赛萌
commited on
Commit
·
b3bea9b
1
Parent(s):
33eda72
tiktoken
Browse files- qwen.tiktoken +0 -0
- tokenization_qwen.py +412 -0
qwen.tiktoken
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenization_qwen.py
ADDED
|
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Alibaba Cloud.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the license found in the
|
| 4 |
+
# LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
"""Tokenization classes for QWen."""
|
| 7 |
+
|
| 8 |
+
import base64
|
| 9 |
+
import logging
|
| 10 |
+
import os
|
| 11 |
+
import requests
|
| 12 |
+
import unicodedata
|
| 13 |
+
from typing import Collection, Dict, List, Set, Tuple, Union, Any, Callable
|
| 14 |
+
|
| 15 |
+
import tiktoken
|
| 16 |
+
import numpy as np
|
| 17 |
+
from PIL import Image
|
| 18 |
+
from PIL import ImageFont
|
| 19 |
+
from PIL import ImageDraw
|
| 20 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
| 21 |
+
|
| 22 |
+
logger = logging.getLogger(__name__)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
| 26 |
+
|
| 27 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
| 28 |
+
ENDOFTEXT = "<|endoftext|>"
|
| 29 |
+
IMSTART = "<|im_start|>"
|
| 30 |
+
IMEND = "<|im_end|>"
|
| 31 |
+
# as the default behavior is changed to allow special tokens in
|
| 32 |
+
# regular texts, the surface forms of special tokens need to be
|
| 33 |
+
# as different as possible to minimize the impact
|
| 34 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
| 35 |
+
SPECIAL_TOKENS = (
|
| 36 |
+
ENDOFTEXT,
|
| 37 |
+
IMSTART,
|
| 38 |
+
IMEND,
|
| 39 |
+
) + EXTRAS
|
| 40 |
+
IMG_TOKEN_SPAN = 256
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
| 44 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
| 45 |
+
contents = f.read()
|
| 46 |
+
return {
|
| 47 |
+
base64.b64decode(token): int(rank)
|
| 48 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
def _list_find(
|
| 52 |
+
input_list: List[Any],
|
| 53 |
+
candidates: Tuple[Any],
|
| 54 |
+
start: int = 0,
|
| 55 |
+
):
|
| 56 |
+
for i in range(start, len(input_list)):
|
| 57 |
+
if input_list[i] in candidates:
|
| 58 |
+
return i
|
| 59 |
+
return -1
|
| 60 |
+
|
| 61 |
+
def _replace_closed_tag(
|
| 62 |
+
input_tokens: List[Any],
|
| 63 |
+
start_tags: Union[Any, Tuple[Any]],
|
| 64 |
+
end_tags: Union[Any, Tuple[Any]],
|
| 65 |
+
inclusive_replace_func: Callable,
|
| 66 |
+
exclusive_replace_func: Callable = lambda x: x,
|
| 67 |
+
):
|
| 68 |
+
if isinstance(start_tags, (str, int)):
|
| 69 |
+
start_tags = (start_tags,)
|
| 70 |
+
if isinstance(end_tags, (str, int)):
|
| 71 |
+
end_tags = (end_tags,)
|
| 72 |
+
assert len(start_tags) == len(end_tags)
|
| 73 |
+
|
| 74 |
+
output_tokens = []
|
| 75 |
+
end = 0
|
| 76 |
+
while True:
|
| 77 |
+
start = _list_find(input_tokens, start_tags, end)
|
| 78 |
+
if start == -1:
|
| 79 |
+
break
|
| 80 |
+
output_tokens.extend(exclusive_replace_func(input_tokens[end : start]))
|
| 81 |
+
tag_idx = start_tags.index(input_tokens[start])
|
| 82 |
+
end = _list_find(input_tokens, (end_tags[tag_idx],), start)
|
| 83 |
+
if end == -1:
|
| 84 |
+
raise ValueError("Unclosed image token")
|
| 85 |
+
output_tokens.extend(inclusive_replace_func(input_tokens[start : end + 1]))
|
| 86 |
+
end += 1
|
| 87 |
+
output_tokens.extend(exclusive_replace_func(input_tokens[end : ]))
|
| 88 |
+
return output_tokens
|
| 89 |
+
|
| 90 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
| 91 |
+
"""QWen tokenizer."""
|
| 92 |
+
|
| 93 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 94 |
+
|
| 95 |
+
def __init__(
|
| 96 |
+
self,
|
| 97 |
+
vocab_file,
|
| 98 |
+
errors="replace",
|
| 99 |
+
image_start_tag='<img>',
|
| 100 |
+
image_end_tag='</img>',
|
| 101 |
+
image_pad_tag='<imgpad>',
|
| 102 |
+
ref_start_tag='<ref>',
|
| 103 |
+
ref_end_tag='</ref>',
|
| 104 |
+
box_start_tag='<box>',
|
| 105 |
+
box_end_tag='</box>',
|
| 106 |
+
quad_start_tag='<quad>',
|
| 107 |
+
quad_end_tag='</quad>',
|
| 108 |
+
**kwargs,
|
| 109 |
+
):
|
| 110 |
+
super().__init__(**kwargs)
|
| 111 |
+
self.image_start_tag = image_start_tag
|
| 112 |
+
self.image_end_tag = image_end_tag
|
| 113 |
+
self.image_pad_tag = image_pad_tag
|
| 114 |
+
self.ref_start_tag = ref_start_tag
|
| 115 |
+
self.ref_end_tag = ref_end_tag
|
| 116 |
+
self.box_start_tag = box_start_tag
|
| 117 |
+
self.box_end_tag = box_end_tag
|
| 118 |
+
self.quad_start_tag = quad_start_tag
|
| 119 |
+
self.quad_end_tag = quad_end_tag
|
| 120 |
+
self.IMAGE_ST = (
|
| 121 |
+
ref_start_tag, ref_end_tag,
|
| 122 |
+
box_start_tag, box_end_tag,
|
| 123 |
+
quad_start_tag, quad_end_tag,
|
| 124 |
+
image_start_tag, image_end_tag,
|
| 125 |
+
image_pad_tag
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
self.errors = errors # how to handle errors in decoding
|
| 129 |
+
|
| 130 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: dict[bytes, int]
|
| 131 |
+
self.special_tokens = {
|
| 132 |
+
token: index
|
| 133 |
+
for index, token in enumerate(
|
| 134 |
+
SPECIAL_TOKENS + self.IMAGE_ST, start=len(self.mergeable_ranks)
|
| 135 |
+
)
|
| 136 |
+
}
|
| 137 |
+
self.img_start_id = self.special_tokens[self.image_start_tag]
|
| 138 |
+
self.img_end_id = self.special_tokens[self.image_end_tag]
|
| 139 |
+
self.img_pad_id = self.special_tokens[self.image_pad_tag]
|
| 140 |
+
self.ref_start_id = self.special_tokens[self.ref_start_tag]
|
| 141 |
+
self.ref_end_id = self.special_tokens[self.ref_end_tag]
|
| 142 |
+
self.box_start_id = self.special_tokens[self.box_start_tag]
|
| 143 |
+
self.box_end_id = self.special_tokens[self.box_end_tag]
|
| 144 |
+
self.quad_start_id = self.special_tokens[self.quad_start_tag]
|
| 145 |
+
self.quad_end_id = self.special_tokens[self.quad_end_tag]
|
| 146 |
+
|
| 147 |
+
enc = tiktoken.Encoding(
|
| 148 |
+
"Qwen",
|
| 149 |
+
pat_str=PAT_STR,
|
| 150 |
+
mergeable_ranks=self.mergeable_ranks,
|
| 151 |
+
special_tokens=self.special_tokens,
|
| 152 |
+
)
|
| 153 |
+
assert (
|
| 154 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
| 155 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
| 156 |
+
|
| 157 |
+
self.decoder = {
|
| 158 |
+
v: k for k, v in self.mergeable_ranks.items()
|
| 159 |
+
} # type: dict[int, bytes|str]
|
| 160 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
| 161 |
+
|
| 162 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
| 163 |
+
|
| 164 |
+
self.eod_id = self.tokenizer.eot_token
|
| 165 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
| 166 |
+
self.im_end_id = self.special_tokens[IMEND]
|
| 167 |
+
|
| 168 |
+
def __len__(self) -> int:
|
| 169 |
+
return self.tokenizer.n_vocab
|
| 170 |
+
|
| 171 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
| 172 |
+
return self.mergeable_ranks
|
| 173 |
+
|
| 174 |
+
def convert_tokens_to_ids(
|
| 175 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
| 176 |
+
) -> List[int]:
|
| 177 |
+
ids = []
|
| 178 |
+
if isinstance(tokens, (str, bytes)):
|
| 179 |
+
if tokens in self.special_tokens:
|
| 180 |
+
return self.special_tokens[tokens]
|
| 181 |
+
else:
|
| 182 |
+
return self.mergeable_ranks.get(tokens)
|
| 183 |
+
for token in tokens:
|
| 184 |
+
if token in self.special_tokens:
|
| 185 |
+
ids.append(self.special_tokens[token])
|
| 186 |
+
else:
|
| 187 |
+
ids.append(self.mergeable_ranks.get(token))
|
| 188 |
+
return ids
|
| 189 |
+
|
| 190 |
+
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
|
| 191 |
+
if not special_tokens and new_tokens:
|
| 192 |
+
raise ValueError('Adding regular tokens is not supported')
|
| 193 |
+
for token in new_tokens:
|
| 194 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
| 195 |
+
if surface_form not in SPECIAL_TOKENS + self.IMAGE_ST:
|
| 196 |
+
raise ValueError('Adding unknown special tokens is not supported')
|
| 197 |
+
return 0
|
| 198 |
+
|
| 199 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
| 200 |
+
"""
|
| 201 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
| 202 |
+
|
| 203 |
+
Returns:
|
| 204 |
+
`Tuple(str)`: Paths to the files saved.
|
| 205 |
+
"""
|
| 206 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
| 207 |
+
with open(file_path, "w", encoding="utf8") as w:
|
| 208 |
+
for k, v in self.mergeable_ranks.items():
|
| 209 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
| 210 |
+
w.write(line)
|
| 211 |
+
return (file_path,)
|
| 212 |
+
|
| 213 |
+
def tokenize(
|
| 214 |
+
self,
|
| 215 |
+
text: str,
|
| 216 |
+
allowed_special: Union[Set, str] = "all",
|
| 217 |
+
disallowed_special: Union[Collection, str] = (),
|
| 218 |
+
**kwargs,
|
| 219 |
+
) -> List[Union[bytes, str]]:
|
| 220 |
+
"""
|
| 221 |
+
Converts a string in a sequence of tokens.
|
| 222 |
+
|
| 223 |
+
Args:
|
| 224 |
+
text (`str`):
|
| 225 |
+
The sequence to be encoded.
|
| 226 |
+
allowed_special (`Literal["all"]` or `set`):
|
| 227 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
| 228 |
+
Default to "all".
|
| 229 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
| 230 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
| 231 |
+
Default to an empty tuple.
|
| 232 |
+
|
| 233 |
+
kwargs (additional keyword arguments, *optional*):
|
| 234 |
+
Will be passed to the underlying model specific encode method.
|
| 235 |
+
|
| 236 |
+
Returns:
|
| 237 |
+
`List[bytes|str]`: The list of tokens.
|
| 238 |
+
"""
|
| 239 |
+
tokens = []
|
| 240 |
+
text = unicodedata.normalize("NFC", text)
|
| 241 |
+
|
| 242 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
| 243 |
+
for t in self.tokenizer.encode(
|
| 244 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
| 245 |
+
):
|
| 246 |
+
tokens.append(self.decoder[t])
|
| 247 |
+
|
| 248 |
+
def _encode_imgurl(img_tokens):
|
| 249 |
+
assert img_tokens[0] == self.image_start_tag and img_tokens[-1] == self.image_end_tag
|
| 250 |
+
img_tokens = img_tokens[1:-1]
|
| 251 |
+
img_url = b''.join(img_tokens)
|
| 252 |
+
out_img_tokens = list(map(self.decoder.get, img_url))
|
| 253 |
+
if len(out_img_tokens) > IMG_TOKEN_SPAN:
|
| 254 |
+
raise ValueError("The content in {}..{} is too long".format(
|
| 255 |
+
self.image_start_tag, self.image_end_tag))
|
| 256 |
+
out_img_tokens.extend([self.image_pad_tag] * (IMG_TOKEN_SPAN - len(out_img_tokens)))
|
| 257 |
+
out_img_tokens = [self.image_start_tag] + out_img_tokens + [self.image_end_tag]
|
| 258 |
+
return out_img_tokens
|
| 259 |
+
|
| 260 |
+
return _replace_closed_tag(tokens, self.image_start_tag, self.image_end_tag, _encode_imgurl)
|
| 261 |
+
|
| 262 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
| 263 |
+
"""
|
| 264 |
+
Converts a sequence of tokens in a single string.
|
| 265 |
+
"""
|
| 266 |
+
text = ""
|
| 267 |
+
temp = b""
|
| 268 |
+
for t in tokens:
|
| 269 |
+
if isinstance(t, str):
|
| 270 |
+
if temp:
|
| 271 |
+
text += temp.decode("utf-8", errors=self.errors)
|
| 272 |
+
temp = b""
|
| 273 |
+
text += t
|
| 274 |
+
elif isinstance(t, bytes):
|
| 275 |
+
temp += t
|
| 276 |
+
else:
|
| 277 |
+
raise TypeError("token should only be of type types or str")
|
| 278 |
+
if temp:
|
| 279 |
+
text += temp.decode("utf-8", errors=self.errors)
|
| 280 |
+
return text
|
| 281 |
+
|
| 282 |
+
@property
|
| 283 |
+
def vocab_size(self):
|
| 284 |
+
return self.tokenizer.n_vocab
|
| 285 |
+
|
| 286 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
| 287 |
+
"""Converts an id to a token, special tokens included"""
|
| 288 |
+
if index in self.decoder:
|
| 289 |
+
return self.decoder[index]
|
| 290 |
+
raise ValueError("unknown ids")
|
| 291 |
+
|
| 292 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
| 293 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
| 294 |
+
if token in self.special_tokens:
|
| 295 |
+
return self.special_tokens[token]
|
| 296 |
+
if token in self.mergeable_ranks:
|
| 297 |
+
return self.mergeable_ranks[token]
|
| 298 |
+
raise ValueError("unknown token")
|
| 299 |
+
|
| 300 |
+
def _tokenize(self, text: str, **kwargs):
|
| 301 |
+
"""
|
| 302 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
| 303 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
| 304 |
+
|
| 305 |
+
Do NOT take care of added tokens.
|
| 306 |
+
"""
|
| 307 |
+
raise NotImplementedError
|
| 308 |
+
|
| 309 |
+
def _decode(
|
| 310 |
+
self,
|
| 311 |
+
token_ids: Union[int, List[int]],
|
| 312 |
+
skip_special_tokens: bool = False,
|
| 313 |
+
errors: str = None,
|
| 314 |
+
**kwargs,
|
| 315 |
+
) -> str:
|
| 316 |
+
if isinstance(token_ids, int):
|
| 317 |
+
token_ids = [token_ids]
|
| 318 |
+
|
| 319 |
+
def _decode_imgurl(img_token_ids):
|
| 320 |
+
assert img_token_ids[0] == self.img_start_id and img_token_ids[-1] == self.img_end_id
|
| 321 |
+
img_token_ids = img_token_ids[1:-1]
|
| 322 |
+
img_token_ids = img_token_ids[ : img_token_ids.index(self.img_pad_id)]
|
| 323 |
+
img_url = bytes(img_token_ids).decode('utf-8')
|
| 324 |
+
return [self.img_start_id] + self.tokenizer.encode(img_url) + [self.img_end_id]
|
| 325 |
+
|
| 326 |
+
token_ids = _replace_closed_tag(token_ids, self.img_start_id, self.img_end_id, _decode_imgurl)
|
| 327 |
+
|
| 328 |
+
if skip_special_tokens:
|
| 329 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
| 330 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
| 331 |
+
|
| 332 |
+
def to_list_format(self, text: str):
|
| 333 |
+
text = unicodedata.normalize("NFC", text)
|
| 334 |
+
token_ids = self.tokenizer.encode(
|
| 335 |
+
text, allowed_special=set(self.IMAGE_ST + (ENDOFTEXT,)))
|
| 336 |
+
|
| 337 |
+
def _encode_vl_info(tokens):
|
| 338 |
+
if len(tokens) == 0:
|
| 339 |
+
return []
|
| 340 |
+
if tokens[0] == self.img_start_id and tokens[-1] == self.img_end_id:
|
| 341 |
+
key = 'image'
|
| 342 |
+
elif tokens[0] == self.ref_start_id and tokens[-1] == self.ref_end_id:
|
| 343 |
+
key = 'ref'
|
| 344 |
+
elif tokens[0] == self.box_start_id and tokens[-1] == self.box_end_id:
|
| 345 |
+
key = 'box'
|
| 346 |
+
elif tokens[0] == self.quad_start_id and tokens[-1] == self.quad_end_id:
|
| 347 |
+
key = 'quad'
|
| 348 |
+
else:
|
| 349 |
+
_tobytes = lambda x: x.encode('utf-8') if isinstance(x, str) else x
|
| 350 |
+
return [{'text': b''.join(map(_tobytes, map(self.decoder.get, tokens))).decode('utf-8')}]
|
| 351 |
+
val = b''.join(map(self.decoder.get, tokens[1:-1])).decode('utf-8')
|
| 352 |
+
return [{key: val}]
|
| 353 |
+
|
| 354 |
+
return _replace_closed_tag(
|
| 355 |
+
token_ids,
|
| 356 |
+
(self.img_start_id, self.ref_start_id, self.box_start_id, self.quad_start_id),
|
| 357 |
+
(self.img_end_id, self.ref_end_id, self.box_end_id, self.quad_end_id),
|
| 358 |
+
_encode_vl_info,
|
| 359 |
+
_encode_vl_info,
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
def _fetch_latest_picture(self, response, history):
|
| 363 |
+
if history is None:
|
| 364 |
+
history = []
|
| 365 |
+
_history = history + [(response, None)]
|
| 366 |
+
for q, r in _history[::-1]:
|
| 367 |
+
for ele in self.to_list_format(q)[::-1]:
|
| 368 |
+
if 'image' in ele:
|
| 369 |
+
return ele['image']
|
| 370 |
+
return None
|
| 371 |
+
|
| 372 |
+
def _fetch_all_box_with_ref(self, text):
|
| 373 |
+
list_format = self.to_list_format(text)
|
| 374 |
+
output = []
|
| 375 |
+
for i, ele in enumerate(list_format):
|
| 376 |
+
if 'box' in ele:
|
| 377 |
+
bbox = tuple(map(int, ele['box'].replace('(', '').replace(')', '').split(',')))
|
| 378 |
+
assert len(bbox) == 4
|
| 379 |
+
output.append({'box': bbox})
|
| 380 |
+
if i > 0 and 'ref' in list_format[i-1]:
|
| 381 |
+
output[-1]['ref'] = list_format[i-1]['ref'].strip()
|
| 382 |
+
return output
|
| 383 |
+
|
| 384 |
+
def draw_bbox_on_latest_picture(
|
| 385 |
+
self,
|
| 386 |
+
response,
|
| 387 |
+
history=None,
|
| 388 |
+
):
|
| 389 |
+
image = self._fetch_latest_picture(response, history)
|
| 390 |
+
if image is None:
|
| 391 |
+
return None
|
| 392 |
+
if image.startswith("http://") or image.startswith("https://"):
|
| 393 |
+
image = Image.open(requests.get(image, stream=True).raw)
|
| 394 |
+
else:
|
| 395 |
+
image = Image.open(image)
|
| 396 |
+
h, w = image.height, image.width
|
| 397 |
+
image = image.convert("RGB")
|
| 398 |
+
|
| 399 |
+
boxes = self._fetch_all_box_with_ref(response)
|
| 400 |
+
if not boxes:
|
| 401 |
+
return None
|
| 402 |
+
fnt = ImageFont.truetype("SimSun.ttf", 20)
|
| 403 |
+
draw = ImageDraw.Draw(image)
|
| 404 |
+
for box in boxes:
|
| 405 |
+
x1, y1, x2, y2 = box['box']
|
| 406 |
+
x1, y1, x2, y2 = (int(x1 / 1000 * w), int(y1 / 1000 * h), int(x2 / 1000 * w), int(y2 / 1000 * h))
|
| 407 |
+
draw.rectangle((x1, y1, x2, y2), outline='red', width=2)
|
| 408 |
+
if 'ref' in box:
|
| 409 |
+
draw.text((x1, y1), box['ref'], fill='red', font=fnt)
|
| 410 |
+
return image
|
| 411 |
+
|
| 412 |
+
|