File size: 2,816 Bytes
c536bf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
library_name: transformers
license: mit
base_model: indobenchmark/indobert-large-p2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2) on the None dataset.
It achieves the following results on the evaluation set:
- Accuracy: 0.8
- F1 Weighted: 0.7852
- Loss: 0.7316
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.7820079535067715e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 17
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Accuracy | F1 Weighted | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:-----------:|:---------------:|
| No log | 1.0 | 6 | 0.24 | 0.1029 | 1.2189 |
| 1.2118 | 2.0 | 12 | 0.32 | 0.2521 | 1.1035 |
| 1.2118 | 3.0 | 18 | 0.64 | 0.5214 | 1.0049 |
| 1.0516 | 4.0 | 24 | 0.68 | 0.6394 | 0.8500 |
| 1.0014 | 5.0 | 30 | 0.64 | 0.628 | 0.8799 |
| 1.0014 | 6.0 | 36 | 0.68 | 0.6835 | 0.7949 |
| 1.1235 | 7.0 | 42 | 0.72 | 0.6931 | 0.8320 |
| 1.1235 | 8.0 | 48 | 0.64 | 0.6368 | 0.7677 |
| 1.0837 | 9.0 | 54 | 0.8 | 0.7852 | 0.7316 |
| 0.9824 | 10.0 | 60 | 0.76 | 0.7324 | 0.7318 |
| 0.9824 | 11.0 | 66 | 0.72 | 0.6966 | 0.7191 |
| 0.8334 | 12.0 | 72 | 0.76 | 0.7346 | 0.7128 |
| 0.8334 | 13.0 | 78 | 0.68 | 0.6430 | 0.7165 |
| 0.7175 | 14.0 | 84 | 0.68 | 0.6430 | 0.7259 |
| 0.6813 | 15.0 | 90 | 0.68 | 0.6430 | 0.7139 |
| 0.6813 | 16.0 | 96 | 0.72 | 0.6981 | 0.6977 |
| 0.6765 | 17.0 | 102 | 0.72 | 0.6981 | 0.6941 |
### Framework versions
- Transformers 4.56.2
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
|