--- language: en license: mit tags: - regression - linear-regression - readiness - entrepreneurship - sklearn model-index: - name: Entrepreneurial Readiness Linear Regression Model results: [] --- # Entrepreneurial Readiness Linear Regression Model This is a **linear regression model** trained to predict entrepreneurial readiness scores (from 0 to 10) based on financial, personal, and psychological factors like: - Savings, income, expenses - Risk level, confidence, sales skills - Age, number of dependents - Difficulty of business idea ## ๐Ÿงช Model Details - **Algorithm**: Linear Regression - **Library**: scikit-learn - **Input**: 11 numerical features - **Output**: Readiness score (0โ€“10) - **Evaluation**: - Rยฒ Score: 0.95 - MSE: 0.59 ## ๐Ÿ—‚๏ธ Files - `readiness_model_v2.pkl` โ€“ Trained regression model - `readiness_scaler_v2.pkl` โ€“ StandardScaler used during training ## ๐Ÿš€ Usage Example Use this example to load the model and make predictions: import joblib import pandas as pd model = joblib.load("readiness_model_v2.pkl") scaler = joblib.load("readiness_scaler_v2.pkl") input_data = pd.DataFrame([{ "savings_amount": 10000, "monthly_income": 3000, "monthly_expenses": 2000, "monthly_entertainment": 300, "sales_skills": 6, "risk_level": 5, "age": 22, "dependents": 0, "assets": 2000, "confidence": 7, "difficulty_of_business_idea": 6 }]) scaled_input = scaler.transform(input_data) prediction = model.predict(scaled_input) print(f"Predicted Readiness: {prediction[0]:.2f}")