--- base_model: meta-llama/Llama-3.2-1B-Instruct datasets: - whynlp/gsm8k-aug library_name: transformers license: llama3.2 tags: [] pipeline_tag: text-generation --- # Learning When to Stop: Adaptive Latent Reasoning via Reinforcement Learning This repository contains the model presented in the paper [Learning When to Stop: Adaptive Latent Reasoning via Reinforcement Learning](https://huggingface.co/papers/2511.21581). Latent reasoning represents a new approach in Transformer language models, aiming to compress reasoning lengths. This model uses a post-SFT reinforcement-learning methodology to optimize latent reasoning length, minimizing it while maintaining accuracy. Code: [https://github.com/apning/adaptive-latent-reasoning](https://github.com/apning/adaptive-latent-reasoning) ## Sample Usage You can load these models using the `automodelforcausallm_from_pretrained_latent` function from `src.model_creation`. ```python from transformers import AutoTokenizer from src.model_creation import automodelforcausallm_from_pretrained_latent repo_id = "Lapisbird/Llama-adaLR-model-latent-6" model = automodelforcausallm_from_pretrained_latent(repo_id) tokenizer = AutoTokenizer.from_pretrained(repo_id) ```