results
This model is a fine-tuned version of indobenchmark/indobert-base-p2 on the None dataset. It achieves the following results on the evaluation set:
- Accuracy: 0.8841
- F1 Weighted: 0.8830
- Loss: 0.4070
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.055195102732862e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Accuracy | F1 Weighted | Validation Loss |
|---|---|---|---|---|---|
| No log | 1.0 | 8 | 0.3913 | 0.2201 | 1.0694 |
| 1.1334 | 2.0 | 16 | 0.6812 | 0.5872 | 0.6892 |
| 0.7706 | 3.0 | 24 | 0.7681 | 0.7472 | 0.6135 |
| 0.4775 | 4.0 | 32 | 0.8261 | 0.8161 | 0.4961 |
| 0.3038 | 5.0 | 40 | 0.8406 | 0.8433 | 0.3955 |
| 0.3038 | 6.0 | 48 | 0.8551 | 0.8509 | 0.4645 |
| 0.2063 | 7.0 | 56 | 0.8406 | 0.8422 | 0.3706 |
| 0.1441 | 8.0 | 64 | 0.8841 | 0.8830 | 0.4070 |
| 0.1155 | 9.0 | 72 | 0.8551 | 0.8534 | 0.4334 |
| 0.0703 | 10.0 | 80 | 0.8696 | 0.8703 | 0.4704 |
| 0.0703 | 11.0 | 88 | 0.8551 | 0.8477 | 0.5174 |
| 0.0535 | 12.0 | 96 | 0.8551 | 0.8531 | 0.4605 |
| 0.0377 | 13.0 | 104 | 0.8696 | 0.8667 | 0.4920 |
Framework versions
- Transformers 4.56.2
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 3
Model tree for Noctuaru/topik_syariah_p2_v6
Base model
indobenchmark/indobert-base-p2