--- library_name: transformers license: mit base_model: indobenchmark/indobert-large-p2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: results results: [] --- # results This model is a fine-tuned version of [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2) on the None dataset. It achieves the following results on the evaluation set: - Accuracy: 0.8 - F1 Weighted: 0.7852 - Loss: 0.7316 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.7820079535067715e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 17 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Accuracy | F1 Weighted | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:-----------:|:---------------:| | No log | 1.0 | 6 | 0.24 | 0.1029 | 1.2189 | | 1.2118 | 2.0 | 12 | 0.32 | 0.2521 | 1.1035 | | 1.2118 | 3.0 | 18 | 0.64 | 0.5214 | 1.0049 | | 1.0516 | 4.0 | 24 | 0.68 | 0.6394 | 0.8500 | | 1.0014 | 5.0 | 30 | 0.64 | 0.628 | 0.8799 | | 1.0014 | 6.0 | 36 | 0.68 | 0.6835 | 0.7949 | | 1.1235 | 7.0 | 42 | 0.72 | 0.6931 | 0.8320 | | 1.1235 | 8.0 | 48 | 0.64 | 0.6368 | 0.7677 | | 1.0837 | 9.0 | 54 | 0.8 | 0.7852 | 0.7316 | | 0.9824 | 10.0 | 60 | 0.76 | 0.7324 | 0.7318 | | 0.9824 | 11.0 | 66 | 0.72 | 0.6966 | 0.7191 | | 0.8334 | 12.0 | 72 | 0.76 | 0.7346 | 0.7128 | | 0.8334 | 13.0 | 78 | 0.68 | 0.6430 | 0.7165 | | 0.7175 | 14.0 | 84 | 0.68 | 0.6430 | 0.7259 | | 0.6813 | 15.0 | 90 | 0.68 | 0.6430 | 0.7139 | | 0.6813 | 16.0 | 96 | 0.72 | 0.6981 | 0.6977 | | 0.6765 | 17.0 | 102 | 0.72 | 0.6981 | 0.6941 | ### Framework versions - Transformers 4.56.2 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.1