Use untied branch as default
Browse files- .gitattributes +1 -0
- README.md +331 -0
- config.json +65 -0
- generation_config.json +8 -0
- model.safetensors +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
granite_docling.png filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- ds4sd/SynthCodeNet
|
| 5 |
+
- ds4sd/SynthFormulaNet
|
| 6 |
+
- ds4sd/SynthChartNet
|
| 7 |
+
- HuggingFaceM4/DoclingMatix
|
| 8 |
+
tags:
|
| 9 |
+
- text-generation
|
| 10 |
+
- documents
|
| 11 |
+
- code
|
| 12 |
+
- formula
|
| 13 |
+
- chart
|
| 14 |
+
- ocr
|
| 15 |
+
- layout
|
| 16 |
+
- table
|
| 17 |
+
- document-parse
|
| 18 |
+
- docling
|
| 19 |
+
- granite
|
| 20 |
+
- extraction
|
| 21 |
+
- math
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# granite-docling-258m
|
| 25 |
+
|
| 26 |
+
**Model Summary**: Granite Docling is a multimodal Image-Text-to-Text model engineered for efficient document conversion. It preserves the core features of Docling while maintaining seamless integration with [DoclingDocuments](https://docling-project.github.io/docling/) to ensure full compatibility.
|
| 27 |
+
|
| 28 |
+
Granite Docling 258M builds upon the IDEFICS3 architecture, but introduces two key modifications: it replaces the vision encoder with siglip2-base-patch16-512 and substitutes the language model with a Granite 165M LLM.
|
| 29 |
+
|
| 30 |
+
- **Developed by**: IBM Research
|
| 31 |
+
- **Model type**: Multi-modal model (image+text-to-text)
|
| 32 |
+
- **Language(s)**: English (NLP)
|
| 33 |
+
- **License**: [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
| 34 |
+
- **Release Date**: September 17, 2025
|
| 35 |
+
|
| 36 |
+
Granite-docling-258M is fully integrated into the Docling pipelines, carrying over existing [features](https://huggingface.co/ds4sd/SmolDocling-256M-preview) while introducing a number of powerful new features, including:
|
| 37 |
+
|
| 38 |
+
- 🔢 Enhanced Equation Recognition: More accurate detection and formatting of mathematical formulas
|
| 39 |
+
- 🧩 Flexible Inference Modes: Choose between full-page inference, bbox-guided region inference
|
| 40 |
+
- 🧘 Improved Stability: Tends to avoid infinite loops more effectively
|
| 41 |
+
- 🧮 Enhanceed Inline Equations: Better inline math recognition
|
| 42 |
+
- 🧾 Document Element QA: Answer questions about a document’s structure such as the presence and order of document elements
|
| 43 |
+
- 🌍 Japanese, Arabic and Chinese support (_experimental_)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
## Evaluations
|
| 47 |
+
|
| 48 |
+
<table>
|
| 49 |
+
<thead>
|
| 50 |
+
<tr>
|
| 51 |
+
<th></th>
|
| 52 |
+
<th><b>smoldocling-256m-preview</b></th>
|
| 53 |
+
<th><b>granite-docling-258m</b></th>
|
| 54 |
+
</tr>
|
| 55 |
+
</thead>
|
| 56 |
+
<tbody>
|
| 57 |
+
<tr><td colspan="3"><b>Layout</b></td></tr>
|
| 58 |
+
<tr><td>MAP ↑</td><td>0.21</td><td><b>0.28</b></td></tr>
|
| 59 |
+
<tr><td>F1 ↑</td><td>0.79</td><td><b>0.85</b></td></tr>
|
| 60 |
+
<tr><td>Precision ↑</td><td>0.86</td><td><b>0.87</b></td></tr>
|
| 61 |
+
<tr><td>Recall ↑</td><td>0.82</td><td><b>0.89</b></td></tr>
|
| 62 |
+
<tr><td colspan="3"><b>Full Page OCR</b></td></tr>
|
| 63 |
+
<tr><td>Edit-distance ↓</td><td>0.48 (0.46)</td><td><b>0.46</b> (<b>0.44</b>)</td></tr>
|
| 64 |
+
<tr><td>F1 ↑</td><td><b>0.80</b> (0.76)</td><td>0.75 (<b>0.78</b>)</td></tr>
|
| 65 |
+
<tr><td>Precision ↑</td><td><b>0.89</b> (0.85)</td><td>0.81 (0.85)</td></tr>
|
| 66 |
+
<tr><td>Recall ↑</td><td><b>0.79</b> (0.74)</td><td>0.73 (<b>0.77</b>)</td></tr>
|
| 67 |
+
<tr><td>BLEU ↑</td><td><b>0.58</b> (0.54)</td><td>0.56 (<b>0.59</b>)</td></tr>
|
| 68 |
+
<tr><td>Meteor ↑</td><td>0.67 (0.67)</td><td>0.67 (<b>0.70</b>)</td></tr>
|
| 69 |
+
<tr><td colspan="3"><b>Code Recognition</b></td></tr>
|
| 70 |
+
<tr><td>Edit-distance ↓</td><td>0.114</td><td><b>0.013</b></td></tr>
|
| 71 |
+
<tr><td>F1 ↑</td><td>0.915</td><td><b>0.988</b></td></tr>
|
| 72 |
+
<tr><td>Precision ↑</td><td>0.94</td><td><b>0.99</b></td></tr>
|
| 73 |
+
<tr><td>Recall ↑</td><td>0.909</td><td><b>0.988</b></td></tr>
|
| 74 |
+
<tr><td>BLEU ↑</td><td>0.875</td><td><b>0.983</b></td></tr>
|
| 75 |
+
<tr><td>Meteor ↑</td><td>0.889</td><td><b>0.986</b></td></tr>
|
| 76 |
+
<tr><td colspan="3"><b>Equation Recognition</b></td></tr>
|
| 77 |
+
<tr><td>Edit-distance ↓</td><td>0.119</td><td><b>0.073</b></td></tr>
|
| 78 |
+
<tr><td>F1 ↑</td><td>0.947</td><td><b>0.968</b></td></tr>
|
| 79 |
+
<tr><td>Precision ↑</td><td>0.959</td><td><b>0.968</b></td></tr>
|
| 80 |
+
<tr><td>Recall ↑</td><td>0.941</td><td><b>0.969</b></td></tr>
|
| 81 |
+
<tr><td>BLEU ↑</td><td>0.824</td><td><b>0.893</b></td></tr>
|
| 82 |
+
<tr><td>Meteor ↑</td><td>0.878</td><td><b>0.927</b></td></tr>
|
| 83 |
+
<tr><td colspan="3"><b>Table Recognition (FinTabNet 150dpi)</b></td></tr>
|
| 84 |
+
<tr><td>TEDS (structure) ↑</td><td>0.82</td><td><b>0.97</b></td></tr>
|
| 85 |
+
<tr><td>TEDS (w/content) ↑</td><td>0.76</td><td><b>0.96</b></td></tr>
|
| 86 |
+
<tr><td colspan="3"><b>Other Benchmarks</b></td></tr>
|
| 87 |
+
<tr><td>MMStar ↑</td><td>0.17</td><td><b>0.3</b></td></tr>
|
| 88 |
+
<tr><td>OCRBench ↑</td><td>338</td><td><b>500</b></td></tr>
|
| 89 |
+
</table>
|
| 90 |
+
|
| 91 |
+
## Getting started
|
| 92 |
+
|
| 93 |
+
You can use **transformers**, **vllm**, or **onnx** to perform inference, and [Docling](https://github.com/docling-project/docling) to convert results to variety of output formats (md, html, etc.):
|
| 94 |
+
|
| 95 |
+
<details>
|
| 96 |
+
<summary>📄 Single page image inference using Tranformers 🤖</summary>
|
| 97 |
+
|
| 98 |
+
```python
|
| 99 |
+
# Prerequisites:
|
| 100 |
+
# pip install torch
|
| 101 |
+
# pip install docling_core
|
| 102 |
+
# pip install transformers
|
| 103 |
+
|
| 104 |
+
import torch
|
| 105 |
+
from docling_core.types.doc import DoclingDocument
|
| 106 |
+
from docling_core.types.doc.document import DocTagsDocument
|
| 107 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 108 |
+
from transformers.image_utils import load_image
|
| 109 |
+
from pathlib import Path
|
| 110 |
+
|
| 111 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 112 |
+
|
| 113 |
+
# Load images
|
| 114 |
+
image = load_image("https://upload.wikimedia.org/wikipedia/commons/7/76/GazettedeFrance.jpg")
|
| 115 |
+
|
| 116 |
+
# Initialize processor and model
|
| 117 |
+
processor = AutoProcessor.from_pretrained("ibm-granite/granite-docling-258M")
|
| 118 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
| 119 |
+
"ibm-granite/granite-docling-258M",
|
| 120 |
+
torch_dtype=torch.bfloat16,
|
| 121 |
+
_attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager",
|
| 122 |
+
).to(DEVICE)
|
| 123 |
+
|
| 124 |
+
# Create input messages
|
| 125 |
+
messages = [
|
| 126 |
+
{
|
| 127 |
+
"role": "user",
|
| 128 |
+
"content": [
|
| 129 |
+
{"type": "image"},
|
| 130 |
+
{"type": "text", "text": "Convert this page to docling."}
|
| 131 |
+
]
|
| 132 |
+
},
|
| 133 |
+
]
|
| 134 |
+
|
| 135 |
+
# Prepare inputs
|
| 136 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 137 |
+
inputs = processor(text=prompt, images=[image], return_tensors="pt")
|
| 138 |
+
inputs = inputs.to(DEVICE)
|
| 139 |
+
|
| 140 |
+
# Generate outputs
|
| 141 |
+
generated_ids = model.generate(**inputs, max_new_tokens=8192)
|
| 142 |
+
prompt_length = inputs.input_ids.shape[1]
|
| 143 |
+
trimmed_generated_ids = generated_ids[:, prompt_length:]
|
| 144 |
+
doctags = processor.batch_decode(
|
| 145 |
+
trimmed_generated_ids,
|
| 146 |
+
skip_special_tokens=False,
|
| 147 |
+
)[0].lstrip()
|
| 148 |
+
|
| 149 |
+
# Populate document
|
| 150 |
+
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
|
| 151 |
+
print(doctags)
|
| 152 |
+
# create a docling document
|
| 153 |
+
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
|
| 154 |
+
|
| 155 |
+
# export as any format
|
| 156 |
+
# HTML
|
| 157 |
+
# Path("Out/").mkdir(parents=True, exist_ok=True)
|
| 158 |
+
# output_path_html = Path("Out/") / "example.html"
|
| 159 |
+
# doc.save_as_html(output_path_html)
|
| 160 |
+
# MD
|
| 161 |
+
print(doc.export_to_markdown())
|
| 162 |
+
```
|
| 163 |
+
</details>
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
<details>
|
| 167 |
+
<summary> 🚀 Fast Batch Inference Using VLLM</summary>
|
| 168 |
+
|
| 169 |
+
```python
|
| 170 |
+
# Prerequisites:
|
| 171 |
+
# pip install vllm
|
| 172 |
+
# pip install docling_core
|
| 173 |
+
# place page images you want to convert into "img/" dir
|
| 174 |
+
|
| 175 |
+
import time
|
| 176 |
+
import os
|
| 177 |
+
from vllm import LLM, SamplingParams
|
| 178 |
+
from PIL import Image
|
| 179 |
+
from docling_core.types.doc import DoclingDocument
|
| 180 |
+
from docling_core.types.doc.document import DocTagsDocument
|
| 181 |
+
from pathlib import Path
|
| 182 |
+
|
| 183 |
+
# Configuration
|
| 184 |
+
MODEL_PATH = "ibm-granite/granite-docling-258M"
|
| 185 |
+
IMAGE_DIR = "img/" # Place your page images here
|
| 186 |
+
OUTPUT_DIR = "out/"
|
| 187 |
+
PROMPT_TEXT = "Convert page to docling."
|
| 188 |
+
|
| 189 |
+
# Ensure output directory exists
|
| 190 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 191 |
+
|
| 192 |
+
# Initialize LLM
|
| 193 |
+
llm = LLM(model=MODEL_PATH, limit_mm_per_prompt={"image": 1})
|
| 194 |
+
|
| 195 |
+
sampling_params = SamplingParams(
|
| 196 |
+
temperature=0.0,
|
| 197 |
+
max_tokens=8192
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
# Load and prepare all images and prompts up front
|
| 201 |
+
batched_inputs = []
|
| 202 |
+
image_names = []
|
| 203 |
+
|
| 204 |
+
for img_file in sorted(os.listdir(IMAGE_DIR)):
|
| 205 |
+
if img_file.lower().endswith((".png", ".jpg", ".jpeg")):
|
| 206 |
+
img_path = os.path.join(IMAGE_DIR, img_file)
|
| 207 |
+
with Image.open(img_path) as im:
|
| 208 |
+
image = im.convert("RGB")
|
| 209 |
+
|
| 210 |
+
prompt = (
|
| 211 |
+
f"<|start_of_role|>user<|end_of_role|><image>{PROMPT_TEXT}<|end_of_text|>\n"
|
| 212 |
+
f"<|start_of_role|>assistant<|end_of_role|>"
|
| 213 |
+
)
|
| 214 |
+
batched_inputs.append({"prompt": prompt, "multi_modal_data": {"image": image}})
|
| 215 |
+
image_names.append(os.path.splitext(img_file)[0])
|
| 216 |
+
|
| 217 |
+
# Run batch inference
|
| 218 |
+
start_time = time.time()
|
| 219 |
+
outputs = llm.generate(batched_inputs, sampling_params=sampling_params)
|
| 220 |
+
|
| 221 |
+
# Postprocess all results
|
| 222 |
+
for img_fn, output, input_data in zip(image_names, outputs, batched_inputs):
|
| 223 |
+
doctags = output.outputs[0].text
|
| 224 |
+
output_path_dt = Path(OUTPUT_DIR) / f"{img_fn}.dt"
|
| 225 |
+
output_path_md = Path(OUTPUT_DIR) / f"{img_fn}.md"
|
| 226 |
+
|
| 227 |
+
with open(output_path_dt, "w", encoding="utf-8") as f:
|
| 228 |
+
f.write(doctags)
|
| 229 |
+
|
| 230 |
+
# Convert to DoclingDocument and save markdown
|
| 231 |
+
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [input_data["multi_modal_data"]["image"]])
|
| 232 |
+
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
|
| 233 |
+
doc.save_as_markdown(output_path_md)
|
| 234 |
+
|
| 235 |
+
print(f"Total time: {time.time() - start_time:.2f} sec")
|
| 236 |
+
|
| 237 |
+
```
|
| 238 |
+
</details>
|
| 239 |
+
|
| 240 |
+
💻 Local inference on Apple Silicon with MLX: [see here](https://huggingface.co/ibm-granite/granite-docling-258M-mlx)
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
## Supported Instructions
|
| 244 |
+
|
| 245 |
+
<table>
|
| 246 |
+
<tr>
|
| 247 |
+
<th>Description</th>
|
| 248 |
+
<th>Instruction</th>
|
| 249 |
+
<th>Short Instruction</th>
|
| 250 |
+
</tr>
|
| 251 |
+
<tr>
|
| 252 |
+
<td><b>Full conversion</b></td>
|
| 253 |
+
<td>Convert this page to docling.</td>
|
| 254 |
+
<td>-</td>
|
| 255 |
+
</tr>
|
| 256 |
+
<tr>
|
| 257 |
+
<td><b>Chart</b></td>
|
| 258 |
+
<td>Convert chart to table.</td>
|
| 259 |
+
<td><code><chart></code></td>
|
| 260 |
+
</tr>
|
| 261 |
+
<tr>
|
| 262 |
+
<td><b>Formula</b></td>
|
| 263 |
+
<td>Convert formula to LaTeX.</td>
|
| 264 |
+
<td><code><formula></code></td>
|
| 265 |
+
</tr>
|
| 266 |
+
<tr>
|
| 267 |
+
<td><b>Code</b></td>
|
| 268 |
+
<td>Convert code to text.</td>
|
| 269 |
+
<td><code><code></code></td>
|
| 270 |
+
</tr>
|
| 271 |
+
<tr>
|
| 272 |
+
<td><b>Table</b></td>
|
| 273 |
+
<td>Convert table to OTSL. (<a href="https://arxiv.org/pdf/2305.03393">Lysak et al., 2023</a>)</td>
|
| 274 |
+
<td><code><otsl></code></td>
|
| 275 |
+
</tr>
|
| 276 |
+
<tr>
|
| 277 |
+
<td rowspan="4"><b>Actions and Pipelines</b></td>
|
| 278 |
+
<td>OCR the text in a specific location: <loc_155><loc_233><loc_206><loc_237></td>
|
| 279 |
+
<td>-</td>
|
| 280 |
+
</tr>
|
| 281 |
+
<tr>
|
| 282 |
+
<td>Identify element at: <loc_247><loc_482><10c_252><loc_486></td>
|
| 283 |
+
<td>-</td>
|
| 284 |
+
</tr>
|
| 285 |
+
<tr>
|
| 286 |
+
<td>Find all 'text' elements on the page, retrieve all section headers.</td>
|
| 287 |
+
<td>-</td>
|
| 288 |
+
</tr>
|
| 289 |
+
<tr>
|
| 290 |
+
<td>Detect footer elements on the page.</td>
|
| 291 |
+
<td>-</td>
|
| 292 |
+
</tr>
|
| 293 |
+
</table>
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
# Model Architecture:
|
| 298 |
+
|
| 299 |
+
The architecture of granite-docling-258m consists of the following components:
|
| 300 |
+
|
| 301 |
+
(1) Vision encoder: [siglip2-base-patch16-512](https://huggingface.co/google/siglip2-base-patch16-512).
|
| 302 |
+
|
| 303 |
+
(2) Vision-language connector: pixel shuffle projector (as in idefics3)
|
| 304 |
+
|
| 305 |
+
(3) Large language model: Granite 165M.
|
| 306 |
+
|
| 307 |
+
We built upon [Idefics3](https://huggingface.co/docs/transformers/en/model_doc/idefics3) to train our model. We incorporated DocTags into our LLM’s supervised fine-tuning (SFT) data to help the model become familiar with the format, enabling faster convergence and mitigating issues previously observed with SmolDocling.
|
| 308 |
+
The model was trained using the [nanoVLM](https://github.com/huggingface/nanoVLM) framework, which provides a lightweight and efficient training setup for vision-language models
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
# Training Data
|
| 312 |
+
|
| 313 |
+
Our training corpus consists of two principal sources: (1) publicly available datasets and (2) internally constructed synthetic datasets designed to elicit specific document understanding capabilities.
|
| 314 |
+
|
| 315 |
+
In particular, we incorporate:
|
| 316 |
+
|
| 317 |
+
* [**SynthCodeNet**](https://huggingface.co/datasets/ds4sd/SynthCodeNet) — a large-scale collection of synthetically rendered code snippets spanning over 50 programming languages
|
| 318 |
+
* [**SynthFormulaNet**](https://huggingface.co/datasets/ds4sd/SynthFormulaNet) — a dataset of synthetic mathematical expressions paired with ground-truth LaTeX representations
|
| 319 |
+
* [**SynthChartNet**](https://huggingface.co/datasets/ds4sd/SynthChartNet) — synthetic chart images annotated with structured table outputs
|
| 320 |
+
* [**DoclingMatix**](https://huggingface.co/datasets/HuggingFaceM4/DoclingMatix) — a curated corpus of real-world document pages sampled from diverse domains
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
# Infrastructure:
|
| 324 |
+
|
| 325 |
+
We train granite-docling-258m using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs.
|
| 326 |
+
|
| 327 |
+
Resources
|
| 328 |
+
|
| 329 |
+
- ⭐️ Learn about the latest updates with Docling: https://docling-project.github.io/docling/#features
|
| 330 |
+
- 🚀 Get started with Docling concepts, integrations and tutorials: https://docling-project.github.io/docling/getting_started/
|
| 331 |
+
- 💡 Learn about the latest Granite learning resources: https://ibm.biz/granite-learning-resources
|
config.json
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Idefics3ForConditionalGeneration"
|
| 4 |
+
],
|
| 5 |
+
"bos_token_id": 100264,
|
| 6 |
+
"eos_token_id": 100257,
|
| 7 |
+
"image_token_id": 100270,
|
| 8 |
+
"model_type": "idefics3",
|
| 9 |
+
"pad_token_id": 100257,
|
| 10 |
+
"scale_factor": 4,
|
| 11 |
+
"text_config": {
|
| 12 |
+
"_name_or_path": "/models/granitev06_hf_ai4k_sft_data_v4",
|
| 13 |
+
"architectures": [
|
| 14 |
+
"LlamaForCausalLM"
|
| 15 |
+
],
|
| 16 |
+
"attention_bias": false,
|
| 17 |
+
"attention_dropout": 0.0,
|
| 18 |
+
"bos_token_id": 100264,
|
| 19 |
+
"eos_token_id": 100257,
|
| 20 |
+
"head_dim": 64,
|
| 21 |
+
"hidden_act": "silu",
|
| 22 |
+
"hidden_size": 576,
|
| 23 |
+
"initializer_range": 0.02,
|
| 24 |
+
"intermediate_size": 1536,
|
| 25 |
+
"max_position_embeddings": 8192,
|
| 26 |
+
"mlp_bias": false,
|
| 27 |
+
"model_type": "llama",
|
| 28 |
+
"num_attention_heads": 9,
|
| 29 |
+
"num_hidden_layers": 30,
|
| 30 |
+
"num_key_value_heads": 3,
|
| 31 |
+
"pad_token_id": 100257,
|
| 32 |
+
"pretraining_tp": 1,
|
| 33 |
+
"rms_norm_eps": 1e-05,
|
| 34 |
+
"rope_scaling": null,
|
| 35 |
+
"rope_theta": 100000.0,
|
| 36 |
+
"torch_dtype": "bfloat16",
|
| 37 |
+
"use_cache": false,
|
| 38 |
+
"vocab_size": 100352
|
| 39 |
+
},
|
| 40 |
+
"tie_word_embeddings": false,
|
| 41 |
+
"torch_dtype": "bfloat16",
|
| 42 |
+
"transformers_version": "4.55.2",
|
| 43 |
+
"use_cache": true,
|
| 44 |
+
"vision_config": {
|
| 45 |
+
"attention_dropout": 0.0,
|
| 46 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 47 |
+
"hidden_size": 768,
|
| 48 |
+
"image_size": 512,
|
| 49 |
+
"initializer_range": 0.02,
|
| 50 |
+
"intermediate_size": 3072,
|
| 51 |
+
"layer_norm_eps": 1e-06,
|
| 52 |
+
"max_image_size": {
|
| 53 |
+
"longest_edge": 512
|
| 54 |
+
},
|
| 55 |
+
"model_type": "idefics3_vision",
|
| 56 |
+
"num_attention_heads": 12,
|
| 57 |
+
"num_channels": 3,
|
| 58 |
+
"num_hidden_layers": 12,
|
| 59 |
+
"patch_size": 16,
|
| 60 |
+
"size": {
|
| 61 |
+
"longest_edge": 512
|
| 62 |
+
}
|
| 63 |
+
},
|
| 64 |
+
"vocab_size": 100352
|
| 65 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 100264,
|
| 4 |
+
"eos_token_id": 100257,
|
| 5 |
+
"pad_token_id": 100257,
|
| 6 |
+
"transformers_version": "4.55.2",
|
| 7 |
+
"use_cache": false
|
| 8 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:824a4c81f4b62308c26cb54bd4ee70c8ed8890874c7cfe7db9ba1176af023d97
|
| 3 |
+
size 746304208
|