File size: 1,804 Bytes
ca8858c
 
efb420c
 
 
 
 
 
 
 
ca8858c
efb420c
 
 
 
 
f1a9699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---

license: cc-by-nc-sa-4.0
language:
- en
pipeline_tag: image-feature-extraction
tags:
- pathology
- neuropathology
- foundation_model
- vit
---


# neuroFM_HE20x



ViT-large (300M parameters) trained on a diverse neuropathology dataset.





## Model Usage



To get started, first clone the repository with this command:

```bash

  git clone --no-checkout https://huggingface.co/MountSinaiCompPath/neuroFM_HE20x && cd neuroFM_HE20x && git sparse-checkout init --no-cone && git sparse-checkout set '/*' '!*.bin' && git checkout

```



Now you can use the following code:

```python

from PIL import Image

import numpy as np

import vision_transformer
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from huggingface_hub import PyTorchModelHubMixin



class neuroFM_HE20x(nn.Module, PyTorchModelHubMixin):
    def __init__(self):

        super().__init__()

	vit_kwargs = dict(

            img_size=224,

            patch_size=14,

            init_values=1.0e-05,

            ffn_layer='swiglufused',

            block_chunks=4,

            qkv_bias=True,

            proj_bias=True,

            ffn_bias=True,

        )

        self.encoder = vision_transformer.__dict__['vit_large'](**vit_kwargs)

    

    def forward(self, x):

        return self.encoder(x)


# Download model
model = neuroFM_HE20x.from_pretrained("MountSinaiCompPath/neuroFM_HE20x")



# Set up transform

transform = transforms.Compose([

    transforms.ToTensor(),

    transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))

])



# Image

img = np.random.randint(0, 256, size=224*224*3).reshape(224,224,3).astype(np.uint8)

img = Image.fromarray(img)

img = transform(img).unsqueeze(0)



# Inference

with torch.no_grad():
    h = model(img)

```