--- language: en library_name: transformers pipeline_tag: image-classification tags: - vision - cervical-cancer - diagnosis license: apache-2.0 --- # 🩺 MedSigLip Diagnosis Model This repository contains **MedSigLip**, a deep learning model for cervical cancer image diagnosis. It takes colposcopy images as input and predicts the most likely stage/class of the condition. --- ## 📊 Model Details - **Task:** Image Classification - **Domain:** Healthcare – Cervical Cancer Diagnosis - **Framework:** Hugging Face Transformers / PyTorch - **Author:** Khanyi Tapiwa Magagula (AI Eswatini) --- ## 🚀 Inference API Once the **Inference API** is enabled, you can run predictions without any setup. Example: ```python from huggingface_hub import InferenceClient # Replace with your repo name client = InferenceClient("KhanyiTapiwa00/medsiglip-diagnosis") # Run image classification result = client.image_classification("1_10.jpg") print(result)