--- language: - en metrics: - accuracy - f1 - precision - recall base_model: - distilbert/distilbert-base-uncased-finetuned-sst-2-english pipeline_tag: text-classification tags: - fake - real - news library_name: transformers --- # DistilBERT Fake News Classifier ## Model Description This DistilBERT-based model achieves **97.18% accuracy** in classifying news articles as real or fake, with balanced precision (97.17%) and recall (97.30%). ## Training Performance | Epoch | Training Loss | Validation Loss | Accuracy | F1 Score | |-------|---------------|-----------------|----------|----------| | 1 | - | 0.1115 | 96.08% | 96.09% | | 2 | 0.2026 | 0.1077 | 97.25% | 97.28% | | 3 | 0.0647 | 0.1119 | 97.45% | 97.50% | ## Final Test Results | Metric | Score | |------------|--------| | Accuracy | 97.18% | | F1 Score | 97.23% | | Precision | 97.17% | | Recall | 97.30% | ## Usage ```python from transformers import pipeline classifier = pipeline("text-classification", model="KenLumod/ML-Project-DistilBERT-Fake-and-Real-Classifier") result = classifier("Scientists confirm climate change accelerating beyond previous estimates") # Output: {'label': 'REAL', 'score': 0.982}