|
| 213 |
+
|
| 214 |
+
```python
|
| 215 |
+
>>> from transformers import ClapAudioConfig, ClapAudioModel
|
| 216 |
+
|
| 217 |
+
>>> # Initializing a ClapAudioConfig with laion/clap-htsat-fused style configuration
|
| 218 |
+
>>> configuration = ClapAudioConfig()
|
| 219 |
+
|
| 220 |
+
>>> # Initializing a ClapAudioModel (with random weights) from the laion/clap-htsat-fused style configuration
|
| 221 |
+
>>> model = ClapAudioModel(configuration)
|
| 222 |
+
|
| 223 |
+
>>> # Accessing the model configuration
|
| 224 |
+
>>> configuration = model.config
|
| 225 |
+
```"""
|
| 226 |
+
|
| 227 |
+
model_type = "clap_audio_model"
|
| 228 |
+
base_config_key = "audio_config"
|
| 229 |
+
|
| 230 |
+
def __init__(
|
| 231 |
+
self,
|
| 232 |
+
window_size=8,
|
| 233 |
+
num_mel_bins=64,
|
| 234 |
+
spec_size=256,
|
| 235 |
+
hidden_act="gelu",
|
| 236 |
+
patch_size=4,
|
| 237 |
+
patch_stride=[4, 4],
|
| 238 |
+
num_classes=527,
|
| 239 |
+
hidden_size=768,
|
| 240 |
+
projection_dim=512,
|
| 241 |
+
depths=[2, 2, 6, 2],
|
| 242 |
+
num_attention_heads=[4, 8, 16, 32],
|
| 243 |
+
enable_fusion=False,
|
| 244 |
+
hidden_dropout_prob=0.1,
|
| 245 |
+
fusion_type=None,
|
| 246 |
+
patch_embed_input_channels=1,
|
| 247 |
+
flatten_patch_embeds=True,
|
| 248 |
+
patch_embeds_hidden_size=96,
|
| 249 |
+
enable_patch_layer_norm=True,
|
| 250 |
+
drop_path_rate=0.0,
|
| 251 |
+
attention_probs_dropout_prob=0.0,
|
| 252 |
+
qkv_bias=True,
|
| 253 |
+
mlp_ratio=4.0,
|
| 254 |
+
aff_block_r=4,
|
| 255 |
+
num_hidden_layers=4,
|
| 256 |
+
projection_hidden_act="relu",
|
| 257 |
+
layer_norm_eps=1e-5,
|
| 258 |
+
initializer_factor=1.0,
|
| 259 |
+
**kwargs,
|
| 260 |
+
):
|
| 261 |
+
super().__init__(**kwargs)
|
| 262 |
+
self.window_size = window_size
|
| 263 |
+
self.num_mel_bins = num_mel_bins
|
| 264 |
+
self.spec_size = spec_size
|
| 265 |
+
self.patch_size = patch_size
|
| 266 |
+
self.patch_stride = patch_stride
|
| 267 |
+
self.num_classes = num_classes
|
| 268 |
+
self.hidden_size = hidden_size
|
| 269 |
+
self.depths = depths
|
| 270 |
+
self.num_hidden_layers = num_hidden_layers
|
| 271 |
+
self.num_attention_heads = num_attention_heads
|
| 272 |
+
self.window_size = window_size
|
| 273 |
+
self.enable_fusion = enable_fusion
|
| 274 |
+
self.fusion_type = fusion_type
|
| 275 |
+
self.hidden_act = hidden_act
|
| 276 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
| 277 |
+
self.projection_dim = projection_dim
|
| 278 |
+
self.flatten_patch_embeds = flatten_patch_embeds
|
| 279 |
+
self.patch_embeds_hidden_size = patch_embeds_hidden_size
|
| 280 |
+
self.enable_patch_layer_norm = enable_patch_layer_norm
|
| 281 |
+
self.drop_path_rate = drop_path_rate
|
| 282 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
| 283 |
+
self.qkv_bias = qkv_bias
|
| 284 |
+
self.mlp_ratio = mlp_ratio
|
| 285 |
+
self.patch_embed_input_channels = patch_embed_input_channels
|
| 286 |
+
self.aff_block_r = aff_block_r
|
| 287 |
+
self.layer_norm_eps = layer_norm_eps
|
| 288 |
+
self.initializer_factor = initializer_factor
|
| 289 |
+
self.projection_hidden_act = projection_hidden_act
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
class ClapConfig(PretrainedConfig):
|
| 293 |
+
r"""
|
| 294 |
+
[`ClapConfig`] is the configuration class to store the configuration of a [`ClapModel`]. It is used to instantiate
|
| 295 |
+
a CLAP model according to the specified arguments, defining the text model and audio model configs. Instantiating a
|
| 296 |
+
configuration with the defaults will yield a similar configuration to that of the CLAP
|
| 297 |
+
[laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) architecture.
|
| 298 |
+
|
| 299 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 300 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 301 |
+
|
| 302 |
+
Args:
|
| 303 |
+
text_config (`dict`, *optional*):
|
| 304 |
+
Dictionary of configuration options used to initialize [`ClapTextConfig`].
|
| 305 |
+
audio_config (`dict`, *optional*):
|
| 306 |
+
Dictionary of configuration options used to initialize [`ClapAudioConfig`].
|
| 307 |
+
logit_scale_init_value (`float`, *optional*, defaults to 14.29):
|
| 308 |
+
The initial value of the *logit_scale* parameter. Default is used as per the original CLAP implementation.
|
| 309 |
+
projection_dim (`int`, *optional*, defaults to 512):
|
| 310 |
+
Dimensionality of text and audio projection layers.
|
| 311 |
+
projection_hidden_act (`str`, *optional*, defaults to `"relu"`):
|
| 312 |
+
Activation function for the projection layers.
|
| 313 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
| 314 |
+
Factor to scale the initialization of the model weights.
|
| 315 |
+
kwargs (*optional*):
|
| 316 |
+
Dictionary of keyword arguments.
|
| 317 |
+
|
| 318 |
+
Example:
|
| 319 |
+
|
| 320 |
+
```python
|
| 321 |
+
>>> from transformers import ClapConfig, ClapModel
|
| 322 |
+
|
| 323 |
+
>>> # Initializing a ClapConfig with laion-ai/base style configuration
|
| 324 |
+
>>> configuration = ClapConfig()
|
| 325 |
+
|
| 326 |
+
>>> # Initializing a ClapModel (with random weights) from the laion-ai/base style configuration
|
| 327 |
+
>>> model = ClapModel(configuration)
|
| 328 |
+
|
| 329 |
+
>>> # Accessing the model configuration
|
| 330 |
+
>>> configuration = model.config
|
| 331 |
+
|
| 332 |
+
>>> # We can also initialize a ClapConfig from a ClapTextConfig and a ClapAudioConfig
|
| 333 |
+
>>> from transformers import ClapTextConfig, ClapAudioConfig
|
| 334 |
+
|
| 335 |
+
>>> # Initializing a ClapText and ClapAudioConfig configuration
|
| 336 |
+
>>> config_text = ClapTextConfig()
|
| 337 |
+
>>> config_audio = ClapAudioConfig()
|
| 338 |
+
|
| 339 |
+
>>> config = ClapConfig.from_text_audio_configs(config_text, config_audio)
|
| 340 |
+
```"""
|
| 341 |
+
|
| 342 |
+
model_type = "clap"
|
| 343 |
+
sub_configs = {"text_config": ClapTextConfig, "audio_config": ClapAudioConfig}
|
| 344 |
+
|
| 345 |
+
def __init__(
|
| 346 |
+
self,
|
| 347 |
+
text_config=None,
|
| 348 |
+
audio_config=None,
|
| 349 |
+
logit_scale_init_value=(1 / 0.07),
|
| 350 |
+
projection_dim=512,
|
| 351 |
+
projection_hidden_act="relu",
|
| 352 |
+
initializer_factor=1.0,
|
| 353 |
+
**kwargs,
|
| 354 |
+
):
|
| 355 |
+
super().__init__(**kwargs)
|
| 356 |
+
|
| 357 |
+
if text_config is None:
|
| 358 |
+
text_config = {}
|
| 359 |
+
logger.info("text_config is None. Initializing the ClapTextConfig with default values.")
|
| 360 |
+
|
| 361 |
+
if audio_config is None:
|
| 362 |
+
audio_config = {}
|
| 363 |
+
logger.info("audio_config is None. initializing the ClapAudioConfig with default values.")
|
| 364 |
+
|
| 365 |
+
self.text_config = ClapTextConfig(**text_config)
|
| 366 |
+
self.audio_config = ClapAudioConfig(**audio_config)
|
| 367 |
+
self.text_config.projection_dim = projection_dim
|
| 368 |
+
self.audio_config.projection_dim = projection_dim
|
| 369 |
+
|
| 370 |
+
self.text_config.projection_hidden_act = projection_hidden_act
|
| 371 |
+
self.audio_config.projection_hidden_act = projection_hidden_act
|
| 372 |
+
|
| 373 |
+
self.projection_dim = projection_dim
|
| 374 |
+
self.projection_hidden_act = projection_hidden_act
|
| 375 |
+
self.hidden_size = self.text_config.hidden_size
|
| 376 |
+
|
| 377 |
+
self.logit_scale_init_value = logit_scale_init_value
|
| 378 |
+
self.initializer_factor = initializer_factor
|
| 379 |
+
self.num_hidden_layers = self.text_config.num_hidden_layers + len(self.audio_config.depths)
|
| 380 |
+
|
| 381 |
+
@classmethod
|
| 382 |
+
def from_text_audio_configs(cls, text_config: ClapTextConfig, audio_config: ClapAudioConfig, **kwargs):
|
| 383 |
+
r"""
|
| 384 |
+
Instantiate a [`ClapConfig`] (or a derived class) from clap text model configuration and clap audio model
|
| 385 |
+
configuration.
|
| 386 |
+
|
| 387 |
+
Returns:
|
| 388 |
+
[`ClapConfig`]: An instance of a configuration object
|
| 389 |
+
"""
|
| 390 |
+
|
| 391 |
+
return cls(text_config=text_config.to_dict(), audio_config=audio_config.to_dict(), **kwargs)
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
__all__ = ["ClapAudioConfig", "ClapConfig", "ClapTextConfig"]
|
docs/transformers/build/lib/transformers/models/clap/convert_clap_original_pytorch_to_hf.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
import argparse
|
| 17 |
+
import re
|
| 18 |
+
|
| 19 |
+
from laion_clap import CLAP_Module
|
| 20 |
+
|
| 21 |
+
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
KEYS_TO_MODIFY_MAPPING = {
|
| 25 |
+
"text_branch": "text_model",
|
| 26 |
+
"audio_branch": "audio_model.audio_encoder",
|
| 27 |
+
"attn": "attention.self",
|
| 28 |
+
"self.proj": "output.dense",
|
| 29 |
+
"attention.self_mask": "attn_mask",
|
| 30 |
+
"mlp.fc1": "intermediate.dense",
|
| 31 |
+
"mlp.fc2": "output.dense",
|
| 32 |
+
"norm1": "layernorm_before",
|
| 33 |
+
"norm2": "layernorm_after",
|
| 34 |
+
"bn0": "batch_norm",
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
processor = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc")
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def init_clap(checkpoint_path, model_type, enable_fusion=False):
|
| 41 |
+
model = CLAP_Module(
|
| 42 |
+
amodel=model_type,
|
| 43 |
+
enable_fusion=enable_fusion,
|
| 44 |
+
)
|
| 45 |
+
model.load_ckpt(checkpoint_path)
|
| 46 |
+
return model
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def get_config_from_original(clap_model):
|
| 50 |
+
audio_config = {
|
| 51 |
+
"patch_embeds_hidden_size": clap_model.model.audio_branch.embed_dim,
|
| 52 |
+
"depths": clap_model.model.audio_branch.depths,
|
| 53 |
+
"hidden_size": clap_model.model.audio_projection[0].in_features,
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
text_config = {"hidden_size": clap_model.model.text_branch.pooler.dense.in_features}
|
| 57 |
+
|
| 58 |
+
return ClapConfig(audio_config=audio_config, text_config=text_config)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def rename_state_dict(state_dict):
|
| 62 |
+
model_state_dict = {}
|
| 63 |
+
|
| 64 |
+
sequential_layers_pattern = r".*sequential.(\d+).*"
|
| 65 |
+
text_projection_pattern = r".*_projection.(\d+).*"
|
| 66 |
+
|
| 67 |
+
for key, value in state_dict.items():
|
| 68 |
+
# check if any key needs to be modified
|
| 69 |
+
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
|
| 70 |
+
if key_to_modify in key:
|
| 71 |
+
key = key.replace(key_to_modify, new_key)
|
| 72 |
+
|
| 73 |
+
if re.match(sequential_layers_pattern, key):
|
| 74 |
+
# replace sequential layers with list
|
| 75 |
+
sequential_layer = re.match(sequential_layers_pattern, key).group(1)
|
| 76 |
+
|
| 77 |
+
key = key.replace(f"sequential.{sequential_layer}.", f"layers.{int(sequential_layer) // 3}.linear.")
|
| 78 |
+
elif re.match(text_projection_pattern, key):
|
| 79 |
+
projecton_layer = int(re.match(text_projection_pattern, key).group(1))
|
| 80 |
+
|
| 81 |
+
# Because in CLAP they use `nn.Sequential`...
|
| 82 |
+
transformers_projection_layer = 1 if projecton_layer == 0 else 2
|
| 83 |
+
|
| 84 |
+
key = key.replace(f"_projection.{projecton_layer}.", f"_projection.linear{transformers_projection_layer}.")
|
| 85 |
+
|
| 86 |
+
if "audio" and "qkv" in key:
|
| 87 |
+
# split qkv into query key and value
|
| 88 |
+
mixed_qkv = value
|
| 89 |
+
qkv_dim = mixed_qkv.size(0) // 3
|
| 90 |
+
|
| 91 |
+
query_layer = mixed_qkv[:qkv_dim]
|
| 92 |
+
key_layer = mixed_qkv[qkv_dim : qkv_dim * 2]
|
| 93 |
+
value_layer = mixed_qkv[qkv_dim * 2 :]
|
| 94 |
+
|
| 95 |
+
model_state_dict[key.replace("qkv", "query")] = query_layer
|
| 96 |
+
model_state_dict[key.replace("qkv", "key")] = key_layer
|
| 97 |
+
model_state_dict[key.replace("qkv", "value")] = value_layer
|
| 98 |
+
else:
|
| 99 |
+
model_state_dict[key] = value
|
| 100 |
+
|
| 101 |
+
return model_state_dict
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def convert_clap_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path, model_type, enable_fusion=False):
|
| 105 |
+
clap_model = init_clap(checkpoint_path, model_type, enable_fusion=enable_fusion)
|
| 106 |
+
|
| 107 |
+
clap_model.eval()
|
| 108 |
+
state_dict = clap_model.model.state_dict()
|
| 109 |
+
state_dict = rename_state_dict(state_dict)
|
| 110 |
+
|
| 111 |
+
transformers_config = get_config_from_original(clap_model)
|
| 112 |
+
transformers_config.audio_config.enable_fusion = enable_fusion
|
| 113 |
+
model = ClapModel(transformers_config)
|
| 114 |
+
|
| 115 |
+
# ignore the spectrogram embedding layer
|
| 116 |
+
model.load_state_dict(state_dict, strict=False)
|
| 117 |
+
|
| 118 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
| 119 |
+
transformers_config.save_pretrained(pytorch_dump_folder_path)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
if __name__ == "__main__":
|
| 123 |
+
parser = argparse.ArgumentParser()
|
| 124 |
+
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
|
| 125 |
+
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
|
| 126 |
+
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
|
| 127 |
+
parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not")
|
| 128 |
+
parser.add_argument("--model_type", default="HTSAT-tiny", type=str, help="Whether to enable fusion or not")
|
| 129 |
+
args = parser.parse_args()
|
| 130 |
+
|
| 131 |
+
convert_clap_checkpoint(
|
| 132 |
+
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.model_type, args.enable_fusion
|
| 133 |
+
)
|
docs/transformers/build/lib/transformers/models/clap/feature_extraction_clap.py
ADDED
|
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""Feature extractor class for CLAP."""
|
| 16 |
+
|
| 17 |
+
import copy
|
| 18 |
+
from typing import Any, Dict, List, Optional, Union
|
| 19 |
+
|
| 20 |
+
import numpy as np
|
| 21 |
+
import torch
|
| 22 |
+
|
| 23 |
+
from ...audio_utils import mel_filter_bank, spectrogram, window_function
|
| 24 |
+
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
|
| 25 |
+
from ...feature_extraction_utils import BatchFeature
|
| 26 |
+
from ...utils import TensorType, logging
|
| 27 |
+
from ...utils.import_utils import requires
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
logger = logging.get_logger(__name__)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@requires(backends=("torch",))
|
| 34 |
+
class ClapFeatureExtractor(SequenceFeatureExtractor):
|
| 35 |
+
r"""
|
| 36 |
+
Constructs a CLAP feature extractor.
|
| 37 |
+
|
| 38 |
+
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
|
| 39 |
+
most of the main methods. Users should refer to this superclass for more information regarding those methods.
|
| 40 |
+
|
| 41 |
+
This class extracts mel-filter bank features from raw speech using a custom numpy implementation of the *Short Time
|
| 42 |
+
Fourier Transform* (STFT) which should match pytorch's `torch.stft` equivalent.
|
| 43 |
+
|
| 44 |
+
Args:
|
| 45 |
+
feature_size (`int`, *optional*, defaults to 64):
|
| 46 |
+
The feature dimension of the extracted Mel spectrograms. This corresponds to the number of mel filters
|
| 47 |
+
(`n_mels`).
|
| 48 |
+
sampling_rate (`int`, *optional*, defaults to 48000):
|
| 49 |
+
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). This only serves
|
| 50 |
+
to warn users if the audio fed to the feature extractor does not have the same sampling rate.
|
| 51 |
+
hop_length (`int`,*optional*, defaults to 480):
|
| 52 |
+
Length of the overlaping windows for the STFT used to obtain the Mel Spectrogram. The audio will be split
|
| 53 |
+
in smaller `frames` with a step of `hop_length` between each frame.
|
| 54 |
+
max_length_s (`int`, *optional*, defaults to 10):
|
| 55 |
+
The maximum input length of the model in seconds. This is used to pad the audio.
|
| 56 |
+
fft_window_size (`int`, *optional*, defaults to 1024):
|
| 57 |
+
Size of the window (in samples) on which the Fourier transform is applied. This controls the frequency
|
| 58 |
+
resolution of the spectrogram. 400 means that the fourrier transform is computed on windows of 400 samples.
|
| 59 |
+
padding_value (`float`, *optional*, defaults to 0.0):
|
| 60 |
+
Padding value used to pad the audio. Should correspond to silences.
|
| 61 |
+
return_attention_mask (`bool`, *optional*, defaults to `False`):
|
| 62 |
+
Whether or not the model should return the attention masks coresponding to the input.
|
| 63 |
+
frequency_min (`float`, *optional*, defaults to 0):
|
| 64 |
+
The lowest frequency of interest. The STFT will not be computed for values below this.
|
| 65 |
+
frequency_max (`float`, *optional*, defaults to 14000):
|
| 66 |
+
The highest frequency of interest. The STFT will not be computed for values above this.
|
| 67 |
+
top_db (`float`, *optional*):
|
| 68 |
+
The highest decibel value used to convert the mel spectrogram to the log scale. For more details see the
|
| 69 |
+
`audio_utils.power_to_db` function
|
| 70 |
+
truncation (`str`, *optional*, defaults to `"fusion"`):
|
| 71 |
+
Truncation pattern for long audio inputs. Two patterns are available:
|
| 72 |
+
- `fusion` will use `_random_mel_fusion`, which stacks 3 random crops from the mel spectrogram and a
|
| 73 |
+
downsampled version of the entire mel spectrogram.
|
| 74 |
+
If `config.fusion` is set to True, shorter audios also need to to return 4 mels, which will just be a copy
|
| 75 |
+
of the original mel obtained from the padded audio.
|
| 76 |
+
- `rand_trunc` will select a random crop of the mel spectrogram.
|
| 77 |
+
padding (`str`, *optional*, defaults to `"repeatpad"`):
|
| 78 |
+
Padding pattern for shorter audio inputs. Three patterns were originally implemented:
|
| 79 |
+
- `repeatpad`: the audio is repeated, and then padded to fit the `max_length`.
|
| 80 |
+
- `repeat`: the audio is repeated and then cut to fit the `max_length`
|
| 81 |
+
- `pad`: the audio is padded.
|
| 82 |
+
"""
|
| 83 |
+
|
| 84 |
+
model_input_names = ["input_features", "is_longer"]
|
| 85 |
+
|
| 86 |
+
def __init__(
|
| 87 |
+
self,
|
| 88 |
+
feature_size=64,
|
| 89 |
+
sampling_rate=48_000,
|
| 90 |
+
hop_length=480,
|
| 91 |
+
max_length_s=10,
|
| 92 |
+
fft_window_size=1024,
|
| 93 |
+
padding_value=0.0,
|
| 94 |
+
return_attention_mask=False, # pad inputs to max length with silence token (zero) and no attention mask
|
| 95 |
+
frequency_min: float = 0,
|
| 96 |
+
frequency_max: float = 14_000,
|
| 97 |
+
top_db: Optional[int] = None,
|
| 98 |
+
truncation: str = "fusion",
|
| 99 |
+
padding: str = "repeatpad",
|
| 100 |
+
**kwargs,
|
| 101 |
+
):
|
| 102 |
+
super().__init__(
|
| 103 |
+
feature_size=feature_size,
|
| 104 |
+
sampling_rate=sampling_rate,
|
| 105 |
+
padding_value=padding_value,
|
| 106 |
+
return_attention_mask=return_attention_mask,
|
| 107 |
+
**kwargs,
|
| 108 |
+
)
|
| 109 |
+
self.top_db = top_db
|
| 110 |
+
self.truncation = truncation
|
| 111 |
+
self.padding = padding
|
| 112 |
+
self.fft_window_size = fft_window_size
|
| 113 |
+
self.nb_frequency_bins = (fft_window_size >> 1) + 1
|
| 114 |
+
self.hop_length = hop_length
|
| 115 |
+
self.max_length_s = max_length_s
|
| 116 |
+
self.nb_max_samples = max_length_s * sampling_rate
|
| 117 |
+
self.sampling_rate = sampling_rate
|
| 118 |
+
self.frequency_min = frequency_min
|
| 119 |
+
self.frequency_max = frequency_max
|
| 120 |
+
self.mel_filters = mel_filter_bank(
|
| 121 |
+
num_frequency_bins=self.nb_frequency_bins,
|
| 122 |
+
num_mel_filters=feature_size,
|
| 123 |
+
min_frequency=frequency_min,
|
| 124 |
+
max_frequency=frequency_max,
|
| 125 |
+
sampling_rate=sampling_rate,
|
| 126 |
+
norm=None,
|
| 127 |
+
mel_scale="htk",
|
| 128 |
+
)
|
| 129 |
+
self.mel_filters_slaney = mel_filter_bank(
|
| 130 |
+
num_frequency_bins=self.nb_frequency_bins,
|
| 131 |
+
num_mel_filters=feature_size,
|
| 132 |
+
min_frequency=frequency_min,
|
| 133 |
+
max_frequency=frequency_max,
|
| 134 |
+
sampling_rate=sampling_rate,
|
| 135 |
+
norm="slaney",
|
| 136 |
+
mel_scale="slaney",
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
def to_dict(self) -> Dict[str, Any]:
|
| 140 |
+
"""
|
| 141 |
+
Serializes this instance to a Python dictionary.
|
| 142 |
+
|
| 143 |
+
Returns:
|
| 144 |
+
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance, excpet for the
|
| 145 |
+
mel filter banks, which do not need to be saved or printed as they are too long.
|
| 146 |
+
"""
|
| 147 |
+
output = copy.deepcopy(self.__dict__)
|
| 148 |
+
output["feature_extractor_type"] = self.__class__.__name__
|
| 149 |
+
if "mel_filters" in output:
|
| 150 |
+
del output["mel_filters"]
|
| 151 |
+
if "mel_filters_slaney" in output:
|
| 152 |
+
del output["mel_filters_slaney"]
|
| 153 |
+
return output
|
| 154 |
+
|
| 155 |
+
def _np_extract_fbank_features(self, waveform: np.array, mel_filters: Optional[np.array] = None) -> np.ndarray:
|
| 156 |
+
"""
|
| 157 |
+
Compute the log-mel spectrogram of the provided `waveform` using the Hann window. In CLAP, two different filter
|
| 158 |
+
banks are used depending on the truncation pattern:
|
| 159 |
+
- `self.mel_filters`: they correspond to the default parameters of `torchaudio` which can be obtained from
|
| 160 |
+
calling `torchaudio.transforms.MelSpectrogram().mel_scale.fb`. These filters are used when `truncation`
|
| 161 |
+
is set to `"fusion"`.
|
| 162 |
+
- `self.mel_filteres_slaney` : they correspond to the default parameters of `librosa` which used
|
| 163 |
+
`librosa.filters.mel` when computing the mel spectrogram. These filters were only used in the original
|
| 164 |
+
implementation when the truncation mode is not `"fusion"`.
|
| 165 |
+
"""
|
| 166 |
+
log_mel_spectrogram = spectrogram(
|
| 167 |
+
waveform,
|
| 168 |
+
window_function(self.fft_window_size, "hann"),
|
| 169 |
+
frame_length=self.fft_window_size,
|
| 170 |
+
hop_length=self.hop_length,
|
| 171 |
+
power=2.0,
|
| 172 |
+
mel_filters=mel_filters,
|
| 173 |
+
log_mel="dB",
|
| 174 |
+
)
|
| 175 |
+
return log_mel_spectrogram.T
|
| 176 |
+
|
| 177 |
+
def _random_mel_fusion(self, mel, total_frames, chunk_frames):
|
| 178 |
+
ranges = np.array_split(list(range(0, total_frames - chunk_frames + 1)), 3)
|
| 179 |
+
if len(ranges[1]) == 0:
|
| 180 |
+
# if the audio is too short, we just use the first chunk
|
| 181 |
+
ranges[1] = [0]
|
| 182 |
+
if len(ranges[2]) == 0:
|
| 183 |
+
# if the audio is too short, we just use the first chunk
|
| 184 |
+
ranges[2] = [0]
|
| 185 |
+
# randomly choose index for each part
|
| 186 |
+
idx_front = np.random.choice(ranges[0])
|
| 187 |
+
idx_middle = np.random.choice(ranges[1])
|
| 188 |
+
idx_back = np.random.choice(ranges[2])
|
| 189 |
+
|
| 190 |
+
mel_chunk_front = mel[idx_front : idx_front + chunk_frames, :]
|
| 191 |
+
mel_chunk_middle = mel[idx_middle : idx_middle + chunk_frames, :]
|
| 192 |
+
mel_chunk_back = mel[idx_back : idx_back + chunk_frames, :]
|
| 193 |
+
|
| 194 |
+
mel = torch.tensor(mel[None, None, :])
|
| 195 |
+
mel_shrink = torch.nn.functional.interpolate(
|
| 196 |
+
mel, size=[chunk_frames, 64], mode="bilinear", align_corners=False
|
| 197 |
+
)
|
| 198 |
+
mel_shrink = mel_shrink[0][0].numpy()
|
| 199 |
+
mel_fusion = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0)
|
| 200 |
+
return mel_fusion
|
| 201 |
+
|
| 202 |
+
def _get_input_mel(self, waveform: np.array, max_length, truncation, padding) -> np.array:
|
| 203 |
+
"""
|
| 204 |
+
Extracts the mel spectrogram and prepares it for the mode based on the `truncation` and `padding` arguments.
|
| 205 |
+
Four different path are possible:
|
| 206 |
+
- `truncation="fusion"` and the length of the waveform is greater than the max length: the mel spectrogram
|
| 207 |
+
will be computed on the entire audio. 3 random crops and a dowsampled version of the full mel spectrogram
|
| 208 |
+
are then stacked together. They will later be used for `feature_fusion`.
|
| 209 |
+
- `truncation="rand_trunc"` and the length of the waveform is smaller than the max length: the audio is
|
| 210 |
+
padded based on `padding`.
|
| 211 |
+
- `truncation="fusion"` and the length of the waveform is smaller than the max length: the audio is padded
|
| 212 |
+
based on `padding`, and is repeated `4` times.
|
| 213 |
+
- `truncation="rand_trunc"` and the length of the waveform is greater than the max length: the mel
|
| 214 |
+
spectrogram will be computed on a random crop of the waveform.
|
| 215 |
+
|
| 216 |
+
"""
|
| 217 |
+
if waveform.shape[0] > max_length:
|
| 218 |
+
if truncation == "rand_trunc":
|
| 219 |
+
longer = True
|
| 220 |
+
# random crop to max_length (for compatibility) -> this should be handled by self.pad
|
| 221 |
+
overflow = len(waveform) - max_length
|
| 222 |
+
idx = np.random.randint(0, overflow + 1)
|
| 223 |
+
waveform = waveform[idx : idx + max_length]
|
| 224 |
+
input_mel = self._np_extract_fbank_features(waveform, self.mel_filters_slaney)[None, :]
|
| 225 |
+
elif truncation == "fusion":
|
| 226 |
+
mel = self._np_extract_fbank_features(waveform, self.mel_filters)
|
| 227 |
+
chunk_frames = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
|
| 228 |
+
total_frames = mel.shape[0]
|
| 229 |
+
if chunk_frames == total_frames:
|
| 230 |
+
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
|
| 231 |
+
# In this case, we just use the whole audio.
|
| 232 |
+
input_mel = np.stack([mel, mel, mel, mel], axis=0)
|
| 233 |
+
longer = False
|
| 234 |
+
else:
|
| 235 |
+
input_mel = self._random_mel_fusion(mel, total_frames, chunk_frames)
|
| 236 |
+
longer = True
|
| 237 |
+
else:
|
| 238 |
+
raise NotImplementedError(f"data_truncating {truncation} not implemented")
|
| 239 |
+
|
| 240 |
+
else:
|
| 241 |
+
longer = False
|
| 242 |
+
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
|
| 243 |
+
if waveform.shape[0] < max_length:
|
| 244 |
+
if padding == "repeat":
|
| 245 |
+
n_repeat = int(max_length / len(waveform))
|
| 246 |
+
waveform = np.tile(waveform, n_repeat + 1)[:max_length]
|
| 247 |
+
if padding == "repeatpad":
|
| 248 |
+
n_repeat = int(max_length / len(waveform))
|
| 249 |
+
waveform = np.tile(waveform, n_repeat)
|
| 250 |
+
waveform = np.pad(waveform, (0, max_length - waveform.shape[0]), mode="constant", constant_values=0)
|
| 251 |
+
|
| 252 |
+
if truncation == "fusion":
|
| 253 |
+
input_mel = self._np_extract_fbank_features(waveform, self.mel_filters)
|
| 254 |
+
input_mel = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0)
|
| 255 |
+
else:
|
| 256 |
+
input_mel = self._np_extract_fbank_features(waveform, self.mel_filters_slaney)[None, :]
|
| 257 |
+
|
| 258 |
+
return input_mel, longer
|
| 259 |
+
|
| 260 |
+
def __call__(
|
| 261 |
+
self,
|
| 262 |
+
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
|
| 263 |
+
truncation: Optional[str] = None,
|
| 264 |
+
padding: Optional[str] = None,
|
| 265 |
+
max_length: Optional[int] = None,
|
| 266 |
+
sampling_rate: Optional[int] = None,
|
| 267 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 268 |
+
**kwargs,
|
| 269 |
+
) -> BatchFeature:
|
| 270 |
+
"""
|
| 271 |
+
Main method to featurize and prepare for the model one or several sequence(s).
|
| 272 |
+
|
| 273 |
+
Args:
|
| 274 |
+
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
|
| 275 |
+
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
|
| 276 |
+
values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
|
| 277 |
+
stereo, i.e. single float per timestep.
|
| 278 |
+
truncation (`str`, *optional*):
|
| 279 |
+
Truncation pattern for long audio inputs. Two patterns are available:
|
| 280 |
+
- `fusion` will use `_random_mel_fusion`, which stacks 3 random crops from the mel spectrogram and
|
| 281 |
+
a downsampled version of the entire mel spectrogram.
|
| 282 |
+
If `config.fusion` is set to True, shorter audios also need to to return 4 mels, which will just be a
|
| 283 |
+
copy of the original mel obtained from the padded audio.
|
| 284 |
+
- `rand_trunc` will select a random crop of the mel spectrogram.
|
| 285 |
+
padding (`str`, *optional*):
|
| 286 |
+
Padding pattern for shorter audio inputs. Three patterns were originally implemented:
|
| 287 |
+
- `repeatpad`: the audio is repeated, and then padded to fit the `max_length`.
|
| 288 |
+
- `repeat`: the audio is repeated and then cut to fit the `max_length`
|
| 289 |
+
- `pad`: the audio is padded.
|
| 290 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
| 291 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
| 292 |
+
|
| 293 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
| 294 |
+
- `'pt'`: Return PyTorch `torch.np.array` objects.
|
| 295 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
| 296 |
+
sampling_rate (`int`, *optional*):
|
| 297 |
+
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
|
| 298 |
+
`sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition
|
| 299 |
+
pipeline.
|
| 300 |
+
"""
|
| 301 |
+
truncation = truncation if truncation is not None else self.truncation
|
| 302 |
+
padding = padding if padding else self.padding
|
| 303 |
+
|
| 304 |
+
if sampling_rate is not None:
|
| 305 |
+
if sampling_rate != self.sampling_rate:
|
| 306 |
+
raise ValueError(
|
| 307 |
+
f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"
|
| 308 |
+
f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"
|
| 309 |
+
f" was sampled with {self.sampling_rate} and not {sampling_rate}."
|
| 310 |
+
)
|
| 311 |
+
else:
|
| 312 |
+
logger.warning(
|
| 313 |
+
f"It is strongly recommended to pass the `sampling_rate` argument to `{self.__class__.__name__}()`. "
|
| 314 |
+
"Failing to do so can result in silent errors that might be hard to debug."
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
|
| 318 |
+
if is_batched_numpy and len(raw_speech.shape) > 2:
|
| 319 |
+
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
|
| 320 |
+
is_batched = is_batched_numpy or (
|
| 321 |
+
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
if is_batched:
|
| 325 |
+
raw_speech = [np.asarray(speech, dtype=np.float64) for speech in raw_speech]
|
| 326 |
+
elif not is_batched and not isinstance(raw_speech, np.ndarray):
|
| 327 |
+
raw_speech = np.asarray(raw_speech, dtype=np.float64)
|
| 328 |
+
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
|
| 329 |
+
raw_speech = raw_speech.astype(np.float64)
|
| 330 |
+
|
| 331 |
+
# always return batch
|
| 332 |
+
if not is_batched:
|
| 333 |
+
raw_speech = [np.asarray(raw_speech)]
|
| 334 |
+
|
| 335 |
+
# convert to mel spectrogram, truncate and pad if needed.
|
| 336 |
+
padded_inputs = [
|
| 337 |
+
self._get_input_mel(waveform, max_length if max_length else self.nb_max_samples, truncation, padding)
|
| 338 |
+
for waveform in raw_speech
|
| 339 |
+
]
|
| 340 |
+
|
| 341 |
+
input_mel = []
|
| 342 |
+
is_longer = []
|
| 343 |
+
for mel, longer in padded_inputs:
|
| 344 |
+
input_mel.append(mel)
|
| 345 |
+
is_longer.append(longer)
|
| 346 |
+
|
| 347 |
+
if truncation == "fusion" and sum(is_longer) == 0:
|
| 348 |
+
# if no audio is longer than 10s, then randomly select one audio to be longer
|
| 349 |
+
rand_idx = np.random.randint(0, len(input_mel))
|
| 350 |
+
is_longer[rand_idx] = True
|
| 351 |
+
|
| 352 |
+
if isinstance(input_mel[0], List):
|
| 353 |
+
input_mel = [np.asarray(feature, dtype=np.float64) for feature in input_mel]
|
| 354 |
+
|
| 355 |
+
# is_longer is a list of bool
|
| 356 |
+
is_longer = [[longer] for longer in is_longer]
|
| 357 |
+
|
| 358 |
+
input_features = {"input_features": input_mel, "is_longer": is_longer}
|
| 359 |
+
input_features = BatchFeature(input_features)
|
| 360 |
+
|
| 361 |
+
if return_tensors is not None:
|
| 362 |
+
input_features = input_features.convert_to_tensors(return_tensors)
|
| 363 |
+
|
| 364 |
+
return input_features
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
__all__ = ["ClapFeatureExtractor"]
|
docs/transformers/build/lib/transformers/models/clap/modeling_clap.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
docs/transformers/build/lib/transformers/models/clap/processing_clap.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""
|
| 16 |
+
Audio/Text processor class for CLAP
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from ...processing_utils import ProcessorMixin
|
| 20 |
+
from ...tokenization_utils_base import BatchEncoding
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class ClapProcessor(ProcessorMixin):
|
| 24 |
+
r"""
|
| 25 |
+
Constructs a CLAP processor which wraps a CLAP feature extractor and a RoBerta tokenizer into a single processor.
|
| 26 |
+
|
| 27 |
+
[`ClapProcessor`] offers all the functionalities of [`ClapFeatureExtractor`] and [`RobertaTokenizerFast`]. See the
|
| 28 |
+
[`~ClapProcessor.__call__`] and [`~ClapProcessor.decode`] for more information.
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
feature_extractor ([`ClapFeatureExtractor`]):
|
| 32 |
+
The audio processor is a required input.
|
| 33 |
+
tokenizer ([`RobertaTokenizerFast`]):
|
| 34 |
+
The tokenizer is a required input.
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
feature_extractor_class = "ClapFeatureExtractor"
|
| 38 |
+
tokenizer_class = ("RobertaTokenizer", "RobertaTokenizerFast")
|
| 39 |
+
|
| 40 |
+
def __init__(self, feature_extractor, tokenizer):
|
| 41 |
+
super().__init__(feature_extractor, tokenizer)
|
| 42 |
+
|
| 43 |
+
def __call__(self, text=None, audios=None, return_tensors=None, **kwargs):
|
| 44 |
+
"""
|
| 45 |
+
Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text`
|
| 46 |
+
and `kwargs` arguments to RobertaTokenizerFast's [`~RobertaTokenizerFast.__call__`] if `text` is not `None` to
|
| 47 |
+
encode the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to
|
| 48 |
+
ClapFeatureExtractor's [`~ClapFeatureExtractor.__call__`] if `audios` is not `None`. Please refer to the
|
| 49 |
+
docstring of the above two methods for more information.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
| 53 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
| 54 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
| 55 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
| 56 |
+
audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
| 57 |
+
The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case
|
| 58 |
+
of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels,
|
| 59 |
+
and T the sample length of the audio.
|
| 60 |
+
|
| 61 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
| 62 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
| 63 |
+
|
| 64 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
| 65 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
| 66 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
| 67 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
| 68 |
+
|
| 69 |
+
Returns:
|
| 70 |
+
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
| 71 |
+
|
| 72 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
| 73 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
| 74 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
| 75 |
+
`None`).
|
| 76 |
+
- **audio_features** -- Audio features to be fed to a model. Returned when `audios` is not `None`.
|
| 77 |
+
"""
|
| 78 |
+
sampling_rate = kwargs.pop("sampling_rate", None)
|
| 79 |
+
|
| 80 |
+
if text is None and audios is None:
|
| 81 |
+
raise ValueError("You have to specify either text or audios. Both cannot be none.")
|
| 82 |
+
|
| 83 |
+
if text is not None:
|
| 84 |
+
encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
|
| 85 |
+
|
| 86 |
+
if audios is not None:
|
| 87 |
+
audio_features = self.feature_extractor(
|
| 88 |
+
audios, sampling_rate=sampling_rate, return_tensors=return_tensors, **kwargs
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
if text is not None and audios is not None:
|
| 92 |
+
encoding.update(audio_features)
|
| 93 |
+
return encoding
|
| 94 |
+
elif text is not None:
|
| 95 |
+
return encoding
|
| 96 |
+
else:
|
| 97 |
+
return BatchEncoding(data=dict(**audio_features), tensor_type=return_tensors)
|
| 98 |
+
|
| 99 |
+
def batch_decode(self, *args, **kwargs):
|
| 100 |
+
"""
|
| 101 |
+
This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 102 |
+
refer to the docstring of this method for more information.
|
| 103 |
+
"""
|
| 104 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 105 |
+
|
| 106 |
+
def decode(self, *args, **kwargs):
|
| 107 |
+
"""
|
| 108 |
+
This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer
|
| 109 |
+
to the docstring of this method for more information.
|
| 110 |
+
"""
|
| 111 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 112 |
+
|
| 113 |
+
@property
|
| 114 |
+
def model_input_names(self):
|
| 115 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 116 |
+
feature_extractor_input_names = self.feature_extractor.model_input_names
|
| 117 |
+
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
__all__ = ["ClapProcessor"]
|
docs/transformers/build/lib/transformers/models/clip/__init__.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from typing import TYPE_CHECKING
|
| 15 |
+
|
| 16 |
+
from ...utils import _LazyModule
|
| 17 |
+
from ...utils.import_utils import define_import_structure
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
if TYPE_CHECKING:
|
| 21 |
+
from .configuration_clip import *
|
| 22 |
+
from .feature_extraction_clip import *
|
| 23 |
+
from .image_processing_clip import *
|
| 24 |
+
from .image_processing_clip_fast import *
|
| 25 |
+
from .modeling_clip import *
|
| 26 |
+
from .modeling_flax_clip import *
|
| 27 |
+
from .modeling_tf_clip import *
|
| 28 |
+
from .processing_clip import *
|
| 29 |
+
from .tokenization_clip import *
|
| 30 |
+
from .tokenization_clip_fast import *
|
| 31 |
+
else:
|
| 32 |
+
import sys
|
| 33 |
+
|
| 34 |
+
_file = globals()["__file__"]
|
| 35 |
+
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
|
docs/transformers/build/lib/transformers/models/clip/convert_clip_original_pytorch_to_hf.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
import argparse
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
from clip import load
|
| 20 |
+
|
| 21 |
+
from transformers import CLIPConfig, CLIPModel
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def copy_attn_layer(hf_attn_layer, pt_attn_layer):
|
| 25 |
+
q_proj, k_proj, v_proj = pt_attn_layer.in_proj_weight.chunk(3, dim=0)
|
| 26 |
+
q_proj_bias, k_proj_bias, v_proj_bias = pt_attn_layer.in_proj_bias.chunk(3, dim=0)
|
| 27 |
+
|
| 28 |
+
out_proj_weights = pt_attn_layer.out_proj.weight
|
| 29 |
+
out_proj_bias = pt_attn_layer.out_proj.bias
|
| 30 |
+
|
| 31 |
+
hf_attn_layer.q_proj.weight.data = q_proj
|
| 32 |
+
hf_attn_layer.q_proj.bias.data = q_proj_bias
|
| 33 |
+
|
| 34 |
+
hf_attn_layer.k_proj.weight.data = k_proj
|
| 35 |
+
hf_attn_layer.k_proj.bias.data = k_proj_bias
|
| 36 |
+
|
| 37 |
+
hf_attn_layer.v_proj.weight.data = v_proj
|
| 38 |
+
hf_attn_layer.v_proj.bias.data = v_proj_bias
|
| 39 |
+
|
| 40 |
+
hf_attn_layer.out_proj.weight = out_proj_weights
|
| 41 |
+
hf_attn_layer.out_proj.bias = out_proj_bias
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def copy_mlp(hf_mlp, pt_mlp):
|
| 45 |
+
copy_linear(hf_mlp.fc1, pt_mlp.c_fc)
|
| 46 |
+
copy_linear(hf_mlp.fc2, pt_mlp.c_proj)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def copy_linear(hf_linear, pt_linear):
|
| 50 |
+
hf_linear.weight = pt_linear.weight
|
| 51 |
+
hf_linear.bias = pt_linear.bias
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def copy_layer(hf_layer, pt_layer):
|
| 55 |
+
# copy layer norms
|
| 56 |
+
copy_linear(hf_layer.layer_norm1, pt_layer.ln_1)
|
| 57 |
+
copy_linear(hf_layer.layer_norm2, pt_layer.ln_2)
|
| 58 |
+
|
| 59 |
+
# copy MLP
|
| 60 |
+
copy_mlp(hf_layer.mlp, pt_layer.mlp)
|
| 61 |
+
|
| 62 |
+
# copy attn
|
| 63 |
+
copy_attn_layer(hf_layer.self_attn, pt_layer.attn)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def copy_layers(hf_layers, pt_layers):
|
| 67 |
+
for hf_layer, pt_layer in zip(hf_layers, pt_layers):
|
| 68 |
+
copy_layer(hf_layer, pt_layer)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def copy_encoder(hf_encoder, pt_model):
|
| 72 |
+
# copy embeds
|
| 73 |
+
hf_encoder.embeddings.token_embedding.weight = pt_model.token_embedding.weight
|
| 74 |
+
hf_encoder.embeddings.position_embedding.weight.data = pt_model.positional_embedding
|
| 75 |
+
|
| 76 |
+
# copy layer norm
|
| 77 |
+
copy_linear(hf_encoder.final_layer_norm, pt_model.ln_final)
|
| 78 |
+
|
| 79 |
+
# copy hidden layers
|
| 80 |
+
copy_layers(hf_encoder.encoder.layers, pt_model.transformer.resblocks)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def copy_text_model_and_projection(hf_model, pt_model):
|
| 84 |
+
# copy projection
|
| 85 |
+
hf_model.text_projection.weight.data = pt_model.text_projection.data.T.contiguous()
|
| 86 |
+
|
| 87 |
+
# copy text encoder
|
| 88 |
+
copy_encoder(hf_model.text_model, pt_model)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def copy_vison_model_and_projection(hf_model, pt_model):
|
| 92 |
+
# copy projection
|
| 93 |
+
hf_model.visual_projection.weight.data = pt_model.visual.proj.data.T.contiguous()
|
| 94 |
+
|
| 95 |
+
# copy layer norms
|
| 96 |
+
copy_linear(hf_model.vision_model.pre_layrnorm, pt_model.visual.ln_pre)
|
| 97 |
+
copy_linear(hf_model.vision_model.post_layernorm, pt_model.visual.ln_post)
|
| 98 |
+
|
| 99 |
+
# copy embeds
|
| 100 |
+
hf_model.vision_model.embeddings.patch_embedding.weight.data = pt_model.visual.conv1.weight.data
|
| 101 |
+
hf_model.vision_model.embeddings.class_embedding = pt_model.visual.class_embedding
|
| 102 |
+
hf_model.vision_model.embeddings.position_embedding.weight.data = pt_model.visual.positional_embedding.data
|
| 103 |
+
|
| 104 |
+
# copy encoder
|
| 105 |
+
copy_layers(hf_model.vision_model.encoder.layers, pt_model.visual.transformer.resblocks)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
@torch.no_grad()
|
| 109 |
+
def convert_clip_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path=None):
|
| 110 |
+
"""
|
| 111 |
+
Copy/paste/tweak model's weights to transformers design.
|
| 112 |
+
"""
|
| 113 |
+
if config_path is not None:
|
| 114 |
+
config = CLIPConfig.from_pretrained(config_path)
|
| 115 |
+
else:
|
| 116 |
+
config = CLIPConfig(projection_dim=512, text_config={}, vision_config={})
|
| 117 |
+
|
| 118 |
+
hf_model = CLIPModel(config).eval()
|
| 119 |
+
|
| 120 |
+
pt_model, _ = load(checkpoint_path, device="cpu", jit=False)
|
| 121 |
+
pt_model = pt_model.eval()
|
| 122 |
+
|
| 123 |
+
copy_text_model_and_projection(hf_model, pt_model)
|
| 124 |
+
copy_vison_model_and_projection(hf_model, pt_model)
|
| 125 |
+
hf_model.logit_scale = pt_model.logit_scale
|
| 126 |
+
|
| 127 |
+
# Use `eos_token` so the example is more meaningful
|
| 128 |
+
input_ids = torch.tensor(
|
| 129 |
+
[
|
| 130 |
+
[config.text_config.bos_token_id]
|
| 131 |
+
+ list(range(3, 77))
|
| 132 |
+
+ [config.text_config.eos_token_id]
|
| 133 |
+
+ [config.text_config.pad_token_id]
|
| 134 |
+
]
|
| 135 |
+
)
|
| 136 |
+
pixel_values = torch.randn(1, 3, 224, 224)
|
| 137 |
+
|
| 138 |
+
hf_outputs = hf_model(input_ids=input_ids, pixel_values=pixel_values, return_dict=True)
|
| 139 |
+
hf_logits_per_image = hf_outputs.logits_per_image
|
| 140 |
+
hf_logits_per_text = hf_outputs.logits_per_text
|
| 141 |
+
pt_logits_per_image, pt_logits_per_text = pt_model(pixel_values, input_ids)
|
| 142 |
+
|
| 143 |
+
assert torch.allclose(hf_logits_per_image, pt_logits_per_image, atol=1e-3)
|
| 144 |
+
assert torch.allclose(hf_logits_per_text, pt_logits_per_text, atol=1e-3)
|
| 145 |
+
|
| 146 |
+
hf_model.save_pretrained(pytorch_dump_folder_path)
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
if __name__ == "__main__":
|
| 150 |
+
parser = argparse.ArgumentParser()
|
| 151 |
+
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
|
| 152 |
+
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to OpenAI checkpoint")
|
| 153 |
+
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
|
| 154 |
+
args = parser.parse_args()
|
| 155 |
+
|
| 156 |
+
convert_clip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
|
old/.ipynb_checkpoints/dataset_10k_train-checkpoint.jsonl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e0f6360a5bc18603afd8cd64d3d7b6e9b5b55b204a53031ce3570be5f01aa05b
|
| 3 |
+
size 16739995
|
old/dataset_10k_train.jsonl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e0f6360a5bc18603afd8cd64d3d7b6e9b5b55b204a53031ce3570be5f01aa05b
|
| 3 |
+
size 16739995
|
seamless_interaction/assets/banner.gif
ADDED
|
Git LFS Details
|
swift/llm/template/__pycache__/vision_utils.cpython-310.pyc
ADDED
|
Binary file (10.4 kB). View file
|
|
|
swift/llm/template/template/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from . import (deepseek, emu3, gemma, glm, idefics3, internlm, internvl, llama, llava, llm, megrez, microsoft, minicpm,
|
| 2 |
+
minimax, mistral, molmo, moonshot, mplug, openbuddy, pixtral, qwen, stepfun, valley, yi)
|
swift/llm/template/template/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (606 Bytes). View file
|
|
|
swift/llm/template/template/__pycache__/deepseek.cpython-310.pyc
ADDED
|
Binary file (11 kB). View file
|
|
|
swift/llm/template/template/__pycache__/emu3.cpython-310.pyc
ADDED
|
Binary file (7.88 kB). View file
|
|
|
swift/llm/template/template/__pycache__/gemma.cpython-310.pyc
ADDED
|
Binary file (5.91 kB). View file
|
|
|
swift/llm/template/template/__pycache__/glm.cpython-310.pyc
ADDED
|
Binary file (13 kB). View file
|
|
|
swift/llm/template/template/__pycache__/idefics3.cpython-310.pyc
ADDED
|
Binary file (1.53 kB). View file
|
|
|
swift/llm/template/template/__pycache__/internlm.cpython-310.pyc
ADDED
|
Binary file (8.26 kB). View file
|
|
|
swift/llm/template/template/__pycache__/internvl.cpython-310.pyc
ADDED
|
Binary file (6.8 kB). View file
|
|
|
swift/llm/template/template/__pycache__/llama.cpython-310.pyc
ADDED
|
Binary file (9.74 kB). View file
|
|
|
swift/llm/template/template/__pycache__/llava.cpython-310.pyc
ADDED
|
Binary file (10.7 kB). View file
|
|
|
swift/llm/template/template/__pycache__/llm.cpython-310.pyc
ADDED
|
Binary file (7.88 kB). View file
|
|
|
swift/llm/template/template/__pycache__/megrez.cpython-310.pyc
ADDED
|
Binary file (4.23 kB). View file
|
|
|
swift/llm/template/template/__pycache__/microsoft.cpython-310.pyc
ADDED
|
Binary file (8.31 kB). View file
|
|
|
swift/llm/template/template/__pycache__/minicpm.cpython-310.pyc
ADDED
|
Binary file (8.18 kB). View file
|
|
|
swift/llm/template/template/__pycache__/minimax.cpython-310.pyc
ADDED
|
Binary file (4.71 kB). View file
|
|
|
swift/llm/template/template/__pycache__/mistral.cpython-310.pyc
ADDED
|
Binary file (2.67 kB). View file
|
|
|
swift/llm/template/template/__pycache__/molmo.cpython-310.pyc
ADDED
|
Binary file (2.76 kB). View file
|
|
|
swift/llm/template/template/__pycache__/moonshot.cpython-310.pyc
ADDED
|
Binary file (3.39 kB). View file
|
|
|
swift/llm/template/template/__pycache__/mplug.cpython-310.pyc
ADDED
|
Binary file (8.46 kB). View file
|
|
|
swift/llm/template/template/__pycache__/openbuddy.cpython-310.pyc
ADDED
|
Binary file (2.44 kB). View file
|
|
|
swift/llm/template/template/__pycache__/pixtral.cpython-310.pyc
ADDED
|
Binary file (2.3 kB). View file
|
|
|
swift/llm/template/template/__pycache__/qwen.cpython-310.pyc
ADDED
|
Binary file (24.7 kB). View file
|
|
|
swift/llm/template/template/__pycache__/stepfun.cpython-310.pyc
ADDED
|
Binary file (6.57 kB). View file
|
|
|
swift/llm/template/template/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (1.88 kB). View file
|
|
|
swift/llm/template/template/__pycache__/valley.cpython-310.pyc
ADDED
|
Binary file (6.31 kB). View file
|
|
|
swift/llm/template/template/__pycache__/yi.cpython-310.pyc
ADDED
|
Binary file (2.91 kB). View file
|
|
|
swift/llm/template/template/deepseek.py
ADDED
|
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
| 2 |
+
import os
|
| 3 |
+
from dataclasses import dataclass, field
|
| 4 |
+
from typing import Any, Dict, List, Optional
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
from PIL import Image
|
| 10 |
+
|
| 11 |
+
from swift.utils import get_env_args
|
| 12 |
+
from ..base import Template
|
| 13 |
+
from ..constant import LLMTemplateType, MLLMTemplateType
|
| 14 |
+
from ..register import TemplateMeta, register_template
|
| 15 |
+
from ..template_inputs import StdTemplateInputs
|
| 16 |
+
from ..utils import Prompt, findall
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
@dataclass
|
| 20 |
+
class DeepseekTemplateMeta(TemplateMeta):
|
| 21 |
+
prefix: Prompt = field(default_factory=lambda: [['bos_token_id']])
|
| 22 |
+
prompt: Prompt = field(default_factory=lambda: ['User: {{QUERY}}\n\nAssistant:'])
|
| 23 |
+
chat_sep: Optional[Prompt] = field(default_factory=lambda: [['eos_token_id']])
|
| 24 |
+
suffix: Prompt = field(default_factory=lambda: [['eos_token_id']])
|
| 25 |
+
system_prefix: Optional[Prompt] = field(default_factory=lambda: [['bos_token_id'], '{{SYSTEM}}\n\n'])
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
register_template(DeepseekTemplateMeta(LLMTemplateType.deepseek, ))
|
| 29 |
+
|
| 30 |
+
register_template(
|
| 31 |
+
TemplateMeta(
|
| 32 |
+
LLMTemplateType.deepseek_coder,
|
| 33 |
+
prefix=['{{SYSTEM}}'],
|
| 34 |
+
prompt=['### Instruction:\n{{QUERY}}\n### Response:\n'],
|
| 35 |
+
chat_sep=['\n<|EOT|>\n'],
|
| 36 |
+
suffix=['\n<|EOT|>'],
|
| 37 |
+
stop_words=['<|EOT|>'],
|
| 38 |
+
default_system=('You are an AI programming assistant, utilizing the Deepseek Coder model, '
|
| 39 |
+
'developed by Deepseek Company, and you only answer questions related to computer science. '
|
| 40 |
+
'For politically sensitive questions, security and privacy issues, '
|
| 41 |
+
'and other non-computer science questions, you will refuse to answer\n')))
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class DeepseekVLTemplate(Template):
|
| 45 |
+
image_placeholder = ['<image_placeholder>']
|
| 46 |
+
skip_prompt = False
|
| 47 |
+
use_model = True
|
| 48 |
+
placeholder_tokens = ['<image_placeholder>']
|
| 49 |
+
|
| 50 |
+
image_token_num_per_image: int = 576
|
| 51 |
+
|
| 52 |
+
def _encode(self, inputs: StdTemplateInputs) -> Dict[str, Any]:
|
| 53 |
+
is_janus = getattr(self, 'is_janus', False)
|
| 54 |
+
|
| 55 |
+
encoded = super()._encode(inputs)
|
| 56 |
+
images = inputs.images
|
| 57 |
+
processor = self.processor
|
| 58 |
+
input_ids, labels = encoded['input_ids'], encoded['labels']
|
| 59 |
+
|
| 60 |
+
if not inputs.generate_mode: # understanding task
|
| 61 |
+
idx_list = findall(input_ids, processor.image_id) # '<image_placeholder>'
|
| 62 |
+
new_input_ids, new_labels = [], []
|
| 63 |
+
lo = 0
|
| 64 |
+
for hi in idx_list:
|
| 65 |
+
new_input_ids += input_ids[lo:hi]
|
| 66 |
+
if labels is not None:
|
| 67 |
+
new_labels += labels[lo:hi]
|
| 68 |
+
image_tokens = [processor.image_id] * processor.num_image_tokens
|
| 69 |
+
if is_janus:
|
| 70 |
+
image_tokens = [processor.image_start_id] + image_tokens + [processor.image_end_id]
|
| 71 |
+
new_input_ids += image_tokens
|
| 72 |
+
new_labels += [-100] * len(image_tokens)
|
| 73 |
+
lo = hi + 1
|
| 74 |
+
new_input_ids += input_ids[lo:]
|
| 75 |
+
if labels is not None:
|
| 76 |
+
new_labels += labels[lo:]
|
| 77 |
+
else:
|
| 78 |
+
new_labels = None
|
| 79 |
+
if is_janus:
|
| 80 |
+
from janus.models.processing_vlm import VLChatProcessorOutput
|
| 81 |
+
else:
|
| 82 |
+
from deepseek_vl.models.processing_vlm import VLChatProcessorOutput
|
| 83 |
+
|
| 84 |
+
images_outputs = processor.image_processor(images, return_tensors='pt')
|
| 85 |
+
output = VLChatProcessorOutput(
|
| 86 |
+
sft_format=None,
|
| 87 |
+
input_ids=torch.tensor(new_input_ids),
|
| 88 |
+
pixel_values=images_outputs.pixel_values,
|
| 89 |
+
num_image_tokens=torch.tensor([processor.num_image_tokens] * len(idx_list)))
|
| 90 |
+
encoded = {'output': output, 'input_ids': new_input_ids, 'labels': new_labels}
|
| 91 |
+
return encoded
|
| 92 |
+
|
| 93 |
+
else: # image generation task
|
| 94 |
+
if self.is_training:
|
| 95 |
+
raise NotImplementedError('Only support the inference of generation of Janus series models.')
|
| 96 |
+
sft_format = self.tokenizer.decode(input_ids)
|
| 97 |
+
prompt = sft_format + processor.image_start_tag
|
| 98 |
+
input_ids = processor.tokenizer.encode(prompt)
|
| 99 |
+
input_ids = torch.LongTensor(input_ids)
|
| 100 |
+
|
| 101 |
+
encoded = {'input_ids': input_ids, 'labels': labels, 'generate_mode': inputs.generate_mode}
|
| 102 |
+
return encoded
|
| 103 |
+
|
| 104 |
+
def _post_encode(self, model: nn.Module, inputs: Dict[str, Any]) -> Dict[str, Any]:
|
| 105 |
+
if not inputs.get('generate_mode'):
|
| 106 |
+
inputs['pixel_values'] = inputs['pixel_values'].to(dtype=self.model_info.torch_dtype)
|
| 107 |
+
inputs_embeds = model.prepare_inputs_embeds(**inputs)
|
| 108 |
+
return {'inputs_embeds': inputs_embeds}
|
| 109 |
+
else:
|
| 110 |
+
return inputs
|
| 111 |
+
|
| 112 |
+
def _data_collator(self, batch: List[Dict[str, Any]], *, padding_to: Optional[int] = None) -> Dict[str, Any]:
|
| 113 |
+
gene_img_list = [b.get('generate_mode') for b in batch]
|
| 114 |
+
if all(gene_img_list):
|
| 115 |
+
generate_mode = True
|
| 116 |
+
elif not any(gene_img_list):
|
| 117 |
+
generate_mode = False
|
| 118 |
+
else:
|
| 119 |
+
raise NotImplementedError('Do not support understanding and image generation tasks in one batch.')
|
| 120 |
+
|
| 121 |
+
if not generate_mode:
|
| 122 |
+
output = self.fetch_inputs(batch, ['output'])['output']
|
| 123 |
+
batched_output = dict(self.processor.batchify(output))
|
| 124 |
+
res = super()._data_collator(batch, padding_to=padding_to)
|
| 125 |
+
return {**batched_output, **res}
|
| 126 |
+
else:
|
| 127 |
+
res = super()._data_collator(batch, padding_to=padding_to)
|
| 128 |
+
res['generate_mode'] = generate_mode
|
| 129 |
+
return res
|
| 130 |
+
|
| 131 |
+
def generate(self, model, *args, **kwargs):
|
| 132 |
+
if not kwargs.get('generate_mode'):
|
| 133 |
+
return super().generate(model, *args, **kwargs)
|
| 134 |
+
|
| 135 |
+
else:
|
| 136 |
+
# generate how many number of images for each prompt, it is named parallel_size in the author's code
|
| 137 |
+
parallel_size = kwargs['generation_config'].num_return_sequences
|
| 138 |
+
temperature = kwargs['generation_config'].temperature
|
| 139 |
+
cfg_weight = get_env_args('cfg_weight', float, 5.0)
|
| 140 |
+
|
| 141 |
+
input_ids = kwargs['input_ids'] # [bsz, max_input_token_num]
|
| 142 |
+
bsz, max_input_token_num = input_ids.shape
|
| 143 |
+
tokens = torch.zeros((bsz, parallel_size * 2, max_input_token_num),
|
| 144 |
+
dtype=torch.int).cuda() # [bsz, parallel_size*2, max_input_token_num]
|
| 145 |
+
for i in range(parallel_size * 2):
|
| 146 |
+
tokens[:, i, :] = input_ids
|
| 147 |
+
if i % 2 != 0:
|
| 148 |
+
tokens[:, i, 1:-1] = self.processor.pad_id
|
| 149 |
+
|
| 150 |
+
inputs_embeds = model.language_model.get_input_embeddings()(
|
| 151 |
+
tokens) # [bsz, parallel_size*2, max_input_token_num, 2048]
|
| 152 |
+
|
| 153 |
+
generated_tokens = torch.zeros(
|
| 154 |
+
(bsz, parallel_size, self.image_token_num_per_image),
|
| 155 |
+
dtype=torch.int).cuda() # [bsz, 16, image_token_num_per_image] placeholder for the generated tokens
|
| 156 |
+
|
| 157 |
+
# set the first two dimensions into one dimension for batch size
|
| 158 |
+
inputs_embeds = inputs_embeds.reshape(bsz * parallel_size * 2, max_input_token_num, -1)
|
| 159 |
+
generated_tokens = generated_tokens.reshape(bsz * parallel_size, self.image_token_num_per_image)
|
| 160 |
+
|
| 161 |
+
for i in range(self.image_token_num_per_image): # generate the tokens of image in a auto-regression way
|
| 162 |
+
outputs = model.language_model.model(
|
| 163 |
+
inputs_embeds=inputs_embeds,
|
| 164 |
+
use_cache=True,
|
| 165 |
+
past_key_values=outputs.past_key_values if i != 0 else None)
|
| 166 |
+
hidden_states = outputs.last_hidden_state
|
| 167 |
+
|
| 168 |
+
logits = self.model.gen_head(hidden_states[:, -1, :])
|
| 169 |
+
logit_cond = logits[0::2, :]
|
| 170 |
+
logit_uncond = logits[1::2, :]
|
| 171 |
+
|
| 172 |
+
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
|
| 173 |
+
probs = torch.softmax(logits / temperature, dim=-1)
|
| 174 |
+
|
| 175 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
| 176 |
+
generated_tokens[:, i] = next_token.squeeze(dim=-1) # [parallel_size, self.image_token_num_per_image]
|
| 177 |
+
|
| 178 |
+
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
|
| 179 |
+
img_embeds = model.prepare_gen_img_embeds(next_token) # [parallel_size * 2, 2048]
|
| 180 |
+
inputs_embeds = img_embeds.unsqueeze(dim=1) # [parallel_size * 2, 1, 2048]
|
| 181 |
+
|
| 182 |
+
# no need to reset the original first two dimensions, waiting for the update of the upper layer
|
| 183 |
+
# inputs_embeds = inputs_embeds.reshape(bsz, parallel_size*2, -1)
|
| 184 |
+
# generated_tokens = generated_tokens.reshape(bsz, parallel_size, self.image_token_num_per_image)
|
| 185 |
+
|
| 186 |
+
return {'sequences': generated_tokens}
|
| 187 |
+
|
| 188 |
+
def decode(self, generate_ids: List[int], **kwargs) -> Any:
|
| 189 |
+
if 'template_inputs' not in kwargs or not kwargs['template_inputs'].generate_mode:
|
| 190 |
+
return super().decode(generate_ids, **kwargs)
|
| 191 |
+
else:
|
| 192 |
+
img_size = get_env_args('img_size', int, 384)
|
| 193 |
+
patch_size = 16
|
| 194 |
+
|
| 195 |
+
num_to_decode = 1 # for now, generate_ids is a 1D list
|
| 196 |
+
|
| 197 |
+
generate_ids = torch.tensor(generate_ids).unsqueeze(0) # [num_to_decode=1, self.image_token_num_per_image]
|
| 198 |
+
|
| 199 |
+
dec = self.model.gen_vision_model.decode_code(
|
| 200 |
+
generate_ids.to(dtype=torch.int),
|
| 201 |
+
shape=[num_to_decode, 8, img_size // patch_size, img_size // patch_size])
|
| 202 |
+
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) # [num_to_decode, H, W, ch=3]
|
| 203 |
+
|
| 204 |
+
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
|
| 205 |
+
|
| 206 |
+
visual_img = np.zeros((num_to_decode, img_size, img_size, 3), dtype=np.uint8)
|
| 207 |
+
visual_img[:, :, :] = dec
|
| 208 |
+
|
| 209 |
+
img_list = []
|
| 210 |
+
for i in range(num_to_decode):
|
| 211 |
+
cur_img = Image.fromarray(visual_img[i])
|
| 212 |
+
img_list.append({'type': 'image', 'image': cur_img})
|
| 213 |
+
return img_list
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
@dataclass
|
| 217 |
+
class DeepseekVLTemplateMeta(DeepseekTemplateMeta):
|
| 218 |
+
default_system: Optional[str] = ('You are a helpful language and vision assistant. '
|
| 219 |
+
'You are able to understand the visual content that the user provides, '
|
| 220 |
+
'and assist the user with a variety of tasks using natural language.')
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
register_template(DeepseekVLTemplateMeta(
|
| 224 |
+
MLLMTemplateType.deepseek_vl,
|
| 225 |
+
template_cls=DeepseekVLTemplate,
|
| 226 |
+
))
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
class DeepseekJanus(DeepseekVLTemplate):
|
| 230 |
+
is_janus = True
|
| 231 |
+
image_placeholder = ['<image_placeholder>\n']
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
register_template(DeepseekVLTemplateMeta(MLLMTemplateType.deepseek_janus, template_cls=DeepseekJanus))
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
@dataclass
|
| 238 |
+
class DeepseekV2_5TemplateMeta(TemplateMeta):
|
| 239 |
+
prefix: Prompt = field(default_factory=lambda: ['<|begin▁of▁sentence|>{{SYSTEM}}'])
|
| 240 |
+
prompt: Prompt = field(default_factory=lambda: ['<|User|>{{QUERY}}<|Assistant|>'])
|
| 241 |
+
chat_sep: Optional[Prompt] = field(default_factory=lambda: ['<|end▁of▁sentence|>'])
|
| 242 |
+
suffix: Prompt = field(default_factory=lambda: ['<|end▁of▁sentence|>'])
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
register_template(DeepseekV2_5TemplateMeta(LLMTemplateType.deepseek_v2_5))
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
class DeepseekR1Template(Template):
|
| 249 |
+
|
| 250 |
+
def _swift_encode(self, inputs: StdTemplateInputs):
|
| 251 |
+
if not self.is_training:
|
| 252 |
+
for message in inputs.messages:
|
| 253 |
+
if message['role'] == 'assistant' and isinstance(message['content'], str):
|
| 254 |
+
message['content'] = message['content'].split('</think>')[-1]
|
| 255 |
+
return super()._swift_encode(inputs)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
register_template(
|
| 259 |
+
DeepseekV2_5TemplateMeta(LLMTemplateType.deepseek_r1, template_cls=DeepseekR1Template, response_prefix='<think>\n'))
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
class DeepseekVL2Template(DeepseekVLTemplate):
|
| 263 |
+
image_placeholder = ['<image>\n']
|
| 264 |
+
placeholder_tokens = ['<image>']
|
| 265 |
+
|
| 266 |
+
def _encode(self, inputs: StdTemplateInputs) -> Dict[str, Any]:
|
| 267 |
+
from deepseek_vl2.models.processing_deepseek_vl_v2 import VLChatProcessorOutput
|
| 268 |
+
encoded = Template._encode(self, inputs)
|
| 269 |
+
images = inputs.images
|
| 270 |
+
processor = self.processor
|
| 271 |
+
input_ids, labels = encoded['input_ids'], encoded['labels']
|
| 272 |
+
images_seq_mask = [False] * len(input_ids)
|
| 273 |
+
idx_list = findall(input_ids, processor.image_token_id) # '<image>'
|
| 274 |
+
_, images_list, _, images_spatial_crop, num_image_tokens = processor.tokenize_with_images(
|
| 275 |
+
'<image>' * len(images), images, cropping=len(images) <= 2)
|
| 276 |
+
new_num_tokens = 0
|
| 277 |
+
for idx, n_image_tokens in zip(idx_list, num_image_tokens):
|
| 278 |
+
image_tokens = [processor.image_token_id] * n_image_tokens
|
| 279 |
+
input_ids = input_ids[:idx] + image_tokens + input_ids[idx + 1:]
|
| 280 |
+
if labels is not None:
|
| 281 |
+
labels = labels[:idx] + [-100] * n_image_tokens + labels[idx + 1:]
|
| 282 |
+
images_seq_mask = images_seq_mask[:idx] + [True] * n_image_tokens + images_seq_mask[idx + 1:]
|
| 283 |
+
new_num_tokens += n_image_tokens - 1
|
| 284 |
+
|
| 285 |
+
output = VLChatProcessorOutput(
|
| 286 |
+
sft_format=None,
|
| 287 |
+
input_ids=torch.tensor(input_ids),
|
| 288 |
+
target_ids=torch.tensor(input_ids),
|
| 289 |
+
images=torch.stack(images_list) if images_list else torch.zeros((0, 3, 384, 384)),
|
| 290 |
+
images_seq_mask=torch.tensor(images_seq_mask),
|
| 291 |
+
images_spatial_crop=torch.tensor(images_spatial_crop),
|
| 292 |
+
num_image_tokens=num_image_tokens)
|
| 293 |
+
output.images = output.images.to(dtype=self.model_info.torch_dtype)
|
| 294 |
+
encoded = {'output': output, 'input_ids': input_ids, 'labels': labels}
|
| 295 |
+
return encoded
|
| 296 |
+
|
| 297 |
+
def _post_encode(self, model: nn.Module, inputs: Dict[str, Any]) -> Dict[str, Any]:
|
| 298 |
+
inputs['images_seq_mask'] = inputs['images_seq_mask'].to(torch.bool)
|
| 299 |
+
inputs['images_spatial_crop'] = inputs['images_spatial_crop'].to(torch.long)
|
| 300 |
+
inputs_embeds = model.prepare_inputs_embeds(**inputs)
|
| 301 |
+
return {'inputs_embeds': inputs_embeds}
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
register_template(
|
| 305 |
+
DeepseekV2_5TemplateMeta(
|
| 306 |
+
MLLMTemplateType.deepseek_vl2,
|
| 307 |
+
prompt=['<|User|>: {{QUERY}}\n\n<|Assistant|>:'],
|
| 308 |
+
template_cls=DeepseekVL2Template,
|
| 309 |
+
))
|
| 310 |
+
|
| 311 |
+
register_template(
|
| 312 |
+
DeepseekVLTemplateMeta(
|
| 313 |
+
MLLMTemplateType.deepseek_janus_pro,
|
| 314 |
+
prompt=['<|User|>: {{QUERY}}\n\n<|Assistant|>:'],
|
| 315 |
+
template_cls=DeepseekJanus))
|