File size: 6,749 Bytes
1fec8fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
OPI-Galactica-6.7B - bnb 8bits
- Model creator: https://huggingface.co/BAAI/
- Original model: https://huggingface.co/BAAI/OPI-Galactica-6.7B/
Original model description:
---
license: apache-2.0
datasets:
- BAAI/OPI
language:
- en
pipeline_tag: text-generation
tags:
- Life Science
- AI4Science
- Biology
- Protein
- LLM
- Instruction
base_model: facebook/galactica-6.7b
---

# Github:
https://github.com/baaihealth/opi
# Paper:
[OPI: An Open Instruction Dataset for Adapting Large Language Models to Protein-Related Tasks](https://neurips.cc/virtual/2024/105921) has been accepted by [NeurIPS 2024 Workshop: Foundation Models for Science: Progress, Opportunities, and Challenges](https://neurips.cc/virtual/2024/workshop/84714).
# Model Card of OPI-Galactica-6.7B
OPI-Galactica-6.7B was fine-tuned from the Galactica-6.7B model using the complete OPI training set (i.e.,[OPI_full_1.61M_train.json](https://huggingface.co/datasets/BAAI/OPI/blob/main/OPI_DATA/OPI_full_1.61M_train.json)).
For more details of training and testing, please visit [https://github.com/baaihealth/opi](https://github.com/baaihealth/opi).

# Evaluation of OPI-Galactica-6.7B model on 9 tasks
Each testing result is derived from the Galactica-6.7B model that has been fine-tuned using [OPI_full_1.61M.json](https://huggingface.co/datasets/BAAI/OPI/blob/main/OPI_DATA/OPI_full_1.61M_train.json) and subsequently evaluated on the respective testing set for each specific task.
<table border="1" style="text-align:center; border-collapse:collapse; width: 100%;">
<thead>
<tr>
<th style="text-align:center;">Task Type</th>
<th style="text-align:center;">Task Name</th>
<th style="text-align:center;">Testing file</th>
<th style="text-align:center;">Accuracy</th>
<th style="text-align:center;">Precision</th>
<th style="text-align:center;">Recall</th>
<th style="text-align:center;">F1</th>
<th style="text-align:center;">Rouge-L</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="6">Sequence Understanding</td>
<td rowspan="2">EC Number Prediction (split100)</td>
<td>CLEAN_EC_number_new_test</td>
<td>-</td>
<td>0.2700</td>
<td>0.2663</td>
<td>0.2596</td>
<td>-</td>
</tr>
<tr>
<td>CLEAN_EC_number_price_test</td>
<td>-</td>
<td>0.0268</td>
<td>0.0268</td>
<td>0.0268</td>
<td>-</td>
</tr>
<tr>
<td rowspan="3">Fold Type Prediction</td>
<td>fold_type_test_Fold_Holdout</td>
<td>0.0808</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fold_type_test_Superfamily_Holdout</td>
<td>0.1348</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fold_type_test_Family_Holdout</td>
<td>0.4854</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subcellular Localization Prediction</td>
<td>subcell_loc_test</td>
<td>0.7771</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td rowspan="9">Annotation Prediction</td>
<td>Function Keywords Prediction</td>
<td>CASPSimilarSeq_keywords_test</td>
<td>-</td>
<td>0.8120</td>
<td>0.7360</td>
<td>0.7643</td>
<td>-</td>
</tr>
<tr>
<td>Function Keywords Prediction</td>
<td>IDFilterSeq_keywords_test</td>
<td>-</td>
<td>0.8377</td>
<td>0.8019</td>
<td>0.8070</td>
<td>-</td>
</tr>
<tr>
<td>Function Keywords Prediction</td>
<td>UniProtSeq_keywords_test</td>
<td>-</td>
<td>0.8596</td>
<td>0.8196</td>
<td>0.8276</td>
<td>-</td>
</tr>
<tr>
<td>Gene Ontology (GO) Terms Prediction</td>
<td>CASPSimilarSeq_go_terms_test</td>
<td>-</td>
<td>0.7613</td>
<td>0.7492</td>
<td>0.7476</td>
<td>-</td>
</tr>
<tr>
<td>Gene Ontology (GO) Terms Prediction</td>
<td>IDFilterSeq_go_terms_test</td>
<td>-</td>
<td>0.7404</td>
<td>0.7274</td>
<td>0.7207</td>
<td>-</td>
</tr>
<tr>
<td>Gene Ontology (GO) Terms Prediction</td>
<td>UniProtSeq_go_terms_test</td>
<td>-</td>
<td>0.7638</td>
<td>0.7373</td>
<td>0.7358</td>
<td>-</td>
</tr>
<tr>
<td>Function Description Prediction</td>
<td>CASPSimilarSeq_function_test</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.7430</td>
</tr>
<tr>
<td>Function Description Prediction</td>
<td>IDFilterSeq_function_test</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.7014</td>
</tr>
<tr>
<td>Function Description Prediction</td>
<td>UniProtSeq_function_test</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.7133</td>
</tr>
<tr>
<td rowspan="3">Knowledge Mining</td>
<td>Tissue Location Prediction from Gene Symbol</td>
<td>gene_symbol_to_tissue_test</td>
<td>-</td>
<td>0.3917</td>
<td>0.9077</td>
<td>0.5303</td>
<td>-</td>
</tr>
<tr>
<td>Cancer Prediction from Gene Symbol</td>
<td>gene_symbol_to_cancer_test</td>
<td>-</td>
<td>0.3555</td>
<td>0.3189</td>
<td>0.3229</td>
<td>-</td>
</tr>
<tr>
<td>Cancer Prediction from Gene Name</td>
<td>gene_name_to_cancer_test</td>
<td>-</td>
<td>0.2728</td>
<td>0.2554</td>
<td>0.2533</td>
<td>-</td>
</tr>
</tbody>
</table>
# Prediction comparison with SOTA mdoels









# Demo
We use the [FastChat](https://github.com/lm-sys/FastChat) platform to visually demonstrate the ability of OPI-Galactica-6.7B model on various evaluation tasks.

|