Mungert commited on
Commit
119e8dd
·
verified ·
0 Parent(s):

Super-squash history to reclaim storage

Browse files
.gitattributes ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Gemma-3-Gaia-PT-BR-4b-it-f16.gguf filter=lfs diff=lfs merge=lfs -text
37
+ Gemma-3-Gaia-PT-BR-4b-it-f16_q8_0.gguf filter=lfs diff=lfs merge=lfs -text
38
+ Gemma-3-Gaia-PT-BR-4b-it-bf16_q8_0.gguf filter=lfs diff=lfs merge=lfs -text
39
+ Gemma-3-Gaia-PT-BR-4b-it-f16_q6_k.gguf filter=lfs diff=lfs merge=lfs -text
40
+ Gemma-3-Gaia-PT-BR-4b-it-bf16_q6_k.gguf filter=lfs diff=lfs merge=lfs -text
41
+ Gemma-3-Gaia-PT-BR-4b-it-f16_q4_k.gguf filter=lfs diff=lfs merge=lfs -text
42
+ Gemma-3-Gaia-PT-BR-4b-it-bf16_q4_k.gguf filter=lfs diff=lfs merge=lfs -text
43
+ Gemma-3-Gaia-PT-BR-4b-it-q2_k_l.gguf filter=lfs diff=lfs merge=lfs -text
44
+ Gemma-3-Gaia-PT-BR-4b-it-q3_k_l.gguf filter=lfs diff=lfs merge=lfs -text
45
+ Gemma-3-Gaia-PT-BR-4b-it-q4_k_l.gguf filter=lfs diff=lfs merge=lfs -text
46
+ Gemma-3-Gaia-PT-BR-4b-it-q5_k_l.gguf filter=lfs diff=lfs merge=lfs -text
47
+ Gemma-3-Gaia-PT-BR-4b-it-q6_k_l.gguf filter=lfs diff=lfs merge=lfs -text
48
+ Gemma-3-Gaia-PT-BR-4b-it-q2_k_m.gguf filter=lfs diff=lfs merge=lfs -text
49
+ Gemma-3-Gaia-PT-BR-4b-it-q2_k_s.gguf filter=lfs diff=lfs merge=lfs -text
50
+ Gemma-3-Gaia-PT-BR-4b-it-q3_k_m.gguf filter=lfs diff=lfs merge=lfs -text
51
+ Gemma-3-Gaia-PT-BR-4b-it-q3_k_s.gguf filter=lfs diff=lfs merge=lfs -text
52
+ Gemma-3-Gaia-PT-BR-4b-it-q4_k_m.gguf filter=lfs diff=lfs merge=lfs -text
53
+ Gemma-3-Gaia-PT-BR-4b-it-q4_k_s.gguf filter=lfs diff=lfs merge=lfs -text
54
+ Gemma-3-Gaia-PT-BR-4b-it-q5_k_m.gguf filter=lfs diff=lfs merge=lfs -text
55
+ Gemma-3-Gaia-PT-BR-4b-it-q5_k_s.gguf filter=lfs diff=lfs merge=lfs -text
56
+ Gemma-3-Gaia-PT-BR-4b-it-q6_k_m.gguf filter=lfs diff=lfs merge=lfs -text
57
+ Gemma-3-Gaia-PT-BR-4b-it-q8_0.gguf filter=lfs diff=lfs merge=lfs -text
58
+ Gemma-3-Gaia-PT-BR-4b-it-q4_0.gguf filter=lfs diff=lfs merge=lfs -text
59
+ Gemma-3-Gaia-PT-BR-4b-it-q4_1.gguf filter=lfs diff=lfs merge=lfs -text
60
+ Gemma-3-Gaia-PT-BR-4b-it-q4_0_l.gguf filter=lfs diff=lfs merge=lfs -text
61
+ Gemma-3-Gaia-PT-BR-4b-it-q4_1_l.gguf filter=lfs diff=lfs merge=lfs -text
62
+ Gemma-3-Gaia-PT-BR-4b-it-q5_0.gguf filter=lfs diff=lfs merge=lfs -text
63
+ Gemma-3-Gaia-PT-BR-4b-it-q5_1.gguf filter=lfs diff=lfs merge=lfs -text
64
+ Gemma-3-Gaia-PT-BR-4b-it-q5_0_l.gguf filter=lfs diff=lfs merge=lfs -text
65
+ Gemma-3-Gaia-PT-BR-4b-it-q5_1_l.gguf filter=lfs diff=lfs merge=lfs -text
66
+ Gemma-3-Gaia-PT-BR-4b-it-iq2_xs.gguf filter=lfs diff=lfs merge=lfs -text
67
+ Gemma-3-Gaia-PT-BR-4b-it-iq2_xxs.gguf filter=lfs diff=lfs merge=lfs -text
68
+ Gemma-3-Gaia-PT-BR-4b-it-iq2_s.gguf filter=lfs diff=lfs merge=lfs -text
69
+ Gemma-3-Gaia-PT-BR-4b-it-iq2_m.gguf filter=lfs diff=lfs merge=lfs -text
70
+ Gemma-3-Gaia-PT-BR-4b-it-iq3_xs.gguf filter=lfs diff=lfs merge=lfs -text
71
+ Gemma-3-Gaia-PT-BR-4b-it-iq3_xxs.gguf filter=lfs diff=lfs merge=lfs -text
72
+ Gemma-3-Gaia-PT-BR-4b-it-iq3_s.gguf filter=lfs diff=lfs merge=lfs -text
73
+ Gemma-3-Gaia-PT-BR-4b-it-iq3_m.gguf filter=lfs diff=lfs merge=lfs -text
74
+ Gemma-3-Gaia-PT-BR-4b-it-iq4_xs.gguf filter=lfs diff=lfs merge=lfs -text
75
+ Gemma-3-Gaia-PT-BR-4b-it-iq4_nl.gguf filter=lfs diff=lfs merge=lfs -text
76
+ Gemma-3-Gaia-PT-BR-4b-it.imatrix filter=lfs diff=lfs merge=lfs -text
77
+ Gemma-3-Gaia-PT-BR-4b-it-bf16.mmproj filter=lfs diff=lfs merge=lfs -text
78
+ Gemma-3-Gaia-PT-BR-4b-it-f32.mmproj filter=lfs diff=lfs merge=lfs -text
79
+ Gemma-3-Gaia-PT-BR-4b-it-f16.mmproj filter=lfs diff=lfs merge=lfs -text
80
+ Gemma-3-Gaia-PT-BR-4b-it-bf16.gguf filter=lfs diff=lfs merge=lfs -text
81
+ Gemma-3-Gaia-PT-BR-4b-it-q8_0.mmproj filter=lfs diff=lfs merge=lfs -text
Gemma-3-Gaia-PT-BR-4b-it-bf16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80d4757d0479b52fc9811bfcbc818582a10c168545724d3d355aad5f7af82023
3
+ size 7767803840
Gemma-3-Gaia-PT-BR-4b-it-bf16.mmproj ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ea13b42216d1ec422c9d1a311668499c7e9db925a936f65d8431216ddc4a56c
3
+ size 851251584
Gemma-3-Gaia-PT-BR-4b-it-bf16_q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:279a96f293f7906d4de777eb1d6b838f8179ce1ed7138ef162ad38298e4b5251
3
+ size 5845960640
Gemma-3-Gaia-PT-BR-4b-it-f16.mmproj ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68102c829eacbf9cc8b2e889302d343f27307640282749351aeb65bd4aa04838
3
+ size 851251584
Gemma-3-Gaia-PT-BR-4b-it-f16_q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7002a11c654331dd508166b2ea31f273ef1c7ee68c8b4b06bebc164c790c879f
3
+ size 5845960640
Gemma-3-Gaia-PT-BR-4b-it-f32.mmproj ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d71555b31dda688e7b2232480500b4b2cbf4132a0c096388c36224680ce0a75
3
+ size 1673392512
Gemma-3-Gaia-PT-BR-4b-it-iq2_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02df1838b14a609926a7d1542c8408f74ce79b07979bd10a2ecaa049392ba195
3
+ size 1592910080
Gemma-3-Gaia-PT-BR-4b-it-iq2_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8749c3d2a8980d9ed32bc81cae9570305aabb14e8e0e3d5eaaa75e62266bcc4e
3
+ size 1532289280
Gemma-3-Gaia-PT-BR-4b-it-iq2_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43e9e61b42666cf91d04b23bf15861180092cb73e87bc016c1f56a5e0cea441d
3
+ size 1494155520
Gemma-3-Gaia-PT-BR-4b-it-iq2_xxs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4ec81501b4407babb0ae2a6ef6295a054813b111157b3b602d92e0b863d70b6
3
+ size 1402405120
Gemma-3-Gaia-PT-BR-4b-it-iq3_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:943eca25dcaec620f0b31b85f6706f70bdc9b7e19997f22197335e4599f0c83d
3
+ size 1875370240
Gemma-3-Gaia-PT-BR-4b-it-iq3_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e4b325b1841b4876db5a11a1456fc3a31a81c281e4b44b0aaa5d93d62fba271
3
+ size 1848213760
Gemma-3-Gaia-PT-BR-4b-it-iq3_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c09c78e685dac85a73090112245bf6de74a4140ce6d533720d14e80c27ec2fc
3
+ size 1774240000
Gemma-3-Gaia-PT-BR-4b-it-iq3_xxs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50117cb812414d06d8d39736840ce5cbdd00294935016bde566cf8367e0608f8
3
+ size 1700266240
Gemma-3-Gaia-PT-BR-4b-it-iq4_nl.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a27897cce27329e17d333aad1e09345aab44339515065a148ac8466e961dd732
3
+ size 2363512320
Gemma-3-Gaia-PT-BR-4b-it-iq4_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1a64dfb13d53bda471a6fd05cbaa96ef76f70108c0cd3346a40ce5b43cc9708
3
+ size 2263242240
Gemma-3-Gaia-PT-BR-4b-it-q2_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61bcd30ff2e6b26a0bf51402ce82bd4a2d6de10fc422c6199003bd6fbefa2e04
3
+ size 1716385280
Gemma-3-Gaia-PT-BR-4b-it-q2_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:069ce15e16eafafeed57ca9129f1afeef118f7d3b6d1e7d5c836a54c6243aa9b
3
+ size 1537245440
Gemma-3-Gaia-PT-BR-4b-it-q3_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e47d1bf3ffbad6cd2614cb57fec660b0b52f3f407b10581ae947f08c73a29698
3
+ size 2082731520
Gemma-3-Gaia-PT-BR-4b-it-q3_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b316fb39c735c624680008c4bd467bbf34975fde0f85b183f5f6207ec50f898e
3
+ size 1875902720
Gemma-3-Gaia-PT-BR-4b-it-q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c20349d1f633a601f4d956c1c1c52d34bceaccb6eb113aa2ddd4ade1357820ad
3
+ size 2190455040
Gemma-3-Gaia-PT-BR-4b-it-q4_1.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a426a2b1bd7250c446301ea9a933f441e6f074193611ffd8ef0801525a932b8e
3
+ size 2432948480
Gemma-3-Gaia-PT-BR-4b-it-q4_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fc0094174e5c9848a0a95be36d0ce6ecba08cfc0a2a25f4d5def559ec825cfe
3
+ size 2464499200
Gemma-3-Gaia-PT-BR-4b-it-q4_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:594372b7c386e227790784bb9d565e0d5d074b3ed5dde792e81b8361c84bed0e
3
+ size 2397591040
Gemma-3-Gaia-PT-BR-4b-it-q5_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:680c41b01f91e90e5e22329c2bf124e082b4d3ed90ca300a5c91abe4299bf1c3
3
+ size 2675441920
Gemma-3-Gaia-PT-BR-4b-it-q5_1.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:976186e2b00281c784ae8a052919c38b395b60cef287d20cb5bdb7737a29def5
3
+ size 2917935360
Gemma-3-Gaia-PT-BR-4b-it-q5_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1d3e30bfc5a31849259a3f43c255da435f0f94162ada768449a007a4e322cb4
3
+ size 2835269120
Gemma-3-Gaia-PT-BR-4b-it-q5_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21ee18dca66d193edca8ea9ac3a9c07c5827de2108284455f46104221fe75baf
3
+ size 2800801280
Gemma-3-Gaia-PT-BR-4b-it-q6_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9962b2d433552bd9e9292a1505c09934a90778e30dce62858715bbfe9bd000dc
3
+ size 3190740480
Gemma-3-Gaia-PT-BR-4b-it-q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89a7c1febbefd3ee678727d91153576902b439cdf97c0ddcad35837dd8d2e82a
3
+ size 4130402240
Gemma-3-Gaia-PT-BR-4b-it-q8_0.mmproj ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4428e8be9e67e1e9fec74847ee0ed5bcc73195ad4fd5ac573634eedd517cd710
3
+ size 591377664
Gemma-3-Gaia-PT-BR-4b-it.imatrix ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c4f17eca32db981118dee3422c9cd5d98ce14048e4b440dd3bd2273a22efe27
3
+ size 3419902
README.md ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: gemma
4
+ language:
5
+ - pt
6
+ base_model:
7
+ - google/gemma-3-4b-pt
8
+ ---
9
+
10
+ # <span style="color: #7FFF7F;">Gemma-3-Gaia-PT-BR-4b-it GGUF Models</span>
11
+
12
+
13
+ ## <span style="color: #7F7FFF;">Model Generation Details</span>
14
+
15
+ This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`7f4fbe51`](https://github.com/ggerganov/llama.cpp/commit/7f4fbe5183b23b6b2e25fd1ccc5d1fa8bb010cb7).
16
+
17
+
18
+
19
+
20
+
21
+ ---
22
+
23
+ ## <span style="color: #7FFF7F;">Quantization Beyond the IMatrix</span>
24
+
25
+ I've been experimenting with a new quantization approach that selectively elevates the precision of key layers beyond what the default IMatrix configuration provides.
26
+
27
+ In my testing, standard IMatrix quantization underperforms at lower bit depths, especially with Mixture of Experts (MoE) models. To address this, I'm using the `--tensor-type` option in `llama.cpp` to manually "bump" important layers to higher precision. You can see the implementation here:
28
+ 👉 [Layer bumping with llama.cpp](https://github.com/Mungert69/GGUFModelBuilder/blob/main/model-converter/tensor_list_builder.py)
29
+
30
+ While this does increase model file size, it significantly improves precision for a given quantization level.
31
+
32
+ ### **I'd love your feedback—have you tried this? How does it perform for you?**
33
+
34
+
35
+
36
+
37
+ ---
38
+
39
+ <a href="https://readyforquantum.com/huggingface_gguf_selection_guide.html" style="color: #7FFF7F;">
40
+ Click here to get info on choosing the right GGUF model format
41
+ </a>
42
+
43
+ ---
44
+
45
+
46
+
47
+ <!--Begin Original Model Card-->
48
+
49
+
50
+
51
+ # Model Card for GAIA (Gemma-3-Gaia-PT-BR-4b-it)
52
+
53
+ **GAIA** is an open, state-of-the-art language model for Brazilian Portuguese. It was developed by continuously pre-training the `google/gemma-3-4b-pt` model on an extensive, high-quality corpus of Portuguese data.
54
+
55
+ The goal of GAIA is to democratize access to cutting-edge AI technology in Brazil, enabling developers, researchers, and organizations to build innovative solutions on a robust and reliable technological foundation.
56
+
57
+ ## Model Details
58
+
59
+ ### Model Description
60
+
61
+ **GAIA** was developed through a partnership between **The Brazilian Association of AI (ABRIA)**, the **Center of Excellence in Artificial Intelligence (CEIA) at the Federal University of Goiás (UFG)**, startups **Nama** and **Amadeus AI**, and **Google DeepMind**.
62
+
63
+ The development process started with the base model `google/gemma-3-4b-pt` and involved two main stages:
64
+ 1. **Continuous Pre-training:** The model was trained on a large, high-quality Portuguese dataset totaling approximately **13 billion tokens**. This corpus includes a variety of domains, such as scientific articles and Wikipedia data in Portuguese, ensuring a deep understanding of the language and its contexts.
65
+ 2. **Instruction-Following Capability Restoration:** To enable the model to follow instructions without traditional supervised fine-tuning (SFT), a weight merging operation was applied. This technique, described in the paper *“Balancing Continuous Pre-Training and Instruction Fine-Tuning: Optimizing Instruction-Following in LLMs”*, allows the model to integrate the knowledge acquired during continuous pre-training with the ability to interact in a chat format and follow instructions.
66
+
67
+ - **Developed by:** The Brazilian Association of AI (ABRIA), the Center of Excellence in Artificial Intelligence (CEIA-UFG), Nama, Amadeus AI, and Google DeepMind.
68
+ - **Model:** GAIA
69
+ - **Model type:** Causal decoder-only Transformer-based language model.
70
+ - **Language(s):** Brazilian Portuguese (pt-BR)
71
+ - **License:** Gemma
72
+ - **Based on:** `google/gemma-3-4b-pt`
73
+
74
+ ### Team
75
+ This project was made possible by the contributions of the following individuals:
76
+ - Dr. Celso Gonçalves Camilo-Junior
77
+ - Dr. Sávio Salvarino Teles de Oliveira
78
+ - Me. Lucas Araujo Pereira
79
+ - Marcellus Amadeus
80
+ - Daniel Fazzioni
81
+ - Artur Matos Andrade Novais
82
+ - Salatiel Abraão Avelar Jordão
83
+
84
+
85
+ ### Model Sources
86
+
87
+ - **Repository:** [CEIA-UFG/Gemma-3-Gaia-PT-BR-4b-it](https://huggingface.co/CEIA-UFG/Gemma-3-Gaia-PT-BR-4b-it)
88
+ - **Paper (Merge Methodology):** [Balancing Continuous Pre-Training and Instruction Fine-Tuning: Optimizing Instruction-Following in LLMs](https://arxiv.org/pdf/2410.10739)
89
+
90
+ ## Uses
91
+
92
+ The model is designed for text generation and conversational tasks in Portuguese.
93
+
94
+ ### Direct Use
95
+
96
+ GAIA can be used directly for chat, question answering, summarization, creative content generation, and other tasks requiring natural language understanding and generation in Portuguese.
97
+
98
+ ### Downstream Use
99
+
100
+ GAIA serves as an excellent base model for fine-tuning on specific tasks, such as:
101
+ - Sentiment analysis in Portuguese.
102
+ - Retrieval-Augmented Generation (RAG) systems for corporate knowledge bases.
103
+ - Document classification.
104
+ - Specialized customer service chatbots.
105
+
106
+ ### Out-of-Scope Use
107
+
108
+ This model should not be used for high-stakes, critical decisions without human oversight. Its use for generating malicious, offensive, or illegal content, or for deceptively impersonating a human, is outside the intended scope. The model's performance in languages other than Portuguese will be significantly degraded.
109
+
110
+ ## Bias, Risks, and Limitations
111
+
112
+ Like any language model, GAIA reflects the biases present in its training data. Although the training corpus was curated with a focus on high quality, it may contain social and cultural biases from sources like Wikipedia and scientific articles. Therefore, the model may generate content that perpetuates existing stereotypes.
113
+
114
+ Furthermore, the model can "hallucinate," meaning it can generate information that appears factual but is not true. We strongly recommend verifying critical facts generated by the model before any use.
115
+
116
+ ### Recommendations
117
+
118
+ Users (both direct and downstream) should be aware of the model's risks, biases, and limitations. Implementing safeguards and content moderation is recommended, especially in public-facing applications. Human supervision is crucial for sensitive use cases.
119
+
120
+ ## Training Details
121
+
122
+ ### Training Data
123
+
124
+ The continuous pre-training was performed on a corpus of approximately **13 billion tokens** in Portuguese. The data selection prioritized high quality and diversity, including sources such as:
125
+ - **Scientific Articles in Portuguese:** To provide the model with more formal and technical knowledge.
126
+ - **Portuguese Wikipedia:** To cover a wide range of general knowledge.
127
+
128
+ A rigorous cleaning and filtering process was applied to ensure the highest possible data quality.
129
+
130
+ ### Training Procedure
131
+
132
+ The training was conducted on a **DGX infrastructure with NVIDIA H100 GPUs**, using between 3 and 5 GPUs in parallel.
133
+
134
+ #### Training Hyperparameters
135
+
136
+ - **Training regime:** Mixed Precision (bf16)
137
+ - **Global Batch Size:** 4 million tokens
138
+
139
+ ## Evaluation
140
+
141
+ The model was evaluated on a set of multiple-choice benchmarks in Portuguese, comparing its performance against the base model, `google/gemma-3-4b-it`. The benchmarks include BlueX (a compilation of multiple-choice questions), and questions from the ENEM (Brazilian High School National Exam) and OAB (Brazilian Bar Exam).
142
+
143
+ ### Results
144
+
145
+ | Benchmark | `google/gemma-3-4b-it` (Baseline) | GAIA (Our Model) |
146
+ |------------------|-----------------------------------|------------------|
147
+ | BlueX | **0.6630** | 0.6575 |
148
+ | ENEM 2024 | 0.6556 | **0.7000** |
149
+ | ENEM (General) | 0.7416 | **0.7486I** |
150
+ | OAB (Bar Exam) | **0.4502** | 0.4416 |
151
+
152
+ #### Summary
153
+
154
+ The results indicate that continuous pre-training on Portuguese data had a notable impact on the model's performance. **GAIA** showed a significant improvement on the **ENEM 2024** benchmark, outperforming the Google base model. On other benchmarks like BlueX and OAB, its performance is competitive and very close to the original model's, suggesting that the additional training process maintained the model's general capabilities while enhancing its knowledge in specific Portuguese-language domains.
155
+
156
+ ## Citation
157
+
158
+ If you use this model in your research or application, please cite our work.
159
+
160
+ **BibTeX:**
161
+ ```bibtex
162
+ @misc{gaia-gemma-3-4b-2025,
163
+ title={GAIA: An Open Language Model for Brazilian Portuguese},
164
+ author={CAMILO-JUNIOR, C. G.; OLIVEIRA, S. S. T.; PEREIRA, L. A.; AMADEUS, M.; FAZZIONI, D.; NOVAIS, A. M. A.; JORDÃO, S. A. A.},
165
+ year={2025},
166
+ publisher={Hugging Face},
167
+ journal={Hugging Face repository},
168
+ howpublished={\url{[https://huggingface.co/CEIA-UFG/Gemma-3-Gaia-PT-BR-4b-it](https://huggingface.co/CEIA-UFG/Gemma-3-Gaia-PT-BR-4b-it)}}
169
+ }
170
+
171
+ <!--End Original Model Card-->
172
+
173
+ ---
174
+
175
+ # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
176
+
177
+ Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**:
178
+
179
+ 👉 [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)
180
+
181
+
182
+ The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder)
183
+
184
+ 💬 **How to test**:
185
+ Choose an **AI assistant type**:
186
+ - `TurboLLM` (GPT-4.1-mini)
187
+ - `HugLLM` (Hugginface Open-source models)
188
+ - `TestLLM` (Experimental CPU-only)
189
+
190
+ ### **What I’m Testing**
191
+ I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:
192
+ - **Function calling** against live network services
193
+ - **How small can a model go** while still handling:
194
+ - Automated **Nmap security scans**
195
+ - **Quantum-readiness checks**
196
+ - **Network Monitoring tasks**
197
+
198
+ 🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):
199
+ - ✅ **Zero-configuration setup**
200
+ - ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low.
201
+ - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!
202
+
203
+ ### **Other Assistants**
204
+ 🟢 **TurboLLM** – Uses **gpt-4.1-mini** :
205
+ - **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited.
206
+ - **Create custom cmd processors to run .net code on Quantum Network Monitor Agents**
207
+ - **Real-time network diagnostics and monitoring**
208
+ - **Security Audits**
209
+ - **Penetration testing** (Nmap/Metasploit)
210
+
211
+ 🔵 **HugLLM** – Latest Open-source models:
212
+ - 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.
213
+
214
+ ### 💡 **Example commands you could test**:
215
+ 1. `"Give me info on my websites SSL certificate"`
216
+ 2. `"Check if my server is using quantum safe encyption for communication"`
217
+ 3. `"Run a comprehensive security audit on my server"`
218
+ 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a [Quantum Network Monitor Agent](https://readyforquantum.com/Download/?utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) to run the .net code on. This is a very flexible and powerful feature. Use with caution!
219
+
220
+ ### Final Word
221
+
222
+ I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.
223
+
224
+ If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone.
225
+
226
+ I'm also open to job opportunities or sponsorship.
227
+
228
+ Thank you! 😊