File size: 6,749 Bytes
1fec8fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
Quantization made by Richard Erkhov.

[Github](https://github.com/RichardErkhov)

[Discord](https://discord.gg/pvy7H8DZMG)

[Request more models](https://github.com/RichardErkhov/quant_request)


OPI-Galactica-6.7B - bnb 8bits
- Model creator: https://huggingface.co/BAAI/
- Original model: https://huggingface.co/BAAI/OPI-Galactica-6.7B/




Original model description:
---
license: apache-2.0
datasets:
- BAAI/OPI
language:
- en
pipeline_tag: text-generation
tags:
- Life Science
- AI4Science
- Biology
- Protein
- LLM
- Instruction
base_model: facebook/galactica-6.7b
---
![OPI_logo](demo_figures/OPI_logo.png)

# Github: 
  https://github.com/baaihealth/opi
# Paper: 
  [OPI: An Open Instruction Dataset for Adapting Large Language Models to Protein-Related Tasks](https://neurips.cc/virtual/2024/105921) has been accepted by [NeurIPS 2024 Workshop: Foundation Models for Science: Progress, Opportunities, and Challenges](https://neurips.cc/virtual/2024/workshop/84714).

# Model Card of OPI-Galactica-6.7B
OPI-Galactica-6.7B was fine-tuned from the Galactica-6.7B model using the complete OPI training set (i.e.,[OPI_full_1.61M_train.json](https://huggingface.co/datasets/BAAI/OPI/blob/main/OPI_DATA/OPI_full_1.61M_train.json)).
For more details of training and testing, please visit [https://github.com/baaihealth/opi](https://github.com/baaihealth/opi).

![Overview](demo_figures/OPI_experiment_outline.png)

# Evaluation of OPI-Galactica-6.7B model on 9 tasks 
Each testing result is derived from the Galactica-6.7B model that has been fine-tuned using [OPI_full_1.61M.json](https://huggingface.co/datasets/BAAI/OPI/blob/main/OPI_DATA/OPI_full_1.61M_train.json) and subsequently evaluated on the respective testing set for each specific task.

<table border="1" style="text-align:center; border-collapse:collapse; width: 100%;">
  <thead>
    <tr>
      <th style="text-align:center;">Task Type</th>
      <th style="text-align:center;">Task Name</th>
      <th style="text-align:center;">Testing file</th>
      <th style="text-align:center;">Accuracy</th>
      <th style="text-align:center;">Precision</th>
      <th style="text-align:center;">Recall</th>
      <th style="text-align:center;">F1</th>
      <th style="text-align:center;">Rouge-L</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td rowspan="6">Sequence Understanding</td>
      <td rowspan="2">EC Number Prediction (split100)</td>
      <td>CLEAN_EC_number_new_test</td>
      <td>-</td>
      <td>0.2700</td>
      <td>0.2663</td>
      <td>0.2596</td>
      <td>-</td>
    </tr>
    <tr>
      <td>CLEAN_EC_number_price_test</td>
      <td>-</td>
      <td>0.0268</td>
      <td>0.0268</td>
      <td>0.0268</td>
      <td>-</td>
    </tr>
    <tr>
      <td rowspan="3">Fold Type Prediction</td>
      <td>fold_type_test_Fold_Holdout</td>
      <td>0.0808</td>
      <td>-</td>
      <td>-</td>
      <td>-</td>
      <td>-</td>
    </tr>
    <tr>
      <td>fold_type_test_Superfamily_Holdout</td>
      <td>0.1348</td>
      <td>-</td>
      <td>-</td>
      <td>-</td>
      <td>-</td>
    </tr>
    <tr>
      <td>fold_type_test_Family_Holdout</td>
      <td>0.4854</td>
      <td>-</td>
      <td>-</td>
      <td>-</td>
      <td>-</td>
    </tr>
    <tr>
      <td>Subcellular Localization Prediction</td>
      <td>subcell_loc_test</td>
      <td>0.7771</td>
      <td>-</td>
      <td>-</td>
      <td>-</td>
      <td>-</td>
    </tr>
    <tr>
      <td rowspan="9">Annotation Prediction</td>
      <td>Function Keywords Prediction</td>
      <td>CASPSimilarSeq_keywords_test</td>
      <td>-</td>
      <td>0.8120</td>
      <td>0.7360</td>
      <td>0.7643</td>
      <td>-</td>
    </tr>
    <tr>
      <td>Function Keywords Prediction</td>
      <td>IDFilterSeq_keywords_test</td>
      <td>-</td>
      <td>0.8377</td>
      <td>0.8019</td>
      <td>0.8070</td>
      <td>-</td>
    </tr>
    <tr>
      <td>Function Keywords Prediction</td>
      <td>UniProtSeq_keywords_test</td>
      <td>-</td>
      <td>0.8596</td>
      <td>0.8196</td>
      <td>0.8276</td>
      <td>-</td>
    </tr>
    <tr>
      <td>Gene Ontology (GO) Terms Prediction</td>
      <td>CASPSimilarSeq_go_terms_test</td>
      <td>-</td>
      <td>0.7613</td>
      <td>0.7492</td>
      <td>0.7476</td>
      <td>-</td>
    </tr>
    <tr>
      <td>Gene Ontology (GO) Terms Prediction</td>
      <td>IDFilterSeq_go_terms_test</td>
      <td>-</td>
      <td>0.7404</td>
      <td>0.7274</td>
      <td>0.7207</td>
      <td>-</td>
    </tr>
    <tr>
      <td>Gene Ontology (GO) Terms Prediction</td>
      <td>UniProtSeq_go_terms_test</td>
      <td>-</td>
      <td>0.7638</td>
      <td>0.7373</td>
      <td>0.7358</td>
      <td>-</td>
    </tr>
    <tr>
      <td>Function Description Prediction</td>
      <td>CASPSimilarSeq_function_test</td>
      <td>-</td>
      <td>-</td>
      <td>-</td>
      <td>-</td>
      <td>0.7430</td>
    </tr>
    <tr>
      <td>Function Description Prediction</td>
      <td>IDFilterSeq_function_test</td>
      <td>-</td>
      <td>-</td>
      <td>-</td>
      <td>-</td>
      <td>0.7014</td>
    </tr>
    <tr>
      <td>Function Description Prediction</td>
      <td>UniProtSeq_function_test</td>
      <td>-</td>
      <td>-</td>
      <td>-</td>
      <td>-</td>
      <td>0.7133</td>
    </tr>
    <tr>
      <td rowspan="3">Knowledge Mining</td>
      <td>Tissue Location Prediction from Gene Symbol</td>
      <td>gene_symbol_to_tissue_test</td>
      <td>-</td>
      <td>0.3917</td>
      <td>0.9077</td>
      <td>0.5303</td>
      <td>-</td>
    </tr>
    <tr>
      <td>Cancer Prediction from Gene Symbol</td>
      <td>gene_symbol_to_cancer_test</td>
      <td>-</td>
      <td>0.3555</td>
      <td>0.3189</td>
      <td>0.3229</td>
      <td>-</td>
    </tr>
    <tr>
      <td>Cancer Prediction from Gene Name</td>
      <td>gene_name_to_cancer_test</td>
      <td>-</td>
      <td>0.2728</td>
      <td>0.2554</td>
      <td>0.2533</td>
      <td>-</td>
    </tr>
  </tbody>
</table>

# Prediction comparison with SOTA mdoels

![model_compare](model_compare/task1_EC_number.png)
![model_compare](model_compare/task2_fold_type.png)
![model_compare](model_compare/task3_subcell_loc.png)
![model_compare](model_compare/task4_keywords.png)
![model_compare](model_compare/task5_GO.png)
![model_compare](model_compare/task6_function.png)
![model_compare](model_compare/task7_gsymbol2tissue.png)
![model_compare](model_compare/task8_gsymbol2cancer.png)
![model_compare](model_compare/task9_gname2cancer.png)


# Demo
We use the [FastChat](https://github.com/lm-sys/FastChat) platform to visually demonstrate the ability of OPI-Galactica-6.7B model on various evaluation tasks.

![OPI Demo](./demo_figures/OPI_demo.gif)