--- library_name: transformers license: mit base_model: indobenchmark/indobert-base-p1 tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: results_fold_4 results: [] --- # results_fold_4 This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2303 - F1: 0.8166 - Roc Auc: 0.8836 - Accuracy: 0.7468 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.2001 | 1.0 | 1186 | 0.2002 | 0.7755 | 0.8456 | 0.6785 | | 0.1439 | 2.0 | 2372 | 0.1855 | 0.8030 | 0.8729 | 0.7097 | | 0.1403 | 3.0 | 3558 | 0.1960 | 0.8141 | 0.8784 | 0.7367 | | 0.0556 | 4.0 | 4744 | 0.2235 | 0.8128 | 0.8770 | 0.7367 | | 0.0173 | 5.0 | 5930 | 0.2303 | 0.8166 | 0.8836 | 0.7468 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1