Commit
·
e423fc2
1
Parent(s):
6f9cdf4
Publish 385M Model
Browse files- config.json +53 -0
- configuration_transnormer.py +71 -0
- generation_config.json +6 -0
- lightning_attention.py +540 -0
- modeling_transnormer.py +1072 -0
- norm.py +43 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +23 -0
- srmsnorm_triton.py +201 -0
- tokenization_baichuan.py +261 -0
- tokenizer.model +3 -0
- tokenizer_config.json +38 -0
- utils.py +151 -0
config.json
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"TransnormerForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_transnormer.TransnormerConfig",
|
| 7 |
+
"AutoModelForCausalLM": "modeling_transnormer.TransnormerForCausalLM"
|
| 8 |
+
},
|
| 9 |
+
"pad_token_id": 0,
|
| 10 |
+
"bos_token_id": 1,
|
| 11 |
+
"eos_token_id": 2,
|
| 12 |
+
"vocab_size": 64000,
|
| 13 |
+
"use_cache": true,
|
| 14 |
+
"init_std": 0.02,
|
| 15 |
+
"decoder_embed_dim": 1024,
|
| 16 |
+
"decoder_layers": 24,
|
| 17 |
+
"decoder_attention_heads": 8,
|
| 18 |
+
"no_scale_embedding": false,
|
| 19 |
+
"add_bos_token": false,
|
| 20 |
+
"norm_type": "simplermsnorm",
|
| 21 |
+
"linear_use_lrpe_list": [
|
| 22 |
+
1,
|
| 23 |
+
0,
|
| 24 |
+
0,
|
| 25 |
+
0,
|
| 26 |
+
0,
|
| 27 |
+
0,
|
| 28 |
+
0,
|
| 29 |
+
0,
|
| 30 |
+
0,
|
| 31 |
+
0,
|
| 32 |
+
0,
|
| 33 |
+
0,
|
| 34 |
+
0,
|
| 35 |
+
0,
|
| 36 |
+
0,
|
| 37 |
+
0,
|
| 38 |
+
0,
|
| 39 |
+
0,
|
| 40 |
+
0,
|
| 41 |
+
0,
|
| 42 |
+
0,
|
| 43 |
+
0,
|
| 44 |
+
0,
|
| 45 |
+
0
|
| 46 |
+
],
|
| 47 |
+
"hidden_dim": 1024,
|
| 48 |
+
"linear_act_fun": "swish",
|
| 49 |
+
"glu_dim": 2816,
|
| 50 |
+
"bias": false,
|
| 51 |
+
"torch_dtype": "bfloat16",
|
| 52 |
+
"transformers_version": "4.32.0"
|
| 53 |
+
}
|
configuration_transnormer.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 OpenNLPLab
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
# coding=utf-8
|
| 16 |
+
""" Transnormer configuration"""
|
| 17 |
+
|
| 18 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 19 |
+
from transformers.utils import logging
|
| 20 |
+
|
| 21 |
+
logger = logging.get_logger(__name__)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class TransnormerConfig(PretrainedConfig):
|
| 25 |
+
model_type = "transnormer"
|
| 26 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 27 |
+
|
| 28 |
+
def __init__(
|
| 29 |
+
self,
|
| 30 |
+
pad_token_id=0,
|
| 31 |
+
bos_token_id=1,
|
| 32 |
+
eos_token_id=2,
|
| 33 |
+
vocab_size=64000,
|
| 34 |
+
use_cache=True,
|
| 35 |
+
init_std=0.02,
|
| 36 |
+
# model config
|
| 37 |
+
decoder_embed_dim=1024,
|
| 38 |
+
decoder_layers=24,
|
| 39 |
+
decoder_attention_heads=8,
|
| 40 |
+
no_scale_embedding=False,
|
| 41 |
+
add_bos_token=False,
|
| 42 |
+
norm_type="simplermsnorm",
|
| 43 |
+
linear_use_lrpe_list=[],
|
| 44 |
+
hidden_dim=1024,
|
| 45 |
+
linear_act_fun="silu",
|
| 46 |
+
glu_dim=2816,
|
| 47 |
+
bias=False,
|
| 48 |
+
**kwargs,
|
| 49 |
+
):
|
| 50 |
+
super().__init__(
|
| 51 |
+
pad_token_id=pad_token_id,
|
| 52 |
+
bos_token_id=bos_token_id,
|
| 53 |
+
eos_token_id=eos_token_id,
|
| 54 |
+
**kwargs,
|
| 55 |
+
)
|
| 56 |
+
# hf origin
|
| 57 |
+
self.vocab_size = vocab_size
|
| 58 |
+
self.use_cache = use_cache
|
| 59 |
+
self.init_std = init_std
|
| 60 |
+
# add
|
| 61 |
+
self.decoder_embed_dim = decoder_embed_dim
|
| 62 |
+
self.decoder_layers = decoder_layers
|
| 63 |
+
self.decoder_attention_heads = decoder_attention_heads
|
| 64 |
+
self.no_scale_embedding = no_scale_embedding
|
| 65 |
+
self.add_bos_token = add_bos_token
|
| 66 |
+
self.norm_type = norm_type
|
| 67 |
+
self.linear_use_lrpe_list = linear_use_lrpe_list
|
| 68 |
+
self.hidden_dim = hidden_dim
|
| 69 |
+
self.linear_act_fun = linear_act_fun
|
| 70 |
+
self.glu_dim = glu_dim
|
| 71 |
+
self.bias = bias
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"transformers_version": "4.31.0"
|
| 6 |
+
}
|
lightning_attention.py
ADDED
|
@@ -0,0 +1,540 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 OpenNLPLab
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
import triton
|
| 17 |
+
import triton.language as tl
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
@triton.jit
|
| 21 |
+
def _fwd_kernel(
|
| 22 |
+
Q,
|
| 23 |
+
K,
|
| 24 |
+
V,
|
| 25 |
+
Out,
|
| 26 |
+
S,
|
| 27 |
+
stride_qz,
|
| 28 |
+
stride_qh,
|
| 29 |
+
stride_qm,
|
| 30 |
+
stride_qk,
|
| 31 |
+
stride_kz,
|
| 32 |
+
stride_kh,
|
| 33 |
+
stride_kn,
|
| 34 |
+
stride_kk,
|
| 35 |
+
stride_vz,
|
| 36 |
+
stride_vh,
|
| 37 |
+
stride_vn,
|
| 38 |
+
stride_ve,
|
| 39 |
+
stride_oz,
|
| 40 |
+
stride_oh,
|
| 41 |
+
stride_om,
|
| 42 |
+
stride_oe,
|
| 43 |
+
stride_sh,
|
| 44 |
+
Z,
|
| 45 |
+
H,
|
| 46 |
+
N_CTX,
|
| 47 |
+
BLOCK_M: tl.constexpr,
|
| 48 |
+
BLOCK_DMODEL_QK: tl.constexpr,
|
| 49 |
+
BLOCK_N: tl.constexpr,
|
| 50 |
+
BLOCK_DMODEL_V: tl.constexpr,
|
| 51 |
+
IS_CAUSAL: tl.constexpr,
|
| 52 |
+
USE_DECAY: tl.constexpr,
|
| 53 |
+
):
|
| 54 |
+
start_m = tl.program_id(0)
|
| 55 |
+
off_hz = tl.program_id(1)
|
| 56 |
+
off_h = off_hz % H
|
| 57 |
+
# initialize offsets
|
| 58 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
| 59 |
+
offs_n = tl.arange(0, BLOCK_N)
|
| 60 |
+
offs_k = tl.arange(0, BLOCK_DMODEL_QK)
|
| 61 |
+
offs_e = tl.arange(0, BLOCK_DMODEL_V)
|
| 62 |
+
# get current offset of q k v
|
| 63 |
+
off_q = (off_hz * stride_qh + offs_m[:, None] * stride_qm +
|
| 64 |
+
offs_k[None, :] * stride_qk)
|
| 65 |
+
off_k = (off_hz * stride_kh + offs_n[:, None] * stride_kn +
|
| 66 |
+
offs_k[None, :] * stride_kk)
|
| 67 |
+
off_v = (off_hz * stride_vh + offs_n[:, None] * stride_vn +
|
| 68 |
+
offs_e[None, :] * stride_ve)
|
| 69 |
+
off_o = (off_hz * stride_oh + offs_m[:, None] * stride_om +
|
| 70 |
+
offs_e[None, :] * stride_oe)
|
| 71 |
+
|
| 72 |
+
# Initialize pointers to Q, K, V
|
| 73 |
+
q_ptrs = Q + off_q
|
| 74 |
+
k_ptrs = K + off_k
|
| 75 |
+
v_ptrs = V + off_v
|
| 76 |
+
|
| 77 |
+
# initialize pointer to m and l
|
| 78 |
+
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL_V], dtype=tl.float32)
|
| 79 |
+
# load q: it will stay in SRAM throughout
|
| 80 |
+
q = tl.load(q_ptrs, mask=offs_m[:, None] < N_CTX, other=0.0)
|
| 81 |
+
# loop over k, v and update accumulator
|
| 82 |
+
lo = 0
|
| 83 |
+
# print(start_m)
|
| 84 |
+
hi = (start_m + 1) * BLOCK_M if IS_CAUSAL else N_CTX
|
| 85 |
+
for start_n in range(lo, hi, BLOCK_N):
|
| 86 |
+
# -- load k, v --
|
| 87 |
+
k = tl.load(
|
| 88 |
+
k_ptrs + start_n * stride_kn,
|
| 89 |
+
mask=(start_n + offs_n)[:, None] < N_CTX,
|
| 90 |
+
other=0.0,
|
| 91 |
+
)
|
| 92 |
+
v = tl.load(
|
| 93 |
+
v_ptrs + start_n * stride_vn,
|
| 94 |
+
mask=(start_n + offs_n)[:, None] < N_CTX,
|
| 95 |
+
other=0.0,
|
| 96 |
+
)
|
| 97 |
+
# -- compute qk ---
|
| 98 |
+
# qk = tl.dot(q, k)
|
| 99 |
+
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
| 100 |
+
# qk += tl.dot(q, k, trans_b=True)
|
| 101 |
+
qk += tl.dot(q, tl.trans(k))
|
| 102 |
+
if IS_CAUSAL:
|
| 103 |
+
index = offs_m[:, None] - (start_n + offs_n[None, :])
|
| 104 |
+
if USE_DECAY:
|
| 105 |
+
S_block_ptr = S + off_h * stride_sh
|
| 106 |
+
s = tl.load(S_block_ptr)
|
| 107 |
+
s_index = s * index
|
| 108 |
+
s_index = tl.where(s_index >= 0, -s_index, float("-inf"))
|
| 109 |
+
qk = tl.exp(s_index) * qk
|
| 110 |
+
else:
|
| 111 |
+
qk = tl.where(index >= 0, qk, 0)
|
| 112 |
+
acc += tl.dot(qk, v.to(qk.dtype))
|
| 113 |
+
|
| 114 |
+
out_ptrs = Out + off_o
|
| 115 |
+
tl.store(out_ptrs, acc.to(q.dtype), mask=offs_m[:, None] < N_CTX)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
@triton.jit
|
| 119 |
+
def _bwd_kernel_kv(
|
| 120 |
+
Q,
|
| 121 |
+
K,
|
| 122 |
+
V,
|
| 123 |
+
S,
|
| 124 |
+
DO,
|
| 125 |
+
DQ,
|
| 126 |
+
DK,
|
| 127 |
+
DV,
|
| 128 |
+
stride_qz,
|
| 129 |
+
stride_qh,
|
| 130 |
+
stride_qm,
|
| 131 |
+
stride_qk,
|
| 132 |
+
stride_kz,
|
| 133 |
+
stride_kh,
|
| 134 |
+
stride_kn,
|
| 135 |
+
stride_kk,
|
| 136 |
+
stride_vz,
|
| 137 |
+
stride_vh,
|
| 138 |
+
stride_vn,
|
| 139 |
+
stride_ve,
|
| 140 |
+
stride_oz,
|
| 141 |
+
stride_oh,
|
| 142 |
+
stride_om,
|
| 143 |
+
stride_oe,
|
| 144 |
+
stride_sh,
|
| 145 |
+
Z,
|
| 146 |
+
H,
|
| 147 |
+
N_CTX,
|
| 148 |
+
num_block,
|
| 149 |
+
BLOCK_M: tl.constexpr,
|
| 150 |
+
BLOCK_DMODEL_QK: tl.constexpr,
|
| 151 |
+
BLOCK_N: tl.constexpr,
|
| 152 |
+
BLOCK_DMODEL_V: tl.constexpr,
|
| 153 |
+
CAUSAL: tl.constexpr,
|
| 154 |
+
USE_DECAY: tl.constexpr,
|
| 155 |
+
):
|
| 156 |
+
start_n = tl.program_id(0)
|
| 157 |
+
off_hz = tl.program_id(1)
|
| 158 |
+
|
| 159 |
+
off_z = off_hz // H
|
| 160 |
+
off_h = off_hz % H
|
| 161 |
+
# offset pointers for batch/head
|
| 162 |
+
Q += off_z * stride_qz + off_h * stride_qh
|
| 163 |
+
K += off_z * stride_kz + off_h * stride_kh
|
| 164 |
+
V += off_z * stride_vz + off_h * stride_vh
|
| 165 |
+
DO += off_z * stride_oz + off_h * stride_oh
|
| 166 |
+
DQ += off_z * stride_qz + off_h * stride_qh
|
| 167 |
+
DK += off_z * stride_kz + off_h * stride_kh
|
| 168 |
+
DV += off_z * stride_vz + off_h * stride_vh
|
| 169 |
+
|
| 170 |
+
# start of q
|
| 171 |
+
if CAUSAL:
|
| 172 |
+
lo = start_n * BLOCK_M
|
| 173 |
+
else:
|
| 174 |
+
lo = 0
|
| 175 |
+
# initialize row/col offsets
|
| 176 |
+
# seqlence offset
|
| 177 |
+
offs_qm = lo + tl.arange(0, BLOCK_M)
|
| 178 |
+
offs_kvn = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
| 179 |
+
# feature offset
|
| 180 |
+
offs_qkk = tl.arange(0, BLOCK_DMODEL_QK)
|
| 181 |
+
offs_ve = tl.arange(0, BLOCK_DMODEL_V)
|
| 182 |
+
# row block index
|
| 183 |
+
offs_m = tl.arange(0, BLOCK_M)
|
| 184 |
+
# initialize pointers to value-like data
|
| 185 |
+
q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_qkk[None, :] * stride_qk)
|
| 186 |
+
k_ptrs = K + (offs_kvn[:, None] * stride_kn +
|
| 187 |
+
offs_qkk[None, :] * stride_kk)
|
| 188 |
+
v_ptrs = V + (offs_kvn[:, None] * stride_vn + offs_ve[None, :] * stride_ve)
|
| 189 |
+
do_ptrs = DO + (offs_qm[:, None] * stride_om +
|
| 190 |
+
offs_ve[None, :] * stride_oe)
|
| 191 |
+
dq_ptrs = DQ + (offs_qm[:, None] * stride_qm +
|
| 192 |
+
offs_qkk[None, :] * stride_qk)
|
| 193 |
+
# initialize dv amd dk
|
| 194 |
+
dv = tl.zeros([BLOCK_N, BLOCK_DMODEL_V], dtype=tl.float32)
|
| 195 |
+
dk = tl.zeros([BLOCK_N, BLOCK_DMODEL_QK], dtype=tl.float32)
|
| 196 |
+
# k and v stay in SRAM throughout
|
| 197 |
+
k = tl.load(k_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0)
|
| 198 |
+
v = tl.load(v_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0)
|
| 199 |
+
# loop over rows
|
| 200 |
+
for start_m in range(lo, num_block * BLOCK_M, BLOCK_M):
|
| 201 |
+
offs_m_curr = start_m + offs_m
|
| 202 |
+
# load q, k, v, do on-chip
|
| 203 |
+
q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < N_CTX, other=0.0)
|
| 204 |
+
qk = tl.dot(q, tl.trans(k))
|
| 205 |
+
# qk = tl.dot(q, k, trans_b=True)
|
| 206 |
+
if CAUSAL:
|
| 207 |
+
index = offs_m_curr[:, None] - offs_kvn[None, :]
|
| 208 |
+
if USE_DECAY:
|
| 209 |
+
S_block_ptr = S + off_h * stride_sh
|
| 210 |
+
s = tl.load(S_block_ptr)
|
| 211 |
+
s_index = s * index
|
| 212 |
+
s_index = tl.where(s_index >= 0, -s_index, float("-inf"))
|
| 213 |
+
s = tl.exp(s_index)
|
| 214 |
+
qk = qk * s
|
| 215 |
+
else:
|
| 216 |
+
qk = tl.where(index >= 0, qk, 0)
|
| 217 |
+
|
| 218 |
+
p = qk
|
| 219 |
+
# compute dv
|
| 220 |
+
do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < N_CTX, other=0.0)
|
| 221 |
+
dv += tl.dot(tl.trans(p.to(do.dtype)), do)
|
| 222 |
+
dp = tl.dot(do, tl.trans(v).to(do.dtype))
|
| 223 |
+
if CAUSAL:
|
| 224 |
+
if USE_DECAY:
|
| 225 |
+
dp = dp * s
|
| 226 |
+
else:
|
| 227 |
+
dp = tl.where(index >= 0, dp, 0)
|
| 228 |
+
|
| 229 |
+
dk += tl.dot(tl.trans(dp.to(q.dtype)), q).to(tl.float32)
|
| 230 |
+
|
| 231 |
+
# increment pointers
|
| 232 |
+
q_ptrs += BLOCK_M * stride_qm
|
| 233 |
+
do_ptrs += BLOCK_M * stride_om
|
| 234 |
+
# write-back
|
| 235 |
+
dv_ptrs = DV + (offs_kvn[:, None] * stride_vn +
|
| 236 |
+
offs_ve[None, :] * stride_ve)
|
| 237 |
+
dk_ptrs = DK + (offs_kvn[:, None] * stride_kn +
|
| 238 |
+
offs_qkk[None, :] * stride_kk)
|
| 239 |
+
tl.store(dv_ptrs, dv, mask=offs_kvn[:, None] < N_CTX)
|
| 240 |
+
tl.store(dk_ptrs, dk, mask=offs_kvn[:, None] < N_CTX)
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
@triton.jit
|
| 244 |
+
def _bwd_kernel_q(
|
| 245 |
+
Q,
|
| 246 |
+
K,
|
| 247 |
+
V,
|
| 248 |
+
S,
|
| 249 |
+
DO,
|
| 250 |
+
DQ,
|
| 251 |
+
DK,
|
| 252 |
+
DV,
|
| 253 |
+
stride_qz,
|
| 254 |
+
stride_qh,
|
| 255 |
+
stride_qm,
|
| 256 |
+
stride_qk,
|
| 257 |
+
stride_kz,
|
| 258 |
+
stride_kh,
|
| 259 |
+
stride_kn,
|
| 260 |
+
stride_kk,
|
| 261 |
+
stride_vz,
|
| 262 |
+
stride_vh,
|
| 263 |
+
stride_vn,
|
| 264 |
+
stride_ve,
|
| 265 |
+
stride_oz,
|
| 266 |
+
stride_oh,
|
| 267 |
+
stride_om,
|
| 268 |
+
stride_oe,
|
| 269 |
+
stride_sh,
|
| 270 |
+
Z,
|
| 271 |
+
H,
|
| 272 |
+
N_CTX,
|
| 273 |
+
num_block,
|
| 274 |
+
BLOCK_M: tl.constexpr,
|
| 275 |
+
BLOCK_DMODEL_QK: tl.constexpr,
|
| 276 |
+
BLOCK_N: tl.constexpr,
|
| 277 |
+
BLOCK_DMODEL_V: tl.constexpr,
|
| 278 |
+
CAUSAL: tl.constexpr,
|
| 279 |
+
USE_DECAY: tl.constexpr,
|
| 280 |
+
):
|
| 281 |
+
start_m = tl.program_id(0)
|
| 282 |
+
off_hz = tl.program_id(1)
|
| 283 |
+
off_z = off_hz // H
|
| 284 |
+
off_h = off_hz % H
|
| 285 |
+
# offset pointers for batch/head
|
| 286 |
+
K += off_z * stride_kz + off_h * stride_kh
|
| 287 |
+
V += off_z * stride_vz + off_h * stride_vh
|
| 288 |
+
DO += off_z * stride_oz + off_h * stride_oh
|
| 289 |
+
DQ += off_z * stride_qz + off_h * stride_qh
|
| 290 |
+
# feature offset
|
| 291 |
+
offs_qkk = tl.arange(0, BLOCK_DMODEL_QK)
|
| 292 |
+
offs_ve = tl.arange(0, BLOCK_DMODEL_V)
|
| 293 |
+
# row block index
|
| 294 |
+
offs_m = tl.arange(0, BLOCK_M)
|
| 295 |
+
# row block index
|
| 296 |
+
offs_qm = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
| 297 |
+
# do
|
| 298 |
+
do_ptrs = DO + (offs_qm[:, None] * stride_om +
|
| 299 |
+
offs_ve[None, :] * stride_oe)
|
| 300 |
+
dq_ptrs = DQ + (offs_qm[:, None] * stride_qm +
|
| 301 |
+
offs_qkk[None, :] * stride_qk)
|
| 302 |
+
|
| 303 |
+
do = tl.load(do_ptrs, mask=offs_qm[:, None] < N_CTX, other=0.0)
|
| 304 |
+
|
| 305 |
+
dq = tl.zeros([BLOCK_M, BLOCK_DMODEL_QK], dtype=tl.float32)
|
| 306 |
+
lo = 0
|
| 307 |
+
hi = (start_m + 1) * BLOCK_M if CAUSAL else N_CTX
|
| 308 |
+
|
| 309 |
+
offs_m_curr = start_m * BLOCK_M + offs_m
|
| 310 |
+
|
| 311 |
+
for start_n in range(0, num_block):
|
| 312 |
+
offs_kvn = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
| 313 |
+
k_ptrs = K + (offs_kvn[:, None] * stride_kn +
|
| 314 |
+
offs_qkk[None, :] * stride_kk)
|
| 315 |
+
v_ptrs = V + (offs_kvn[:, None] * stride_vn +
|
| 316 |
+
offs_ve[None, :] * stride_ve)
|
| 317 |
+
# k and v stay in SRAM throughout
|
| 318 |
+
k = tl.load(k_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0)
|
| 319 |
+
v = tl.load(v_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0)
|
| 320 |
+
# dp = do vT
|
| 321 |
+
dp = tl.dot(do, tl.trans(v).to(do.dtype))
|
| 322 |
+
if CAUSAL:
|
| 323 |
+
index = offs_m_curr[:, None] - offs_kvn[None, :]
|
| 324 |
+
if USE_DECAY:
|
| 325 |
+
S_block_ptr = S + off_h * stride_sh
|
| 326 |
+
s = tl.load(S_block_ptr)
|
| 327 |
+
s_index = s * index
|
| 328 |
+
s_index = tl.where(s_index >= 0, -s_index, float("-inf"))
|
| 329 |
+
s = tl.exp(s_index)
|
| 330 |
+
dp = dp * s
|
| 331 |
+
else:
|
| 332 |
+
dp = tl.where(index >= 0, dp, 0)
|
| 333 |
+
# dq = dq + dp k
|
| 334 |
+
dq += tl.dot(dp.to(k.dtype), k)
|
| 335 |
+
|
| 336 |
+
tl.store(dq_ptrs, dq, mask=offs_qm[:, None] < N_CTX)
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
class _attention(torch.autograd.Function):
|
| 340 |
+
|
| 341 |
+
@staticmethod
|
| 342 |
+
def forward(ctx, q, k, v, causal, s):
|
| 343 |
+
q = q.contiguous()
|
| 344 |
+
k = k.contiguous()
|
| 345 |
+
v = v.contiguous()
|
| 346 |
+
s = s.contiguous()
|
| 347 |
+
# only support for Ampere now
|
| 348 |
+
capability = torch.cuda.get_device_capability()
|
| 349 |
+
if capability[0] < 8:
|
| 350 |
+
raise RuntimeError(
|
| 351 |
+
"Flash attention currently only supported for compute capability >= 80"
|
| 352 |
+
)
|
| 353 |
+
# shape constraints
|
| 354 |
+
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
|
| 355 |
+
# right
|
| 356 |
+
o = torch.empty(
|
| 357 |
+
(q.shape[0], q.shape[1], q.shape[2], v.shape[-1]),
|
| 358 |
+
dtype=q.dtype,
|
| 359 |
+
device=q.device,
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
BLOCK_M = 128
|
| 363 |
+
BLOCK_N = 64
|
| 364 |
+
num_warps = 4 if Lk <= 64 else 8
|
| 365 |
+
num_stages = 1
|
| 366 |
+
|
| 367 |
+
grid = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1], 1)
|
| 368 |
+
use_decay = s.shape[0] > 0
|
| 369 |
+
|
| 370 |
+
_fwd_kernel[grid](
|
| 371 |
+
q,
|
| 372 |
+
k,
|
| 373 |
+
v,
|
| 374 |
+
o,
|
| 375 |
+
s,
|
| 376 |
+
q.stride(0),
|
| 377 |
+
q.stride(1),
|
| 378 |
+
q.stride(2),
|
| 379 |
+
q.stride(3),
|
| 380 |
+
k.stride(0),
|
| 381 |
+
k.stride(1),
|
| 382 |
+
k.stride(2),
|
| 383 |
+
k.stride(3),
|
| 384 |
+
v.stride(0),
|
| 385 |
+
v.stride(1),
|
| 386 |
+
v.stride(2),
|
| 387 |
+
v.stride(3),
|
| 388 |
+
o.stride(0),
|
| 389 |
+
o.stride(1),
|
| 390 |
+
o.stride(2),
|
| 391 |
+
o.stride(3),
|
| 392 |
+
s.stride(0),
|
| 393 |
+
q.shape[0],
|
| 394 |
+
q.shape[1],
|
| 395 |
+
q.shape[2],
|
| 396 |
+
BLOCK_M=BLOCK_M,
|
| 397 |
+
BLOCK_DMODEL_QK=Lk,
|
| 398 |
+
BLOCK_N=BLOCK_N,
|
| 399 |
+
BLOCK_DMODEL_V=Lv,
|
| 400 |
+
IS_CAUSAL=causal,
|
| 401 |
+
USE_DECAY=use_decay,
|
| 402 |
+
num_warps=num_warps,
|
| 403 |
+
num_stages=num_stages,
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
ctx.save_for_backward(q, k, v, s)
|
| 407 |
+
ctx.grid = grid
|
| 408 |
+
ctx.BLOCK_M = BLOCK_M
|
| 409 |
+
ctx.BLOCK_DMODEL_QK = Lk
|
| 410 |
+
ctx.BLOCK_N = BLOCK_N
|
| 411 |
+
ctx.BLOCK_DMODEL_V = Lv
|
| 412 |
+
ctx.causal = causal
|
| 413 |
+
ctx.use_decay = use_decay
|
| 414 |
+
return o
|
| 415 |
+
|
| 416 |
+
@staticmethod
|
| 417 |
+
def backward(ctx, do):
|
| 418 |
+
q, k, v, s = ctx.saved_tensors
|
| 419 |
+
BLOCK_M = 32
|
| 420 |
+
BLOCK_N = 32
|
| 421 |
+
num_warps = 4
|
| 422 |
+
num_stages = 1
|
| 423 |
+
|
| 424 |
+
do = do.contiguous()
|
| 425 |
+
dq = torch.zeros_like(q, dtype=torch.float32)
|
| 426 |
+
dk = torch.empty_like(k)
|
| 427 |
+
dv = torch.empty_like(v)
|
| 428 |
+
|
| 429 |
+
grid_kv = (triton.cdiv(k.shape[2],
|
| 430 |
+
BLOCK_N), k.shape[0] * k.shape[1], 1)
|
| 431 |
+
_bwd_kernel_kv[grid_kv](
|
| 432 |
+
q,
|
| 433 |
+
k,
|
| 434 |
+
v,
|
| 435 |
+
s,
|
| 436 |
+
do,
|
| 437 |
+
dq,
|
| 438 |
+
dk,
|
| 439 |
+
dv,
|
| 440 |
+
q.stride(0),
|
| 441 |
+
q.stride(1),
|
| 442 |
+
q.stride(2),
|
| 443 |
+
q.stride(3),
|
| 444 |
+
k.stride(0),
|
| 445 |
+
k.stride(1),
|
| 446 |
+
k.stride(2),
|
| 447 |
+
k.stride(3),
|
| 448 |
+
v.stride(0),
|
| 449 |
+
v.stride(1),
|
| 450 |
+
v.stride(2),
|
| 451 |
+
v.stride(3),
|
| 452 |
+
do.stride(0),
|
| 453 |
+
do.stride(1),
|
| 454 |
+
do.stride(2),
|
| 455 |
+
do.stride(3),
|
| 456 |
+
s.stride(0),
|
| 457 |
+
q.shape[0],
|
| 458 |
+
q.shape[1],
|
| 459 |
+
q.shape[2],
|
| 460 |
+
grid_kv[0],
|
| 461 |
+
BLOCK_M=BLOCK_M,
|
| 462 |
+
BLOCK_DMODEL_QK=ctx.BLOCK_DMODEL_QK,
|
| 463 |
+
BLOCK_N=BLOCK_N,
|
| 464 |
+
BLOCK_DMODEL_V=ctx.BLOCK_DMODEL_V,
|
| 465 |
+
CAUSAL=ctx.causal,
|
| 466 |
+
USE_DECAY=ctx.use_decay,
|
| 467 |
+
num_warps=num_warps,
|
| 468 |
+
num_stages=num_stages,
|
| 469 |
+
)
|
| 470 |
+
|
| 471 |
+
grid_q = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1], 1)
|
| 472 |
+
|
| 473 |
+
_bwd_kernel_q[grid_q](
|
| 474 |
+
q,
|
| 475 |
+
k,
|
| 476 |
+
v,
|
| 477 |
+
s,
|
| 478 |
+
do,
|
| 479 |
+
dq,
|
| 480 |
+
dk,
|
| 481 |
+
dv,
|
| 482 |
+
q.stride(0),
|
| 483 |
+
q.stride(1),
|
| 484 |
+
q.stride(2),
|
| 485 |
+
q.stride(3),
|
| 486 |
+
k.stride(0),
|
| 487 |
+
k.stride(1),
|
| 488 |
+
k.stride(2),
|
| 489 |
+
k.stride(3),
|
| 490 |
+
v.stride(0),
|
| 491 |
+
v.stride(1),
|
| 492 |
+
v.stride(2),
|
| 493 |
+
v.stride(3),
|
| 494 |
+
do.stride(0),
|
| 495 |
+
do.stride(1),
|
| 496 |
+
do.stride(2),
|
| 497 |
+
do.stride(3),
|
| 498 |
+
s.stride(0),
|
| 499 |
+
q.shape[0],
|
| 500 |
+
q.shape[1],
|
| 501 |
+
q.shape[2],
|
| 502 |
+
grid_q[0],
|
| 503 |
+
BLOCK_M=BLOCK_M,
|
| 504 |
+
BLOCK_DMODEL_QK=ctx.BLOCK_DMODEL_QK,
|
| 505 |
+
BLOCK_N=BLOCK_N,
|
| 506 |
+
BLOCK_DMODEL_V=ctx.BLOCK_DMODEL_V,
|
| 507 |
+
CAUSAL=ctx.causal,
|
| 508 |
+
USE_DECAY=ctx.use_decay,
|
| 509 |
+
num_warps=num_warps,
|
| 510 |
+
num_stages=num_stages,
|
| 511 |
+
)
|
| 512 |
+
|
| 513 |
+
return dq.to(q.dtype), dk, dv, None, None
|
| 514 |
+
|
| 515 |
+
|
| 516 |
+
attention = _attention.apply
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
def lightning_attention(q, k, v, causal, ed):
|
| 520 |
+
d = q.shape[-1]
|
| 521 |
+
e = v.shape[-1]
|
| 522 |
+
# arr = f(d)
|
| 523 |
+
if d >= 128:
|
| 524 |
+
m = 128
|
| 525 |
+
else:
|
| 526 |
+
m = 64
|
| 527 |
+
arr = [m * i for i in range(d // m + 1)]
|
| 528 |
+
if arr[-1] != d:
|
| 529 |
+
arr.append(d)
|
| 530 |
+
n = len(arr)
|
| 531 |
+
output = 0
|
| 532 |
+
for i in range(n - 1):
|
| 533 |
+
s = arr[i]
|
| 534 |
+
e = arr[i + 1]
|
| 535 |
+
q1 = q[..., s:e]
|
| 536 |
+
k1 = k[..., s:e]
|
| 537 |
+
o = attention(q1, k1, v, causal, ed)
|
| 538 |
+
output = output + o
|
| 539 |
+
|
| 540 |
+
return output
|
modeling_transnormer.py
ADDED
|
@@ -0,0 +1,1072 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 OpenNLPLab
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
# coding=utf-8
|
| 16 |
+
""" PyTorch Transnormer model."""
|
| 17 |
+
import math
|
| 18 |
+
import os
|
| 19 |
+
from typing import List, Optional, Tuple, Union
|
| 20 |
+
|
| 21 |
+
from einops import rearrange
|
| 22 |
+
import numpy as np
|
| 23 |
+
import torch
|
| 24 |
+
from torch import nn
|
| 25 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 26 |
+
import torch.nn.functional as F
|
| 27 |
+
import torch.utils.checkpoint
|
| 28 |
+
from transformers.activations import ACT2FN
|
| 29 |
+
from transformers.modeling_outputs import (
|
| 30 |
+
BaseModelOutputWithPast,
|
| 31 |
+
CausalLMOutputWithPast,
|
| 32 |
+
SequenceClassifierOutputWithPast,
|
| 33 |
+
)
|
| 34 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 35 |
+
from transformers.utils import (
|
| 36 |
+
add_start_docstrings,
|
| 37 |
+
add_start_docstrings_to_model_forward,
|
| 38 |
+
logging,
|
| 39 |
+
replace_return_docstrings,
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
from .configuration_transnormer import TransnormerConfig
|
| 43 |
+
from .norm import SimpleRMSNorm as SimpleRMSNorm_torch
|
| 44 |
+
from .srmsnorm_triton import SimpleRMSNorm as SimpleRMSNorm_triton
|
| 45 |
+
from .utils import (
|
| 46 |
+
get_activation_fn,
|
| 47 |
+
get_norm_fn,
|
| 48 |
+
logging_info,
|
| 49 |
+
print_module,
|
| 50 |
+
print_params,
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
logger = logging.get_logger(__name__)
|
| 54 |
+
|
| 55 |
+
_CONFIG_FOR_DOC = "TransnormerConfig"
|
| 56 |
+
|
| 57 |
+
use_triton = eval(os.environ.get("use_triton", default="True"))
|
| 58 |
+
debug = eval(os.environ.get("debug", default="False"))
|
| 59 |
+
|
| 60 |
+
if use_triton:
|
| 61 |
+
try:
|
| 62 |
+
from .lightning_attention import lightning_attention
|
| 63 |
+
|
| 64 |
+
has_lightning_attention = True
|
| 65 |
+
except (ImportError, ModuleNotFoundError):
|
| 66 |
+
has_lightning_attention = False
|
| 67 |
+
else:
|
| 68 |
+
has_lightning_attention = False
|
| 69 |
+
|
| 70 |
+
if debug:
|
| 71 |
+
logger.info(f"Use triton: {use_triton}")
|
| 72 |
+
logger.info(f"Use lightning attention: {has_lightning_attention}")
|
| 73 |
+
logger.info(f"Debug mode: {debug}, {type(debug)}")
|
| 74 |
+
|
| 75 |
+
if not has_lightning_attention:
|
| 76 |
+
|
| 77 |
+
def linear_attention(q, k, v, attn_mask):
|
| 78 |
+
energy = torch.einsum("... n d, ... m d -> ... n m", q, k)
|
| 79 |
+
energy = energy * attn_mask
|
| 80 |
+
output = torch.einsum("... n m, ... m d -> ... n d", energy, v)
|
| 81 |
+
|
| 82 |
+
return output
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
########## start Transnormer
|
| 86 |
+
##### Linearized Relative Positional Encoding: https://openreview.net/forum?id=xoLyps2qWc&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DTMLR%2FAuthors%23your-submissions)
|
| 87 |
+
class Lrpe(nn.Module):
|
| 88 |
+
|
| 89 |
+
def __init__(
|
| 90 |
+
self,
|
| 91 |
+
num_heads=8,
|
| 92 |
+
embed_dim=64,
|
| 93 |
+
):
|
| 94 |
+
super().__init__()
|
| 95 |
+
d = num_heads * embed_dim
|
| 96 |
+
|
| 97 |
+
self.index = torch.empty(0)
|
| 98 |
+
self.theta = nn.Parameter(10000**(-2 / d * torch.arange(d)).reshape(
|
| 99 |
+
num_heads, 1, -1))
|
| 100 |
+
|
| 101 |
+
def extra_repr(self):
|
| 102 |
+
return print_module(self)
|
| 103 |
+
|
| 104 |
+
def forward(self, x, offset=0):
|
| 105 |
+
# x: b, h, n, d
|
| 106 |
+
# offset: for k, v cache
|
| 107 |
+
n = x.shape[-2]
|
| 108 |
+
if self.index.shape[0] < n:
|
| 109 |
+
self.index = torch.arange(n).reshape(1, -1, 1).to(x)
|
| 110 |
+
index = self.index[:, :n] + offset
|
| 111 |
+
theta = self.theta * index
|
| 112 |
+
x = torch.concat([x * torch.cos(theta), x * torch.sin(theta)], dim=-1)
|
| 113 |
+
|
| 114 |
+
return x
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
class GLU(nn.Module):
|
| 118 |
+
|
| 119 |
+
def __init__(self, d1, d2, bias=False):
|
| 120 |
+
super().__init__()
|
| 121 |
+
if debug:
|
| 122 |
+
# get local varables
|
| 123 |
+
params = locals()
|
| 124 |
+
# print params
|
| 125 |
+
print_params(**params)
|
| 126 |
+
|
| 127 |
+
self.l1 = nn.Linear(d1, d2, bias=bias)
|
| 128 |
+
self.l2 = nn.Linear(d1, d2, bias=bias)
|
| 129 |
+
self.l3 = nn.Linear(d2, d1, bias=bias)
|
| 130 |
+
|
| 131 |
+
def forward(self, x):
|
| 132 |
+
o1 = self.l1(x)
|
| 133 |
+
o2 = self.l2(x)
|
| 134 |
+
output = o1 * o2
|
| 135 |
+
output = self.l3(output)
|
| 136 |
+
|
| 137 |
+
return output
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
class NormLinearAttention(nn.Module):
|
| 141 |
+
|
| 142 |
+
def __init__(
|
| 143 |
+
self,
|
| 144 |
+
embed_dim,
|
| 145 |
+
hidden_dim,
|
| 146 |
+
num_heads,
|
| 147 |
+
linear_act_fun="silu",
|
| 148 |
+
norm_type="simplermsnorm",
|
| 149 |
+
linear_use_lrpe=False,
|
| 150 |
+
bias=False,
|
| 151 |
+
):
|
| 152 |
+
super().__init__()
|
| 153 |
+
if debug:
|
| 154 |
+
# get local varables
|
| 155 |
+
params = locals()
|
| 156 |
+
# print params
|
| 157 |
+
print_params(**params)
|
| 158 |
+
|
| 159 |
+
self.out_proj = nn.Linear(hidden_dim, embed_dim, bias=bias)
|
| 160 |
+
self.act = get_activation_fn(linear_act_fun)
|
| 161 |
+
self.num_heads = num_heads
|
| 162 |
+
self.embed_dim = embed_dim
|
| 163 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 164 |
+
self.norm = get_norm_fn(norm_type)(hidden_dim)
|
| 165 |
+
|
| 166 |
+
self.linear_use_lrpe = linear_use_lrpe
|
| 167 |
+
if self.linear_use_lrpe:
|
| 168 |
+
self.lrpe = Lrpe(
|
| 169 |
+
num_heads=self.num_heads,
|
| 170 |
+
embed_dim=self.head_dim,
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
self.qkvu_proj = nn.Linear(embed_dim, 4 * hidden_dim, bias=bias)
|
| 174 |
+
|
| 175 |
+
# for inference only
|
| 176 |
+
self.offset = 0
|
| 177 |
+
|
| 178 |
+
def forward(
|
| 179 |
+
self,
|
| 180 |
+
x,
|
| 181 |
+
attn_mask: Optional[torch.Tensor] = None, # (b, h, n, m)
|
| 182 |
+
attn_padding_mask: Optional[torch.Tensor] = None, # (b, m)
|
| 183 |
+
output_attentions: bool = False,
|
| 184 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 185 |
+
use_cache: bool = False,
|
| 186 |
+
slope_rate: Optional[torch.Tensor] = None,
|
| 187 |
+
):
|
| 188 |
+
do_eval = eval(os.environ.get("do_eval", default="False"))
|
| 189 |
+
if (not self.training) and (not do_eval):
|
| 190 |
+
return self.inference(
|
| 191 |
+
x,
|
| 192 |
+
attn_mask,
|
| 193 |
+
attn_padding_mask,
|
| 194 |
+
output_attentions,
|
| 195 |
+
past_key_value,
|
| 196 |
+
use_cache,
|
| 197 |
+
slope_rate=slope_rate,
|
| 198 |
+
)
|
| 199 |
+
# x: b n d
|
| 200 |
+
n = x.shape[-2]
|
| 201 |
+
# linear map
|
| 202 |
+
q, k, v, u = self.qkvu_proj(x).chunk(4, dim=-1)
|
| 203 |
+
# reshape
|
| 204 |
+
q, k, v = map(
|
| 205 |
+
lambda x: rearrange(x, "b n (h d) -> b h n d", h=self.num_heads),
|
| 206 |
+
[q, k, v])
|
| 207 |
+
# act
|
| 208 |
+
q = self.act(q)
|
| 209 |
+
k = self.act(k)
|
| 210 |
+
|
| 211 |
+
q_offset = 0
|
| 212 |
+
# lrpe relys on position, get cache first
|
| 213 |
+
if past_key_value is not None:
|
| 214 |
+
# reuse k, v, self_attention
|
| 215 |
+
k = torch.cat([past_key_value[0], k], dim=-2)
|
| 216 |
+
v = torch.cat([past_key_value[1], v], dim=-2)
|
| 217 |
+
q_offset = past_key_value[0].shape[-2]
|
| 218 |
+
|
| 219 |
+
past_key_value = (k, v) if use_cache else None
|
| 220 |
+
|
| 221 |
+
# lrpe
|
| 222 |
+
if self.linear_use_lrpe:
|
| 223 |
+
q = self.lrpe(q, offset=q_offset)
|
| 224 |
+
k = self.lrpe(k)
|
| 225 |
+
|
| 226 |
+
if attn_mask == None:
|
| 227 |
+
attn_mask = (torch.tril(torch.ones(n, n))).to(q)
|
| 228 |
+
|
| 229 |
+
if attn_padding_mask is not None:
|
| 230 |
+
v = v.masked_fill(
|
| 231 |
+
(1 - attn_padding_mask).unsqueeze(1).unsqueeze(-1).to(
|
| 232 |
+
torch.bool), 0)
|
| 233 |
+
|
| 234 |
+
if not has_lightning_attention:
|
| 235 |
+
if slope_rate != None:
|
| 236 |
+
attn_mask = torch.exp(slope_rate * attn_mask)
|
| 237 |
+
|
| 238 |
+
output = linear_attention(q, k, v, attn_mask)
|
| 239 |
+
else:
|
| 240 |
+
output = lightning_attention(q, k, v, True,
|
| 241 |
+
slope_rate.squeeze(-1).squeeze(-1))
|
| 242 |
+
|
| 243 |
+
# reshape
|
| 244 |
+
output = rearrange(output, "b h n d -> b n (h d)")
|
| 245 |
+
# normalize
|
| 246 |
+
output = self.norm(output)
|
| 247 |
+
# gate
|
| 248 |
+
output = u * output
|
| 249 |
+
# outproj
|
| 250 |
+
output = self.out_proj(output)
|
| 251 |
+
|
| 252 |
+
if not output_attentions:
|
| 253 |
+
attn_weights = None
|
| 254 |
+
else:
|
| 255 |
+
attn_weights = torch.einsum("... n d, ... m d -> ... n m", q, k)
|
| 256 |
+
|
| 257 |
+
return output, attn_weights, past_key_value
|
| 258 |
+
|
| 259 |
+
def inference(
|
| 260 |
+
self,
|
| 261 |
+
x,
|
| 262 |
+
attn_mask: Optional[torch.Tensor] = None, # (b, h, n, m)
|
| 263 |
+
attn_padding_mask: Optional[torch.Tensor] = None, # (b, m)
|
| 264 |
+
output_attentions: bool = False,
|
| 265 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 266 |
+
use_cache: bool = False,
|
| 267 |
+
slope_rate: Optional[torch.Tensor] = None, # (h, 1, 1)
|
| 268 |
+
):
|
| 269 |
+
# x: b n d
|
| 270 |
+
n = x.shape[-2]
|
| 271 |
+
# linear map
|
| 272 |
+
q, k, v, u = self.qkvu_proj(x).chunk(4, dim=-1)
|
| 273 |
+
# reshape
|
| 274 |
+
q, k, v = map(
|
| 275 |
+
lambda x: rearrange(x, "b n (h d) -> b h n d", h=self.num_heads),
|
| 276 |
+
[q, k, v])
|
| 277 |
+
# act
|
| 278 |
+
q = self.act(q)
|
| 279 |
+
k = self.act(k)
|
| 280 |
+
|
| 281 |
+
# rpe
|
| 282 |
+
if self.linear_use_lrpe:
|
| 283 |
+
q = self.lrpe(q, offset=self.offset)
|
| 284 |
+
k = self.lrpe(k, offset=self.offset)
|
| 285 |
+
|
| 286 |
+
if past_key_value == None:
|
| 287 |
+
self.offset = q.shape[-2]
|
| 288 |
+
else:
|
| 289 |
+
self.offset += 1
|
| 290 |
+
|
| 291 |
+
ratio = torch.exp(-slope_rate)
|
| 292 |
+
|
| 293 |
+
# only use for the first time
|
| 294 |
+
if past_key_value == None:
|
| 295 |
+
if attn_mask == None:
|
| 296 |
+
attn_mask = (torch.tril(torch.ones(n, n))).to(q)
|
| 297 |
+
if slope_rate != None:
|
| 298 |
+
attn_mask = torch.exp(slope_rate * attn_mask)
|
| 299 |
+
|
| 300 |
+
if attn_padding_mask is not None:
|
| 301 |
+
attn_mask = attn_mask.masked_fill(
|
| 302 |
+
(1 - attn_padding_mask).unsqueeze(1).unsqueeze(2).to(
|
| 303 |
+
torch.bool),
|
| 304 |
+
0,
|
| 305 |
+
)
|
| 306 |
+
energy = torch.einsum("... n d, ... m d -> ... n m", q, k)
|
| 307 |
+
|
| 308 |
+
if attn_mask != None:
|
| 309 |
+
energy = energy * attn_mask
|
| 310 |
+
|
| 311 |
+
output = torch.einsum("... n m, ... m d -> ... n d", energy, v)
|
| 312 |
+
|
| 313 |
+
eval_and_not_generate = eval(
|
| 314 |
+
os.environ.get("eval_and_not_generate", default="False"))
|
| 315 |
+
if eval_and_not_generate:
|
| 316 |
+
kv = None
|
| 317 |
+
else:
|
| 318 |
+
# b, h, n, e, d
|
| 319 |
+
kv_outproduct = torch.einsum("... n e, ... n d -> ... n e d",
|
| 320 |
+
k, v)
|
| 321 |
+
# 1, 1, n, 1, 1
|
| 322 |
+
index = torch.arange(n - 1, -1, -1).reshape(1, 1, -1, 1,
|
| 323 |
+
1).to(x)
|
| 324 |
+
# (h, 1, 1) -> (1, h, 1, 1, 1); (1, h, 1, 1, 1), (1, 1, n, 1, 1) -> (1, h, n, 1, 1)
|
| 325 |
+
decay = ratio.unsqueeze(0).unsqueeze(-1)**index
|
| 326 |
+
|
| 327 |
+
kv_outproduct_with_decay = kv_outproduct * decay
|
| 328 |
+
kv = torch.sum(kv_outproduct_with_decay, dim=-3)
|
| 329 |
+
else:
|
| 330 |
+
kv = past_key_value
|
| 331 |
+
|
| 332 |
+
output = []
|
| 333 |
+
for i in range(n):
|
| 334 |
+
kv = ratio * kv + torch.einsum(
|
| 335 |
+
"... n d, ... n e -> ... d e",
|
| 336 |
+
k[:, :, i:i + 1],
|
| 337 |
+
v[:, :, i:i + 1],
|
| 338 |
+
)
|
| 339 |
+
qkv = torch.einsum("... n e, ... e d -> ... n d",
|
| 340 |
+
q[:, :, i:i + 1], kv)
|
| 341 |
+
output.append(qkv)
|
| 342 |
+
output = torch.concat(output, dim=-2)
|
| 343 |
+
|
| 344 |
+
# reshape
|
| 345 |
+
output = rearrange(output, "b h n d -> b n (h d)")
|
| 346 |
+
# normalize
|
| 347 |
+
output = self.norm(output)
|
| 348 |
+
# gate
|
| 349 |
+
output = u * output
|
| 350 |
+
# outproj
|
| 351 |
+
output = self.out_proj(output)
|
| 352 |
+
|
| 353 |
+
attn_weights = None
|
| 354 |
+
|
| 355 |
+
return output, attn_weights, kv
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
class TransnormerDecoderLayer(nn.Module):
|
| 359 |
+
|
| 360 |
+
def __init__(self, config: TransnormerConfig):
|
| 361 |
+
super().__init__()
|
| 362 |
+
self.embed_dim = config.decoder_embed_dim
|
| 363 |
+
##### normalize
|
| 364 |
+
norm_type = config.norm_type
|
| 365 |
+
if debug:
|
| 366 |
+
logging_info(f"Decoder Norm Type: {norm_type}")
|
| 367 |
+
self.token_norm = get_norm_fn(norm_type)(self.embed_dim)
|
| 368 |
+
self.channel_norm = get_norm_fn(norm_type)(self.embed_dim)
|
| 369 |
+
|
| 370 |
+
##### token mixer
|
| 371 |
+
self.token_mixer = self.build_token_mixer(
|
| 372 |
+
self.embed_dim,
|
| 373 |
+
config,
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
##### channel mixer
|
| 377 |
+
self.glu_dim = config.glu_dim
|
| 378 |
+
if self.glu_dim == -1:
|
| 379 |
+
self.glu_dim = self.embed_dim
|
| 380 |
+
bias = config.bias
|
| 381 |
+
self.channel_mixer = GLU(self.embed_dim, self.glu_dim, bias)
|
| 382 |
+
|
| 383 |
+
def build_token_mixer(self, embed_dim, config):
|
| 384 |
+
return NormLinearAttention(
|
| 385 |
+
embed_dim=embed_dim,
|
| 386 |
+
hidden_dim=config.hidden_dim,
|
| 387 |
+
num_heads=config.decoder_attention_heads,
|
| 388 |
+
linear_act_fun=config.linear_act_fun,
|
| 389 |
+
norm_type=config.norm_type,
|
| 390 |
+
linear_use_lrpe=config.linear_use_lrpe,
|
| 391 |
+
bias=config.bias,
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
def residual_connection(self, x, residual):
|
| 395 |
+
return residual + x
|
| 396 |
+
|
| 397 |
+
def forward(
|
| 398 |
+
self,
|
| 399 |
+
x,
|
| 400 |
+
attn_mask: Optional[torch.Tensor] = None,
|
| 401 |
+
attn_padding_mask: Optional[torch.Tensor] = None,
|
| 402 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 403 |
+
output_attentions: Optional[bool] = False,
|
| 404 |
+
use_cache: Optional[bool] = False,
|
| 405 |
+
slope_rate: Optional[torch.Tensor] = None, # (h, 1, 1)
|
| 406 |
+
):
|
| 407 |
+
residual = x
|
| 408 |
+
x = self.token_norm(x)
|
| 409 |
+
x, self_attn_weights, present_key_value = self.token_mixer(
|
| 410 |
+
x=x,
|
| 411 |
+
attn_mask=attn_mask,
|
| 412 |
+
attn_padding_mask=attn_padding_mask,
|
| 413 |
+
past_key_value=past_key_value,
|
| 414 |
+
output_attentions=output_attentions,
|
| 415 |
+
use_cache=use_cache,
|
| 416 |
+
slope_rate=slope_rate,
|
| 417 |
+
)
|
| 418 |
+
x = self.residual_connection(x, residual)
|
| 419 |
+
|
| 420 |
+
residual = x
|
| 421 |
+
x = self.channel_norm(x)
|
| 422 |
+
x = self.channel_mixer(x)
|
| 423 |
+
x = self.residual_connection(x, residual)
|
| 424 |
+
|
| 425 |
+
outputs = (x, )
|
| 426 |
+
|
| 427 |
+
if output_attentions:
|
| 428 |
+
outputs += (self_attn_weights, )
|
| 429 |
+
|
| 430 |
+
if use_cache:
|
| 431 |
+
outputs += (present_key_value, )
|
| 432 |
+
|
| 433 |
+
return outputs
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
TRANSNORMER_START_DOCSTRING = r"""
|
| 437 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 438 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 439 |
+
etc.)
|
| 440 |
+
|
| 441 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 442 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 443 |
+
and behavior.
|
| 444 |
+
|
| 445 |
+
Parameters:
|
| 446 |
+
config ([`TransnormerConfig`]):
|
| 447 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 448 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 449 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 450 |
+
"""
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
@add_start_docstrings(TRANSNORMER_START_DOCSTRING, )
|
| 454 |
+
class TransnormerPreTrainedModel(PreTrainedModel):
|
| 455 |
+
config_class = TransnormerConfig
|
| 456 |
+
base_model_prefix = "model"
|
| 457 |
+
supports_gradient_checkpointing = True
|
| 458 |
+
_no_split_modules = ["TransnormerDecoderLayer"]
|
| 459 |
+
_skip_keys_device_placement = "past_key_values"
|
| 460 |
+
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
| 461 |
+
|
| 462 |
+
def _init_weights(self, module):
|
| 463 |
+
std = self.config.init_std
|
| 464 |
+
if isinstance(module, nn.Linear):
|
| 465 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 466 |
+
if module.bias is not None:
|
| 467 |
+
module.bias.data.zero_()
|
| 468 |
+
elif isinstance(module, nn.Embedding):
|
| 469 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 470 |
+
if module.padding_idx is not None:
|
| 471 |
+
module.weight.data[module.padding_idx].zero_()
|
| 472 |
+
|
| 473 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 474 |
+
if isinstance(module, TransnormerModel):
|
| 475 |
+
module.gradient_checkpointing = value
|
| 476 |
+
|
| 477 |
+
|
| 478 |
+
TRANSNORMER_INPUTS_DOCSTRING = r"""
|
| 479 |
+
Args:
|
| 480 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 481 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 482 |
+
it.
|
| 483 |
+
|
| 484 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 485 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 486 |
+
|
| 487 |
+
[What are input IDs?](../glossary#input-ids)
|
| 488 |
+
attn_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 489 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 490 |
+
|
| 491 |
+
- 1 for tokens that are **not masked**,
|
| 492 |
+
- 0 for tokens that are **masked**.
|
| 493 |
+
|
| 494 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 495 |
+
|
| 496 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 497 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 498 |
+
|
| 499 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
| 500 |
+
`past_key_values`).
|
| 501 |
+
|
| 502 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attn_mask`]
|
| 503 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 504 |
+
information on the default strategy.
|
| 505 |
+
|
| 506 |
+
- 1 indicates the head is **not masked**,
|
| 507 |
+
- 0 indicates the head is **masked**.
|
| 508 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 509 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 510 |
+
config.n_positions - 1]`.
|
| 511 |
+
|
| 512 |
+
[What are position IDs?](../glossary#position-ids)
|
| 513 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 514 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 515 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
| 516 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
| 517 |
+
|
| 518 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 519 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
| 520 |
+
|
| 521 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 522 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 523 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 524 |
+
use_cache (`bool`, *optional*):
|
| 525 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 526 |
+
`past_key_values`).
|
| 527 |
+
output_attentions (`bool`, *optional*):
|
| 528 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 529 |
+
tensors for more detail.
|
| 530 |
+
output_hidden_states (`bool`, *optional*):
|
| 531 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 532 |
+
more detail.
|
| 533 |
+
return_dict (`bool`, *optional*):
|
| 534 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 535 |
+
"""
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
@add_start_docstrings(TRANSNORMER_START_DOCSTRING, )
|
| 539 |
+
class TransnormerModel(TransnormerPreTrainedModel):
|
| 540 |
+
"""
|
| 541 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TransnormerDecoderLayer`]
|
| 542 |
+
|
| 543 |
+
Args:
|
| 544 |
+
config: TransnormerConfig
|
| 545 |
+
"""
|
| 546 |
+
|
| 547 |
+
def __init__(self, config: TransnormerConfig):
|
| 548 |
+
super().__init__(config)
|
| 549 |
+
# hf origin
|
| 550 |
+
self.padding_idx = config.pad_token_id
|
| 551 |
+
self.vocab_size = config.vocab_size
|
| 552 |
+
self.gradient_checkpointing = False
|
| 553 |
+
# mask
|
| 554 |
+
self._linear_attn_mask = torch.empty(0)
|
| 555 |
+
# config
|
| 556 |
+
self.linear_use_lrpe_list = config.linear_use_lrpe_list
|
| 557 |
+
self.num_layers = config.decoder_layers
|
| 558 |
+
# h, 1, 1
|
| 559 |
+
self.slopes = self._build_slope_tensor(config.decoder_attention_heads)
|
| 560 |
+
|
| 561 |
+
# params
|
| 562 |
+
self.embed_tokens = nn.Embedding(config.vocab_size,
|
| 563 |
+
config.decoder_embed_dim,
|
| 564 |
+
self.padding_idx)
|
| 565 |
+
self.layers = nn.ModuleList([])
|
| 566 |
+
for i in range(config.decoder_layers):
|
| 567 |
+
if len(self.linear_use_lrpe_list) > 0:
|
| 568 |
+
config.linear_use_lrpe = self.linear_use_lrpe_list[i]
|
| 569 |
+
self.layers.append(TransnormerDecoderLayer(config))
|
| 570 |
+
|
| 571 |
+
self.final_norm = get_norm_fn(config.norm_type)(
|
| 572 |
+
config.decoder_embed_dim)
|
| 573 |
+
self.embed_dim = config.decoder_embed_dim
|
| 574 |
+
self.embed_scale = (1.0 if config.no_scale_embedding else math.sqrt(
|
| 575 |
+
self.embed_dim))
|
| 576 |
+
|
| 577 |
+
# Initialize weights and apply final processing
|
| 578 |
+
self.post_init()
|
| 579 |
+
|
| 580 |
+
@staticmethod
|
| 581 |
+
def _build_slope_tensor(n_attention_heads: int):
|
| 582 |
+
|
| 583 |
+
def get_slopes(n):
|
| 584 |
+
|
| 585 |
+
def get_slopes_power_of_2(n):
|
| 586 |
+
start = 2**(-(2**-(math.log2(n) - 3)))
|
| 587 |
+
ratio = start
|
| 588 |
+
return [start * ratio**i for i in range(n)]
|
| 589 |
+
|
| 590 |
+
if math.log2(n).is_integer():
|
| 591 |
+
return get_slopes_power_of_2(
|
| 592 |
+
n
|
| 593 |
+
) # In the paper, we only train models that have 2^a heads for some a. This function has
|
| 594 |
+
else: # some good properties that only occur when the input is a power of 2. To maintain that even
|
| 595 |
+
closest_power_of_2 = 2**math.floor(
|
| 596 |
+
math.log2(n)
|
| 597 |
+
) # when the number of heads is not a power of 2, we use this workaround.
|
| 598 |
+
return (get_slopes_power_of_2(closest_power_of_2) + get_slopes(
|
| 599 |
+
2 * closest_power_of_2)[0::2][:n - closest_power_of_2])
|
| 600 |
+
|
| 601 |
+
# h, 1, 1
|
| 602 |
+
slopes = torch.tensor(get_slopes(n_attention_heads)).reshape(
|
| 603 |
+
n_attention_heads, 1, 1)
|
| 604 |
+
|
| 605 |
+
return slopes
|
| 606 |
+
|
| 607 |
+
def extra_repr(self):
|
| 608 |
+
return print_module(self)
|
| 609 |
+
|
| 610 |
+
def get_input_embeddings(self):
|
| 611 |
+
return self.embed_tokens
|
| 612 |
+
|
| 613 |
+
def set_input_embeddings(self, value):
|
| 614 |
+
self.embed_tokens = value
|
| 615 |
+
|
| 616 |
+
def _prepare_decoder_linear_attn_mask(self, input_shape, inputs_embeds,
|
| 617 |
+
past_key_values_length):
|
| 618 |
+
bsz, tgt_len = input_shape
|
| 619 |
+
src_len = tgt_len + past_key_values_length
|
| 620 |
+
|
| 621 |
+
def power_log(x):
|
| 622 |
+
return 2**(math.ceil(math.log(x, 2)))
|
| 623 |
+
|
| 624 |
+
n = power_log(max(tgt_len, src_len))
|
| 625 |
+
if self._linear_attn_mask.shape[-1] < n:
|
| 626 |
+
|
| 627 |
+
def get_mask(n):
|
| 628 |
+
mask = torch.triu(
|
| 629 |
+
torch.zeros(n, n).float().fill_(float("-inf")), 1)
|
| 630 |
+
# no slope version
|
| 631 |
+
# -n, ..., -2, -1, 0
|
| 632 |
+
for i in range(n):
|
| 633 |
+
x = torch.arange(i + 1)
|
| 634 |
+
y = x
|
| 635 |
+
mask[i, :i + 1] = -torch.flip(y, [0])
|
| 636 |
+
|
| 637 |
+
return mask
|
| 638 |
+
|
| 639 |
+
arr = []
|
| 640 |
+
for slope in self.slopes:
|
| 641 |
+
arr.append(get_mask(n))
|
| 642 |
+
self._linear_attn_mask = torch.stack(arr, dim=0).to(inputs_embeds)
|
| 643 |
+
|
| 644 |
+
linear_attn_mask = self._linear_attn_mask[:, -tgt_len:, -src_len:]
|
| 645 |
+
num_heads = linear_attn_mask.shape[0]
|
| 646 |
+
|
| 647 |
+
return linear_attn_mask[None, :, :, :].expand(bsz, num_heads, tgt_len,
|
| 648 |
+
src_len)
|
| 649 |
+
|
| 650 |
+
@add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING)
|
| 651 |
+
def forward(
|
| 652 |
+
self,
|
| 653 |
+
input_ids: torch.LongTensor = None,
|
| 654 |
+
attn_padding_mask: Optional[torch.Tensor] = None,
|
| 655 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 656 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 657 |
+
use_cache: Optional[bool] = None,
|
| 658 |
+
output_attentions: Optional[bool] = None,
|
| 659 |
+
output_hidden_states: Optional[bool] = None,
|
| 660 |
+
return_dict: Optional[bool] = None,
|
| 661 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 662 |
+
output_attentions = (output_attentions if output_attentions is not None
|
| 663 |
+
else self.config.output_attentions)
|
| 664 |
+
output_hidden_states = (output_hidden_states
|
| 665 |
+
if output_hidden_states is not None else
|
| 666 |
+
self.config.output_hidden_states)
|
| 667 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 668 |
+
|
| 669 |
+
return_dict = (return_dict if return_dict is not None else
|
| 670 |
+
self.config.use_return_dict)
|
| 671 |
+
|
| 672 |
+
# retrieve input_ids and inputs_embeds
|
| 673 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 674 |
+
raise ValueError(
|
| 675 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
| 676 |
+
)
|
| 677 |
+
elif input_ids is not None:
|
| 678 |
+
batch_size, seq_length = input_ids.shape
|
| 679 |
+
elif inputs_embeds is not None:
|
| 680 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 681 |
+
else:
|
| 682 |
+
raise ValueError(
|
| 683 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
| 684 |
+
)
|
| 685 |
+
|
| 686 |
+
seq_length_with_past = seq_length
|
| 687 |
+
past_key_values_length = 0
|
| 688 |
+
|
| 689 |
+
if past_key_values is not None:
|
| 690 |
+
past_key_values_length = past_key_values[0][0].shape[-2]
|
| 691 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 692 |
+
|
| 693 |
+
if inputs_embeds is None:
|
| 694 |
+
# !!! use embed_scale
|
| 695 |
+
inputs_embeds = self.embed_scale * self.embed_tokens(input_ids)
|
| 696 |
+
|
| 697 |
+
hidden_states = inputs_embeds
|
| 698 |
+
|
| 699 |
+
if self.gradient_checkpointing and self.training:
|
| 700 |
+
if use_cache:
|
| 701 |
+
logger.warning_once(
|
| 702 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 703 |
+
)
|
| 704 |
+
use_cache = False
|
| 705 |
+
|
| 706 |
+
# decoder layers
|
| 707 |
+
all_hidden_states = () if output_hidden_states else None
|
| 708 |
+
all_self_attns = () if output_attentions else None
|
| 709 |
+
next_decoder_cache = () if use_cache else None
|
| 710 |
+
|
| 711 |
+
##### norm linear layers
|
| 712 |
+
linear_attn_padding_mask = attn_padding_mask
|
| 713 |
+
linear_attn_mask = self._prepare_decoder_linear_attn_mask(
|
| 714 |
+
(batch_size, seq_length), inputs_embeds, past_key_values_length)
|
| 715 |
+
|
| 716 |
+
slope_rates = [
|
| 717 |
+
self.slopes.to(input_ids.device) for _ in range(self.num_layers)
|
| 718 |
+
]
|
| 719 |
+
|
| 720 |
+
for idx, layer in enumerate(self.layers):
|
| 721 |
+
if output_hidden_states:
|
| 722 |
+
all_hidden_states += (hidden_states, )
|
| 723 |
+
|
| 724 |
+
past_key_value = (past_key_values[idx]
|
| 725 |
+
if past_key_values is not None else None)
|
| 726 |
+
|
| 727 |
+
slope_rate = slope_rates[idx]
|
| 728 |
+
slope_rate = slope_rate * (1 - idx / (self.num_layers - 1) + 1e-5)
|
| 729 |
+
mask = linear_attn_mask
|
| 730 |
+
|
| 731 |
+
if self.gradient_checkpointing and self.training:
|
| 732 |
+
|
| 733 |
+
def create_custom_forward(module):
|
| 734 |
+
|
| 735 |
+
def custom_forward(*inputs):
|
| 736 |
+
# None for past_key_value
|
| 737 |
+
return module(*inputs, output_attentions, None)
|
| 738 |
+
|
| 739 |
+
return custom_forward
|
| 740 |
+
|
| 741 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 742 |
+
create_custom_forward(layer),
|
| 743 |
+
hidden_states,
|
| 744 |
+
mask,
|
| 745 |
+
linear_attn_padding_mask,
|
| 746 |
+
None,
|
| 747 |
+
)
|
| 748 |
+
else:
|
| 749 |
+
layer_outputs = layer(
|
| 750 |
+
hidden_states,
|
| 751 |
+
attn_mask=mask,
|
| 752 |
+
attn_padding_mask=linear_attn_padding_mask,
|
| 753 |
+
past_key_value=past_key_value,
|
| 754 |
+
output_attentions=output_attentions,
|
| 755 |
+
use_cache=use_cache,
|
| 756 |
+
slope_rate=slope_rate,
|
| 757 |
+
)
|
| 758 |
+
|
| 759 |
+
hidden_states = layer_outputs[0]
|
| 760 |
+
|
| 761 |
+
if use_cache:
|
| 762 |
+
next_decoder_cache += (
|
| 763 |
+
layer_outputs[2 if output_attentions else 1], )
|
| 764 |
+
|
| 765 |
+
if output_attentions:
|
| 766 |
+
all_self_attns += (layer_outputs[1], )
|
| 767 |
+
|
| 768 |
+
hidden_states = self.final_norm(hidden_states)
|
| 769 |
+
|
| 770 |
+
# add hidden states from the last decoder layer
|
| 771 |
+
if output_hidden_states:
|
| 772 |
+
all_hidden_states += (hidden_states, )
|
| 773 |
+
|
| 774 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 775 |
+
if not return_dict:
|
| 776 |
+
return tuple(
|
| 777 |
+
v for v in
|
| 778 |
+
[hidden_states, next_cache, all_hidden_states, all_self_attns]
|
| 779 |
+
if v is not None)
|
| 780 |
+
return BaseModelOutputWithPast(
|
| 781 |
+
last_hidden_state=hidden_states,
|
| 782 |
+
past_key_values=next_cache,
|
| 783 |
+
hidden_states=all_hidden_states,
|
| 784 |
+
attentions=all_self_attns,
|
| 785 |
+
)
|
| 786 |
+
|
| 787 |
+
|
| 788 |
+
class TransnormerForCausalLM(TransnormerPreTrainedModel):
|
| 789 |
+
|
| 790 |
+
def __init__(self, config):
|
| 791 |
+
super().__init__(config)
|
| 792 |
+
self.model = TransnormerModel(config)
|
| 793 |
+
if debug:
|
| 794 |
+
logging_info(self.model)
|
| 795 |
+
|
| 796 |
+
# the lm_head weight is automatically tied to the embed tokens weight
|
| 797 |
+
self.lm_head = nn.Linear(config.decoder_embed_dim,
|
| 798 |
+
config.vocab_size,
|
| 799 |
+
bias=False)
|
| 800 |
+
|
| 801 |
+
# Initialize weights and apply final processing
|
| 802 |
+
self.post_init()
|
| 803 |
+
|
| 804 |
+
def get_input_embeddings(self):
|
| 805 |
+
return self.model.embed_tokens
|
| 806 |
+
|
| 807 |
+
def set_input_embeddings(self, value):
|
| 808 |
+
self.model.embed_tokens = value
|
| 809 |
+
|
| 810 |
+
def get_output_embeddings(self):
|
| 811 |
+
return self.lm_head
|
| 812 |
+
|
| 813 |
+
def set_output_embeddings(self, new_embeddings):
|
| 814 |
+
self.lm_head = new_embeddings
|
| 815 |
+
|
| 816 |
+
def set_decoder(self, decoder):
|
| 817 |
+
self.model = decoder
|
| 818 |
+
|
| 819 |
+
def get_decoder(self):
|
| 820 |
+
return self.model
|
| 821 |
+
|
| 822 |
+
@add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING)
|
| 823 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast,
|
| 824 |
+
config_class=_CONFIG_FOR_DOC)
|
| 825 |
+
def forward(
|
| 826 |
+
self,
|
| 827 |
+
input_ids: torch.LongTensor = None,
|
| 828 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 829 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 830 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 831 |
+
labels: Optional[torch.LongTensor] = None,
|
| 832 |
+
use_cache: Optional[bool] = None,
|
| 833 |
+
output_attentions: Optional[bool] = None,
|
| 834 |
+
output_hidden_states: Optional[bool] = None,
|
| 835 |
+
return_dict: Optional[bool] = None,
|
| 836 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 837 |
+
r"""
|
| 838 |
+
Args:
|
| 839 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 840 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 841 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 842 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 843 |
+
|
| 844 |
+
Returns:
|
| 845 |
+
|
| 846 |
+
Example:
|
| 847 |
+
|
| 848 |
+
```python
|
| 849 |
+
>>> from transformers import AutoTokenizer, TransnormerForCausalLM
|
| 850 |
+
|
| 851 |
+
>>> model = TransnormerForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
| 852 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
| 853 |
+
|
| 854 |
+
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
| 855 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 856 |
+
|
| 857 |
+
>>> # Generate
|
| 858 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 859 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 860 |
+
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
| 861 |
+
```"""
|
| 862 |
+
output_attentions = (output_attentions if output_attentions is not None
|
| 863 |
+
else self.config.output_attentions)
|
| 864 |
+
output_hidden_states = (output_hidden_states
|
| 865 |
+
if output_hidden_states is not None else
|
| 866 |
+
self.config.output_hidden_states)
|
| 867 |
+
return_dict = (return_dict if return_dict is not None else
|
| 868 |
+
self.config.use_return_dict)
|
| 869 |
+
|
| 870 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 871 |
+
outputs = self.model(
|
| 872 |
+
input_ids=input_ids,
|
| 873 |
+
attn_padding_mask=attention_mask,
|
| 874 |
+
past_key_values=past_key_values,
|
| 875 |
+
inputs_embeds=inputs_embeds,
|
| 876 |
+
use_cache=use_cache,
|
| 877 |
+
output_attentions=output_attentions,
|
| 878 |
+
output_hidden_states=output_hidden_states,
|
| 879 |
+
return_dict=return_dict,
|
| 880 |
+
)
|
| 881 |
+
|
| 882 |
+
hidden_states = outputs[0]
|
| 883 |
+
logits = self.lm_head(hidden_states)
|
| 884 |
+
|
| 885 |
+
loss = None
|
| 886 |
+
if labels is not None:
|
| 887 |
+
# Shift so that tokens < n predict n
|
| 888 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 889 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 890 |
+
# Flatten the tokens
|
| 891 |
+
loss_fct = CrossEntropyLoss()
|
| 892 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 893 |
+
shift_labels = shift_labels.view(-1)
|
| 894 |
+
# Enable model parallelism
|
| 895 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 896 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 897 |
+
|
| 898 |
+
if not return_dict:
|
| 899 |
+
output = (logits, ) + outputs[1:]
|
| 900 |
+
return (loss, ) + output if loss is not None else output
|
| 901 |
+
|
| 902 |
+
return CausalLMOutputWithPast(
|
| 903 |
+
loss=loss,
|
| 904 |
+
logits=logits,
|
| 905 |
+
past_key_values=outputs.past_key_values,
|
| 906 |
+
hidden_states=outputs.hidden_states,
|
| 907 |
+
attentions=outputs.attentions,
|
| 908 |
+
)
|
| 909 |
+
|
| 910 |
+
def prepare_inputs_for_generation(
|
| 911 |
+
self,
|
| 912 |
+
input_ids,
|
| 913 |
+
past_key_values=None,
|
| 914 |
+
attention_mask=None,
|
| 915 |
+
inputs_embeds=None,
|
| 916 |
+
**kwargs,
|
| 917 |
+
):
|
| 918 |
+
if past_key_values:
|
| 919 |
+
input_ids = input_ids[:, -1:]
|
| 920 |
+
|
| 921 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 922 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 923 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 924 |
+
else:
|
| 925 |
+
model_inputs = {"input_ids": input_ids}
|
| 926 |
+
|
| 927 |
+
model_inputs.update({
|
| 928 |
+
"past_key_values": past_key_values,
|
| 929 |
+
"use_cache": kwargs.get("use_cache"),
|
| 930 |
+
"attention_mask": attention_mask,
|
| 931 |
+
})
|
| 932 |
+
return model_inputs
|
| 933 |
+
|
| 934 |
+
@staticmethod
|
| 935 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 936 |
+
reordered_past = ()
|
| 937 |
+
for layer_past in past_key_values:
|
| 938 |
+
reordered_past += (tuple(
|
| 939 |
+
past_state.index_select(0, beam_idx)
|
| 940 |
+
for past_state in layer_past), )
|
| 941 |
+
return reordered_past
|
| 942 |
+
|
| 943 |
+
|
| 944 |
+
@add_start_docstrings(
|
| 945 |
+
"""
|
| 946 |
+
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
| 947 |
+
|
| 948 |
+
[`TransnormerForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 949 |
+
(e.g. GPT-2) do.
|
| 950 |
+
|
| 951 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 952 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 953 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 954 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 955 |
+
each row of the batch).
|
| 956 |
+
""",
|
| 957 |
+
TRANSNORMER_START_DOCSTRING,
|
| 958 |
+
)
|
| 959 |
+
class TransnormerForSequenceClassification(TransnormerPreTrainedModel):
|
| 960 |
+
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
|
| 961 |
+
|
| 962 |
+
def __init__(self, config):
|
| 963 |
+
super().__init__(config)
|
| 964 |
+
self.num_labels = config.num_labels
|
| 965 |
+
self.model = TransnormerModel(config)
|
| 966 |
+
self.score = nn.Linear(config.decoder_embed_dim,
|
| 967 |
+
self.num_labels,
|
| 968 |
+
bias=False)
|
| 969 |
+
|
| 970 |
+
# Initialize weights and apply final processing
|
| 971 |
+
self.post_init()
|
| 972 |
+
|
| 973 |
+
def get_input_embeddings(self):
|
| 974 |
+
return self.model.embed_tokens
|
| 975 |
+
|
| 976 |
+
def set_input_embeddings(self, value):
|
| 977 |
+
self.model.embed_tokens = value
|
| 978 |
+
|
| 979 |
+
@add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING)
|
| 980 |
+
def forward(
|
| 981 |
+
self,
|
| 982 |
+
input_ids: torch.LongTensor = None,
|
| 983 |
+
attn_mask: Optional[torch.Tensor] = None,
|
| 984 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 985 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 986 |
+
labels: Optional[torch.LongTensor] = None,
|
| 987 |
+
use_cache: Optional[bool] = None,
|
| 988 |
+
output_attentions: Optional[bool] = None,
|
| 989 |
+
output_hidden_states: Optional[bool] = None,
|
| 990 |
+
return_dict: Optional[bool] = None,
|
| 991 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 992 |
+
r"""
|
| 993 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 994 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 995 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 996 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 997 |
+
"""
|
| 998 |
+
return_dict = (return_dict if return_dict is not None else
|
| 999 |
+
self.config.use_return_dict)
|
| 1000 |
+
|
| 1001 |
+
transformer_outputs = self.model(
|
| 1002 |
+
input_ids,
|
| 1003 |
+
attn_padding_mask=attn_mask,
|
| 1004 |
+
past_key_values=past_key_values,
|
| 1005 |
+
inputs_embeds=inputs_embeds,
|
| 1006 |
+
use_cache=use_cache,
|
| 1007 |
+
output_attentions=output_attentions,
|
| 1008 |
+
output_hidden_states=output_hidden_states,
|
| 1009 |
+
return_dict=return_dict,
|
| 1010 |
+
)
|
| 1011 |
+
hidden_states = transformer_outputs[0]
|
| 1012 |
+
|
| 1013 |
+
logits = self.score(hidden_states)
|
| 1014 |
+
|
| 1015 |
+
if input_ids is not None:
|
| 1016 |
+
batch_size = input_ids.shape[0]
|
| 1017 |
+
else:
|
| 1018 |
+
batch_size = inputs_embeds.shape[0]
|
| 1019 |
+
|
| 1020 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 1021 |
+
raise ValueError(
|
| 1022 |
+
"Cannot handle batch sizes > 1 if no padding token is defined."
|
| 1023 |
+
)
|
| 1024 |
+
if self.config.pad_token_id is None:
|
| 1025 |
+
sequence_lengths = -1
|
| 1026 |
+
else:
|
| 1027 |
+
if input_ids is not None:
|
| 1028 |
+
sequence_lengths = (
|
| 1029 |
+
torch.ne(input_ids, self.config.pad_token_id).sum(-1) -
|
| 1030 |
+
1).to(logits.device)
|
| 1031 |
+
else:
|
| 1032 |
+
sequence_lengths = -1
|
| 1033 |
+
|
| 1034 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device),
|
| 1035 |
+
sequence_lengths]
|
| 1036 |
+
|
| 1037 |
+
loss = None
|
| 1038 |
+
if labels is not None:
|
| 1039 |
+
labels = labels.to(logits.device)
|
| 1040 |
+
if self.config.problem_type is None:
|
| 1041 |
+
if self.num_labels == 1:
|
| 1042 |
+
self.config.problem_type = "regression"
|
| 1043 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long
|
| 1044 |
+
or labels.dtype == torch.int):
|
| 1045 |
+
self.config.problem_type = "single_label_classification"
|
| 1046 |
+
else:
|
| 1047 |
+
self.config.problem_type = "multi_label_classification"
|
| 1048 |
+
|
| 1049 |
+
if self.config.problem_type == "regression":
|
| 1050 |
+
loss_fct = MSELoss()
|
| 1051 |
+
if self.num_labels == 1:
|
| 1052 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1053 |
+
else:
|
| 1054 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1055 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1056 |
+
loss_fct = CrossEntropyLoss()
|
| 1057 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels),
|
| 1058 |
+
labels.view(-1))
|
| 1059 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1060 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1061 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1062 |
+
if not return_dict:
|
| 1063 |
+
output = (pooled_logits, ) + transformer_outputs[1:]
|
| 1064 |
+
return ((loss, ) + output) if loss is not None else output
|
| 1065 |
+
|
| 1066 |
+
return SequenceClassifierOutputWithPast(
|
| 1067 |
+
loss=loss,
|
| 1068 |
+
logits=pooled_logits,
|
| 1069 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1070 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1071 |
+
attentions=transformer_outputs.attentions,
|
| 1072 |
+
)
|
norm.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 OpenNLPLab
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import logging
|
| 16 |
+
import os
|
| 17 |
+
import sys
|
| 18 |
+
|
| 19 |
+
import torch
|
| 20 |
+
from torch import nn
|
| 21 |
+
|
| 22 |
+
logging.basicConfig(
|
| 23 |
+
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
|
| 24 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
| 25 |
+
level=os.environ.get("LOGLEVEL", "INFO").upper(),
|
| 26 |
+
stream=sys.stdout,
|
| 27 |
+
)
|
| 28 |
+
logger = logging.getLogger("srmsnorm")
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class SimpleRMSNorm(nn.Module):
|
| 32 |
+
|
| 33 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
| 34 |
+
super().__init__()
|
| 35 |
+
self.eps = eps
|
| 36 |
+
|
| 37 |
+
def _norm(self, x):
|
| 38 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
| 39 |
+
|
| 40 |
+
def forward(self, x):
|
| 41 |
+
output = self._norm(x.float()).type_as(x)
|
| 42 |
+
|
| 43 |
+
return output
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:65c1bd077e3ad0b1618bbca1421c8ad14bb08ff0c34db283e4c28e74ae8047d1
|
| 3 |
+
size 798009781
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": true,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": true,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"unk_token": {
|
| 17 |
+
"content": "<unk>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": true,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
}
|
| 23 |
+
}
|
srmsnorm_triton.py
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# CREDITS: This comes almost as-is from the Triton layer norm tutorial
|
| 2 |
+
# https://github.com/openai/triton/blob/master/python/tutorials/05-layer-norm.py
|
| 3 |
+
# Copyright 2023 OpenNLPLab
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
import torch.nn.functional as F
|
| 19 |
+
import triton
|
| 20 |
+
import triton.language as tl
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# fmt: off
|
| 24 |
+
@triton.jit
|
| 25 |
+
def srms_norm_fw(X, Y, V, stride, N, eps, BLOCK_SIZE_N: tl.constexpr):
|
| 26 |
+
# fmt: on
|
| 27 |
+
row = tl.program_id(0)
|
| 28 |
+
cols = tl.arange(0, BLOCK_SIZE_N)
|
| 29 |
+
mask = cols < N
|
| 30 |
+
|
| 31 |
+
# Move to this row
|
| 32 |
+
x_ptrs = X + row * stride + cols
|
| 33 |
+
x = tl.load(x_ptrs, mask=mask, other=0.0).to(tl.float32)
|
| 34 |
+
|
| 35 |
+
x_zm = tl.where(mask, x, 0.0)
|
| 36 |
+
|
| 37 |
+
x_var = tl.sum(x_zm * x_zm, axis=0) / N
|
| 38 |
+
rstd = 1.0 / tl.sqrt(x_var + eps)
|
| 39 |
+
|
| 40 |
+
# Normalize, optionally affine
|
| 41 |
+
y = x_zm * rstd
|
| 42 |
+
tl.store(V + row, rstd)
|
| 43 |
+
|
| 44 |
+
y_ptrs = Y + row * stride + cols
|
| 45 |
+
tl.store(y_ptrs, y, mask=mask)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# Backward pass (DX + partial DW + partial DB)
|
| 49 |
+
# fmt: off
|
| 50 |
+
@triton.jit
|
| 51 |
+
def srms_norm_bwd_dx_fused(
|
| 52 |
+
DX, DY,
|
| 53 |
+
X, V,
|
| 54 |
+
stride, N,
|
| 55 |
+
# META-parameters
|
| 56 |
+
BLOCK_SIZE_N: tl.constexpr,
|
| 57 |
+
):
|
| 58 |
+
# fmt: on
|
| 59 |
+
|
| 60 |
+
# position of elements processed by this program
|
| 61 |
+
row = tl.program_id(0)
|
| 62 |
+
cols = tl.arange(0, BLOCK_SIZE_N)
|
| 63 |
+
mask = cols < N
|
| 64 |
+
|
| 65 |
+
# offset data pointers to start at the row of interest
|
| 66 |
+
x_ptrs = X + row * stride + cols
|
| 67 |
+
dy_ptrs = DY + row * stride + cols
|
| 68 |
+
|
| 69 |
+
# load data to SRAM
|
| 70 |
+
x = tl.load(x_ptrs, mask=mask, other=0)
|
| 71 |
+
dy = tl.load(dy_ptrs, mask=mask, other=0)
|
| 72 |
+
rstd = tl.load(V + row)
|
| 73 |
+
|
| 74 |
+
# compute dx
|
| 75 |
+
xhat = x * rstd
|
| 76 |
+
wdy = dy
|
| 77 |
+
|
| 78 |
+
xhat = tl.where(mask, xhat, 0.)
|
| 79 |
+
wdy = tl.where(mask, wdy, 0.)
|
| 80 |
+
mean1 = tl.sum(xhat * wdy, axis=0) / N
|
| 81 |
+
dx = (wdy - (xhat * mean1)) * rstd
|
| 82 |
+
|
| 83 |
+
# write-back dx
|
| 84 |
+
mask = cols < N # re-materialize the mask to save registers
|
| 85 |
+
dx_ptrs = DX + row * stride + cols
|
| 86 |
+
tl.store(dx_ptrs, dx, mask=mask)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
class _SrmsNorm(torch.autograd.Function):
|
| 90 |
+
|
| 91 |
+
@staticmethod
|
| 92 |
+
def forward(ctx, x, eps):
|
| 93 |
+
# catch eps being too small if the tensors are fp16
|
| 94 |
+
if x.dtype == torch.float16:
|
| 95 |
+
eps = max(eps, 1.6e-5)
|
| 96 |
+
|
| 97 |
+
# allocate output
|
| 98 |
+
y = torch.empty_like(x)
|
| 99 |
+
|
| 100 |
+
# reshape input data into 2D tensor
|
| 101 |
+
x_arg = x.reshape(-1, x.shape[-1])
|
| 102 |
+
M, N = x_arg.shape
|
| 103 |
+
|
| 104 |
+
# allocate mean and std, they'll be used in the backward pass
|
| 105 |
+
rstd = torch.empty((M, ), dtype=torch.float32, device=x.device)
|
| 106 |
+
|
| 107 |
+
# Less than 64KB per feature: enqueue fused kernel
|
| 108 |
+
MAX_FUSED_SIZE = 65536 // x.element_size()
|
| 109 |
+
BLOCK_SIZE_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
| 110 |
+
if N > BLOCK_SIZE_N:
|
| 111 |
+
raise RuntimeError(
|
| 112 |
+
"This layer norm doesn't support feature dim >= 64KB.")
|
| 113 |
+
|
| 114 |
+
if not x_arg.is_contiguous() or not y.is_contiguous():
|
| 115 |
+
x_arg = x_arg.contiguous()
|
| 116 |
+
y = y.contiguous()
|
| 117 |
+
|
| 118 |
+
# heuristics for number of warps.
|
| 119 |
+
num_warps = min(max(BLOCK_SIZE_N // 256, 1), 16)
|
| 120 |
+
|
| 121 |
+
# enqueue kernel
|
| 122 |
+
# fmt: off
|
| 123 |
+
srms_norm_fw[(M,)](
|
| 124 |
+
x_arg, y, rstd,
|
| 125 |
+
x_arg.stride(0),
|
| 126 |
+
N,
|
| 127 |
+
eps,
|
| 128 |
+
num_warps=num_warps,
|
| 129 |
+
BLOCK_SIZE_N=BLOCK_SIZE_N,
|
| 130 |
+
)
|
| 131 |
+
# fmt: on
|
| 132 |
+
|
| 133 |
+
ctx.save_for_backward(x, rstd)
|
| 134 |
+
ctx.BLOCK_SIZE_N = BLOCK_SIZE_N
|
| 135 |
+
ctx.num_warps = num_warps
|
| 136 |
+
|
| 137 |
+
return y.reshape_as(x)
|
| 138 |
+
|
| 139 |
+
@staticmethod
|
| 140 |
+
def backward(
|
| 141 |
+
ctx, dy
|
| 142 |
+
): # pragma: no cover # this is covered, but called directly from C++
|
| 143 |
+
x, rstd = ctx.saved_tensors
|
| 144 |
+
|
| 145 |
+
# flatten the batch dimension, if any.
|
| 146 |
+
# We're interested in 'samples' x norm_dimension
|
| 147 |
+
x = x.reshape(-1, x.size(-1))
|
| 148 |
+
M, N = x.size()
|
| 149 |
+
|
| 150 |
+
# heuristics for amount of parallel reduction stream for DG/DB
|
| 151 |
+
GROUP_SIZE_M = 32
|
| 152 |
+
if N <= 8192:
|
| 153 |
+
GROUP_SIZE_M = 64
|
| 154 |
+
if N <= 4096:
|
| 155 |
+
GROUP_SIZE_M = 96
|
| 156 |
+
if N <= 2048:
|
| 157 |
+
GROUP_SIZE_M = 128
|
| 158 |
+
if N <= 1024:
|
| 159 |
+
GROUP_SIZE_M = 256
|
| 160 |
+
|
| 161 |
+
if dy.dtype == torch.float32:
|
| 162 |
+
GROUP_SIZE_M = GROUP_SIZE_M // 2
|
| 163 |
+
|
| 164 |
+
# allocate output
|
| 165 |
+
dy = dy.contiguous()
|
| 166 |
+
dx = torch.empty_like(dy)
|
| 167 |
+
|
| 168 |
+
# Check the tensor shapes and layouts
|
| 169 |
+
# we suppose in the kernel that they have the same size and are contiguous
|
| 170 |
+
assert (
|
| 171 |
+
dy.numel() == x.numel()
|
| 172 |
+
), "Something is wrong in the backward graph, possibly because of an inplace operation after the layernorm"
|
| 173 |
+
|
| 174 |
+
# enqueue kernel using forward pass heuristics
|
| 175 |
+
# also compute partial sums for DW and DB
|
| 176 |
+
num_warps = min(max(ctx.BLOCK_SIZE_N // 256, 1), 16)
|
| 177 |
+
|
| 178 |
+
# fmt: off
|
| 179 |
+
srms_norm_bwd_dx_fused[(M,)](
|
| 180 |
+
dx, dy, x,
|
| 181 |
+
rstd,
|
| 182 |
+
x.stride(0),
|
| 183 |
+
N,
|
| 184 |
+
BLOCK_SIZE_N=ctx.BLOCK_SIZE_N,
|
| 185 |
+
num_warps=num_warps
|
| 186 |
+
)
|
| 187 |
+
# fmt: on
|
| 188 |
+
|
| 189 |
+
dx = dx.reshape_as(dy)
|
| 190 |
+
return dx, None, None
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
class SimpleRMSNorm(torch.nn.Module):
|
| 194 |
+
|
| 195 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
| 196 |
+
super().__init__()
|
| 197 |
+
self.eps = eps
|
| 198 |
+
self.dim = dim
|
| 199 |
+
|
| 200 |
+
def forward(self, x):
|
| 201 |
+
return _SrmsNorm.apply(x, self.eps)
|
tokenization_baichuan.py
ADDED
|
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 5 |
+
# and OPT implementations in this library. It has been modified from its
|
| 6 |
+
# original forms to accommodate minor architectural differences compared
|
| 7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
|
| 21 |
+
import os
|
| 22 |
+
from shutil import copyfile
|
| 23 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 24 |
+
|
| 25 |
+
import sentencepiece as spm
|
| 26 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
| 27 |
+
from transformers.utils import logging
|
| 28 |
+
|
| 29 |
+
logger = logging.get_logger(__name__)
|
| 30 |
+
|
| 31 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
| 32 |
+
|
| 33 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
| 34 |
+
"vocab_file": {},
|
| 35 |
+
"tokenizer_file": {},
|
| 36 |
+
}
|
| 37 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class BaiChuanTokenizer(PreTrainedTokenizer):
|
| 41 |
+
"""
|
| 42 |
+
Construct a BaiChuan tokenizer. Based on byte-level Byte-Pair-Encoding.
|
| 43 |
+
|
| 44 |
+
Args:
|
| 45 |
+
vocab_file (`str`):
|
| 46 |
+
Path to the vocabulary file.
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 50 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
| 51 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
| 52 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 53 |
+
|
| 54 |
+
def __init__(
|
| 55 |
+
self,
|
| 56 |
+
vocab_file,
|
| 57 |
+
unk_token="<unk>",
|
| 58 |
+
bos_token="<s>",
|
| 59 |
+
eos_token="</s>",
|
| 60 |
+
pad_token=None,
|
| 61 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
| 62 |
+
add_bos_token=True,
|
| 63 |
+
add_eos_token=False,
|
| 64 |
+
clean_up_tokenization_spaces=False,
|
| 65 |
+
**kwargs,
|
| 66 |
+
):
|
| 67 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
| 68 |
+
bos_token = (AddedToken(bos_token, lstrip=False, rstrip=False)
|
| 69 |
+
if isinstance(bos_token, str) else bos_token)
|
| 70 |
+
eos_token = (AddedToken(eos_token, lstrip=False, rstrip=False)
|
| 71 |
+
if isinstance(eos_token, str) else eos_token)
|
| 72 |
+
unk_token = (AddedToken(unk_token, lstrip=False, rstrip=False)
|
| 73 |
+
if isinstance(unk_token, str) else unk_token)
|
| 74 |
+
pad_token = (AddedToken(pad_token, lstrip=False, rstrip=False)
|
| 75 |
+
if isinstance(pad_token, str) else pad_token)
|
| 76 |
+
super().__init__(
|
| 77 |
+
bos_token=bos_token,
|
| 78 |
+
eos_token=eos_token,
|
| 79 |
+
unk_token=unk_token,
|
| 80 |
+
pad_token=pad_token,
|
| 81 |
+
add_bos_token=add_bos_token,
|
| 82 |
+
add_eos_token=add_eos_token,
|
| 83 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
| 84 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 85 |
+
**kwargs,
|
| 86 |
+
)
|
| 87 |
+
self.vocab_file = vocab_file
|
| 88 |
+
self.add_bos_token = add_bos_token
|
| 89 |
+
self.add_eos_token = add_eos_token
|
| 90 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
| 91 |
+
self.sp_model.Load(vocab_file)
|
| 92 |
+
|
| 93 |
+
def __getstate__(self):
|
| 94 |
+
state = self.__dict__.copy()
|
| 95 |
+
state["sp_model"] = None
|
| 96 |
+
return state
|
| 97 |
+
|
| 98 |
+
def __setstate__(self, d):
|
| 99 |
+
self.__dict__ = d
|
| 100 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
| 101 |
+
self.sp_model.Load(self.vocab_file)
|
| 102 |
+
|
| 103 |
+
@property
|
| 104 |
+
def vocab_size(self):
|
| 105 |
+
"""Returns vocab size"""
|
| 106 |
+
return self.sp_model.get_piece_size()
|
| 107 |
+
|
| 108 |
+
def get_vocab(self):
|
| 109 |
+
"""Returns vocab as a dict"""
|
| 110 |
+
vocab = {
|
| 111 |
+
self.convert_ids_to_tokens(i): i
|
| 112 |
+
for i in range(self.vocab_size)
|
| 113 |
+
}
|
| 114 |
+
vocab.update(self.added_tokens_encoder)
|
| 115 |
+
return vocab
|
| 116 |
+
|
| 117 |
+
def _tokenize(self, text):
|
| 118 |
+
"""Returns a tokenized string."""
|
| 119 |
+
return self.sp_model.encode(text, out_type=str)
|
| 120 |
+
|
| 121 |
+
def _convert_token_to_id(self, token):
|
| 122 |
+
"""Converts a token (str) in an id using the vocab."""
|
| 123 |
+
return self.sp_model.piece_to_id(token)
|
| 124 |
+
|
| 125 |
+
def _convert_id_to_token(self, index):
|
| 126 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 127 |
+
token = self.sp_model.IdToPiece(index)
|
| 128 |
+
return token
|
| 129 |
+
|
| 130 |
+
def convert_tokens_to_string(self, tokens):
|
| 131 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
| 132 |
+
current_sub_tokens = []
|
| 133 |
+
out_string = ""
|
| 134 |
+
prev_is_special = False
|
| 135 |
+
for i, token in enumerate(tokens):
|
| 136 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
| 137 |
+
if token in self.all_special_tokens:
|
| 138 |
+
if not prev_is_special and i != 0:
|
| 139 |
+
out_string += " "
|
| 140 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
| 141 |
+
prev_is_special = True
|
| 142 |
+
current_sub_tokens = []
|
| 143 |
+
else:
|
| 144 |
+
current_sub_tokens.append(token)
|
| 145 |
+
prev_is_special = False
|
| 146 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
| 147 |
+
return out_string
|
| 148 |
+
|
| 149 |
+
def save_vocabulary(self,
|
| 150 |
+
save_directory,
|
| 151 |
+
filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 152 |
+
"""
|
| 153 |
+
Save the vocabulary and special tokens file to a directory.
|
| 154 |
+
|
| 155 |
+
Args:
|
| 156 |
+
save_directory (`str`):
|
| 157 |
+
The directory in which to save the vocabulary.
|
| 158 |
+
|
| 159 |
+
Returns:
|
| 160 |
+
`Tuple(str)`: Paths to the files saved.
|
| 161 |
+
"""
|
| 162 |
+
if not os.path.isdir(save_directory):
|
| 163 |
+
logger.error(
|
| 164 |
+
f"Vocabulary path ({save_directory}) should be a directory")
|
| 165 |
+
return
|
| 166 |
+
out_vocab_file = os.path.join(
|
| 167 |
+
save_directory,
|
| 168 |
+
(filename_prefix + "-" if filename_prefix else "") +
|
| 169 |
+
VOCAB_FILES_NAMES["vocab_file"],
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(
|
| 173 |
+
out_vocab_file) and os.path.isfile(self.vocab_file):
|
| 174 |
+
copyfile(self.vocab_file, out_vocab_file)
|
| 175 |
+
elif not os.path.isfile(self.vocab_file):
|
| 176 |
+
with open(out_vocab_file, "wb") as fi:
|
| 177 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
| 178 |
+
fi.write(content_spiece_model)
|
| 179 |
+
|
| 180 |
+
return (out_vocab_file, )
|
| 181 |
+
|
| 182 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
| 183 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
| 184 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
| 185 |
+
|
| 186 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
| 187 |
+
|
| 188 |
+
if token_ids_1 is not None:
|
| 189 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
| 190 |
+
|
| 191 |
+
return output
|
| 192 |
+
|
| 193 |
+
def get_special_tokens_mask(
|
| 194 |
+
self,
|
| 195 |
+
token_ids_0: List[int],
|
| 196 |
+
token_ids_1: Optional[List[int]] = None,
|
| 197 |
+
already_has_special_tokens: bool = False,
|
| 198 |
+
) -> List[int]:
|
| 199 |
+
"""
|
| 200 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 201 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
| 202 |
+
|
| 203 |
+
Args:
|
| 204 |
+
token_ids_0 (`List[int]`):
|
| 205 |
+
List of IDs.
|
| 206 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 207 |
+
Optional second list of IDs for sequence pairs.
|
| 208 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 209 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
| 210 |
+
|
| 211 |
+
Returns:
|
| 212 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 213 |
+
"""
|
| 214 |
+
if already_has_special_tokens:
|
| 215 |
+
return super().get_special_tokens_mask(
|
| 216 |
+
token_ids_0=token_ids_0,
|
| 217 |
+
token_ids_1=token_ids_1,
|
| 218 |
+
already_has_special_tokens=True,
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
bos_token_id = [1] if self.add_bos_token else []
|
| 222 |
+
eos_token_id = [1] if self.add_eos_token else []
|
| 223 |
+
|
| 224 |
+
if token_ids_1 is None:
|
| 225 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
| 226 |
+
return (bos_token_id + ([0] * len(token_ids_0)) + eos_token_id +
|
| 227 |
+
bos_token_id + ([0] * len(token_ids_1)) + eos_token_id)
|
| 228 |
+
|
| 229 |
+
def create_token_type_ids_from_sequences(
|
| 230 |
+
self,
|
| 231 |
+
token_ids_0: List[int],
|
| 232 |
+
token_ids_1: Optional[List[int]] = None) -> List[int]:
|
| 233 |
+
"""
|
| 234 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
| 235 |
+
sequence pair mask has the following format:
|
| 236 |
+
|
| 237 |
+
```
|
| 238 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
| 239 |
+
| first sequence | second sequence |
|
| 240 |
+
```
|
| 241 |
+
|
| 242 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
| 243 |
+
|
| 244 |
+
Args:
|
| 245 |
+
token_ids_0 (`List[int]`):
|
| 246 |
+
List of ids.
|
| 247 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 248 |
+
Optional second list of IDs for sequence pairs.
|
| 249 |
+
|
| 250 |
+
Returns:
|
| 251 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
| 252 |
+
"""
|
| 253 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
| 254 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
| 255 |
+
|
| 256 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
| 257 |
+
|
| 258 |
+
if token_ids_1 is not None:
|
| 259 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
| 260 |
+
|
| 261 |
+
return output
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4be54af290d93c113bcbf421115ae9eed9d6340408f564898f1e966dc738ef01
|
| 3 |
+
size 1136699
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoTokenizer": [
|
| 4 |
+
"tokenization_baichuan.BaiChuanTokenizer",
|
| 5 |
+
null
|
| 6 |
+
]
|
| 7 |
+
},
|
| 8 |
+
"add_bos_token": false,
|
| 9 |
+
"add_eos_token": false,
|
| 10 |
+
"bos_token": {
|
| 11 |
+
"__type": "AddedToken",
|
| 12 |
+
"content": "<s>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": true,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false
|
| 17 |
+
},
|
| 18 |
+
"clean_up_tokenization_spaces": false,
|
| 19 |
+
"eos_token": {
|
| 20 |
+
"__type": "AddedToken",
|
| 21 |
+
"content": "</s>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": true,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false
|
| 26 |
+
},
|
| 27 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 28 |
+
"sp_model_kwargs": {},
|
| 29 |
+
"tokenizer_class": "BaiChuanTokenizer",
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"__type": "AddedToken",
|
| 32 |
+
"content": "<unk>",
|
| 33 |
+
"lstrip": false,
|
| 34 |
+
"normalized": true,
|
| 35 |
+
"rstrip": false,
|
| 36 |
+
"single_word": false
|
| 37 |
+
}
|
| 38 |
+
}
|
utils.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from torch import nn
|
| 7 |
+
import torch.distributed as dist
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
|
| 10 |
+
from .norm import SimpleRMSNorm as SimpleRMSNormTorch
|
| 11 |
+
from .srmsnorm_triton import SimpleRMSNorm as SimpleRMSNormTriton
|
| 12 |
+
|
| 13 |
+
use_triton = eval(os.environ.get("use_triton", default="True"))
|
| 14 |
+
debug = eval(os.environ.get("debug", default="False"))
|
| 15 |
+
|
| 16 |
+
if use_triton:
|
| 17 |
+
SimpleRMSNorm = SimpleRMSNormTriton
|
| 18 |
+
else:
|
| 19 |
+
SimpleRMSNorm = SimpleRMSNormTorch
|
| 20 |
+
|
| 21 |
+
logging.basicConfig(
|
| 22 |
+
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
|
| 23 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
| 24 |
+
level=os.environ.get("LOGLEVEL", "INFO").upper(),
|
| 25 |
+
stream=sys.stdout,
|
| 26 |
+
)
|
| 27 |
+
logger = logging.getLogger("print_config")
|
| 28 |
+
|
| 29 |
+
BASE_DIM = 256
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def is_dist_avail_and_initialized():
|
| 33 |
+
if not dist.is_available():
|
| 34 |
+
return False
|
| 35 |
+
if not dist.is_initialized():
|
| 36 |
+
return False
|
| 37 |
+
return True
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def get_world_size():
|
| 41 |
+
if not is_dist_avail_and_initialized():
|
| 42 |
+
return 1
|
| 43 |
+
return dist.get_world_size()
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def get_rank():
|
| 47 |
+
if not is_dist_avail_and_initialized():
|
| 48 |
+
return 0
|
| 49 |
+
return dist.get_rank()
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def is_main_process():
|
| 53 |
+
return get_rank() == 0
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def logging_info(string):
|
| 57 |
+
if is_main_process():
|
| 58 |
+
logger.info(string)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def print_params(**kwargs):
|
| 62 |
+
if is_main_process():
|
| 63 |
+
logger.info(f"start print config of {kwargs['__class__']}")
|
| 64 |
+
for key in kwargs:
|
| 65 |
+
if key in ["__class__", "self"]:
|
| 66 |
+
continue
|
| 67 |
+
logger.info(f"{key}: {kwargs[key]}")
|
| 68 |
+
logger.info(f"end print config of {kwargs['__class__']}")
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def print_config(config):
|
| 72 |
+
if is_main_process():
|
| 73 |
+
logger.info(f"start print config of {config['__class__']}")
|
| 74 |
+
for key in config:
|
| 75 |
+
if key in ["__class__", "self"]:
|
| 76 |
+
continue
|
| 77 |
+
logger.info(f"{key}: {config[key]}")
|
| 78 |
+
logger.info(f"end print config of {config['__class__']}")
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def print_module(module):
|
| 82 |
+
named_modules = set()
|
| 83 |
+
for p in module.named_modules():
|
| 84 |
+
named_modules.update([p[0]])
|
| 85 |
+
named_modules = list(named_modules)
|
| 86 |
+
|
| 87 |
+
string_repr = ""
|
| 88 |
+
for p in module.named_parameters():
|
| 89 |
+
name = p[0].split(".")[0]
|
| 90 |
+
if name not in named_modules:
|
| 91 |
+
string_repr = (string_repr + "(" + name + "): " + "Tensor(" +
|
| 92 |
+
str(tuple(p[1].shape)) + ", requires_grad=" +
|
| 93 |
+
str(p[1].requires_grad) + ")\n")
|
| 94 |
+
|
| 95 |
+
return string_repr.rstrip("\n")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_activation_fn(activation):
|
| 99 |
+
if debug:
|
| 100 |
+
logger.info(f"activation: {activation}")
|
| 101 |
+
if activation == "gelu":
|
| 102 |
+
return F.gelu
|
| 103 |
+
elif activation == "relu":
|
| 104 |
+
return F.relu
|
| 105 |
+
elif activation == "elu":
|
| 106 |
+
return F.elu
|
| 107 |
+
elif activation == "sigmoid":
|
| 108 |
+
return F.sigmoid
|
| 109 |
+
elif activation == "exp":
|
| 110 |
+
|
| 111 |
+
def f(x):
|
| 112 |
+
with torch.no_grad():
|
| 113 |
+
x_max = torch.max(x, dim=-1, keepdims=True).values
|
| 114 |
+
y = torch.exp(x - x_max)
|
| 115 |
+
|
| 116 |
+
return y
|
| 117 |
+
|
| 118 |
+
return f
|
| 119 |
+
elif activation == "leak":
|
| 120 |
+
return F.leaky_relu
|
| 121 |
+
elif activation == "1+elu":
|
| 122 |
+
|
| 123 |
+
def f(x):
|
| 124 |
+
return 1 + F.elu(x)
|
| 125 |
+
|
| 126 |
+
return f
|
| 127 |
+
elif activation == "2+elu":
|
| 128 |
+
|
| 129 |
+
def f(x):
|
| 130 |
+
return 2 + F.elu(x)
|
| 131 |
+
|
| 132 |
+
return f
|
| 133 |
+
elif activation == "silu" or activation == "swish":
|
| 134 |
+
return F.silu
|
| 135 |
+
elif activation == "sine":
|
| 136 |
+
return torch.sin
|
| 137 |
+
else:
|
| 138 |
+
logger.info(
|
| 139 |
+
f"activation: does not support {activation}, use Identity!!!")
|
| 140 |
+
return lambda x: x
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def get_norm_fn(norm_type):
|
| 144 |
+
if norm_type == "simplermsnorm":
|
| 145 |
+
return SimpleRMSNorm
|
| 146 |
+
else:
|
| 147 |
+
return nn.LayerNorm
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def convert_to_multiple_of_base(x):
|
| 151 |
+
return BASE_DIM * ((x + BASE_DIM - 1) // BASE_DIM)
|