--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-stationary-update results: [] --- # bert-base-uncased-finetuned-stationary-update This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8082 - Accuracy: 0.7967 - F1: 0.7872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5673 | 1.0 | 38 | 0.5049 | 0.7667 | 0.7453 | | 0.4018 | 2.0 | 76 | 0.4605 | 0.79 | 0.7853 | | 0.3074 | 3.0 | 114 | 0.4991 | 0.7967 | 0.7941 | | 0.2065 | 4.0 | 152 | 0.5517 | 0.7967 | 0.7914 | | 0.1347 | 5.0 | 190 | 0.7082 | 0.7833 | 0.7655 | | 0.1008 | 6.0 | 228 | 0.7469 | 0.7967 | 0.7811 | | 0.0799 | 7.0 | 266 | 0.7609 | 0.7933 | 0.7823 | | 0.0558 | 8.0 | 304 | 0.8108 | 0.7967 | 0.7853 | | 0.0526 | 9.0 | 342 | 0.7988 | 0.79 | 0.7821 | | 0.0426 | 10.0 | 380 | 0.8082 | 0.7967 | 0.7872 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0