Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,344 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
---
|
| 4 |
+
# Evaluation Report for yolov9e_bb_detect_model
|
| 5 |
+
|
| 6 |
+
**Tasks:** Single-class Object Detection, Feature extraction
|
| 7 |
+
|
| 8 |
+
## Evaluation Notes
|
| 9 |
+
|
| 10 |
+
This model does not identify individual species but detects a single category of object.
|
| 11 |
+
|
| 12 |
+
The evaluation was performed on a single-class basis using the text prompt: **'bark_beetle'**.
|
| 13 |
+
|
| 14 |
+
### Mantel Correlation Explanation
|
| 15 |
+
|
| 16 |
+
The Mantel R statistic is calculated by comparing the distances between clustering centroids of different species to their phylogenetic distances. This helps determine if the model's learned feature representations correlate with the evolutionary relationships between species.
|
| 17 |
+
|
| 18 |
+
## Object Classification Performance
|
| 19 |
+
|
| 20 |
+
**mAP@[.5:.95]:** 0.945
|
| 21 |
+
|
| 22 |
+
### mAP per IoU Threshold
|
| 23 |
+
|
| 24 |
+
| IoU Threshold | mAP |
|
| 25 |
+
|:----------------|---------:|
|
| 26 |
+
| [email protected] | 0.985164 |
|
| 27 |
+
| [email protected] | 0.984198 |
|
| 28 |
+
| [email protected] | 0.983082 |
|
| 29 |
+
| [email protected] | 0.982256 |
|
| 30 |
+
| [email protected] | 0.981038 |
|
| 31 |
+
| [email protected] | 0.977971 |
|
| 32 |
+
| [email protected] | 0.973752 |
|
| 33 |
+
| [email protected] | 0.965713 |
|
| 34 |
+
| [email protected] | 0.951162 |
|
| 35 |
+
| [email protected] | 0.670233 |
|
| 36 |
+
|
| 37 |
+
### Average Precision per Class (at last IoU threshold)
|
| 38 |
+
|
| 39 |
+
| Class | AP |
|
| 40 |
+
|:------------|---------:|
|
| 41 |
+
| bark_beetle | 0.670233 |
|
| 42 |
+
|
| 43 |
+
### Classification Metrics per IoU Threshold
|
| 44 |
+
|
| 45 |
+
#### IoU Threshold: iou_0.50
|
| 46 |
+
|
| 47 |
+
- **Accuracy:** 0.988
|
| 48 |
+
- **Balanced Accuracy:** 0.988
|
| 49 |
+
- **Macro Precision:** 1.000
|
| 50 |
+
- **Macro Recall:** 0.988
|
| 51 |
+
- **Macro F1 Score:** 0.994
|
| 52 |
+
- **Cohen's Kappa:** 0.000
|
| 53 |
+
- **Matthews Corrcoef:** 0.000
|
| 54 |
+
|
| 55 |
+
##### Confusion Matrix
|
| 56 |
+
|
| 57 |
+
```
|
| 58 |
+
Predicted Label 0
|
| 59 |
+
True Label
|
| 60 |
+
0 16289
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
##### Classification Report
|
| 64 |
+
|
| 65 |
+
```
|
| 66 |
+
precision recall f1-score support
|
| 67 |
+
0 1.0 0.98841 0.994171 16480.0
|
| 68 |
+
micro avg 1.0 0.98841 0.994171 16480.0
|
| 69 |
+
macro avg 1.0 0.98841 0.994171 16480.0
|
| 70 |
+
weighted avg 1.0 0.98841 0.994171 16480.0
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
#### IoU Threshold: iou_0.55
|
| 74 |
+
|
| 75 |
+
- **Accuracy:** 0.987
|
| 76 |
+
- **Balanced Accuracy:** 0.987
|
| 77 |
+
- **Macro Precision:** 1.000
|
| 78 |
+
- **Macro Recall:** 0.987
|
| 79 |
+
- **Macro F1 Score:** 0.994
|
| 80 |
+
- **Cohen's Kappa:** 0.000
|
| 81 |
+
- **Matthews Corrcoef:** 0.000
|
| 82 |
+
|
| 83 |
+
##### Confusion Matrix
|
| 84 |
+
|
| 85 |
+
```
|
| 86 |
+
Predicted Label 0
|
| 87 |
+
True Label
|
| 88 |
+
0 16269
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
##### Classification Report
|
| 92 |
+
|
| 93 |
+
```
|
| 94 |
+
precision recall f1-score support
|
| 95 |
+
0 1.0 0.987197 0.993557 16480.0
|
| 96 |
+
micro avg 1.0 0.987197 0.993557 16480.0
|
| 97 |
+
macro avg 1.0 0.987197 0.993557 16480.0
|
| 98 |
+
weighted avg 1.0 0.987197 0.993557 16480.0
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
#### IoU Threshold: iou_0.60
|
| 102 |
+
|
| 103 |
+
- **Accuracy:** 0.986
|
| 104 |
+
- **Balanced Accuracy:** 0.986
|
| 105 |
+
- **Macro Precision:** 1.000
|
| 106 |
+
- **Macro Recall:** 0.986
|
| 107 |
+
- **Macro F1 Score:** 0.993
|
| 108 |
+
- **Cohen's Kappa:** 0.000
|
| 109 |
+
- **Matthews Corrcoef:** 0.000
|
| 110 |
+
|
| 111 |
+
##### Confusion Matrix
|
| 112 |
+
|
| 113 |
+
```
|
| 114 |
+
Predicted Label 0
|
| 115 |
+
True Label
|
| 116 |
+
0 16242
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
##### Classification Report
|
| 120 |
+
|
| 121 |
+
```
|
| 122 |
+
precision recall f1-score support
|
| 123 |
+
0 1.0 0.985558 0.992727 16480.0
|
| 124 |
+
micro avg 1.0 0.985558 0.992727 16480.0
|
| 125 |
+
macro avg 1.0 0.985558 0.992727 16480.0
|
| 126 |
+
weighted avg 1.0 0.985558 0.992727 16480.0
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
#### IoU Threshold: iou_0.65
|
| 130 |
+
|
| 131 |
+
- **Accuracy:** 0.984
|
| 132 |
+
- **Balanced Accuracy:** 0.984
|
| 133 |
+
- **Macro Precision:** 1.000
|
| 134 |
+
- **Macro Recall:** 0.984
|
| 135 |
+
- **Macro F1 Score:** 0.992
|
| 136 |
+
- **Cohen's Kappa:** 0.000
|
| 137 |
+
- **Matthews Corrcoef:** 0.000
|
| 138 |
+
|
| 139 |
+
##### Confusion Matrix
|
| 140 |
+
|
| 141 |
+
```
|
| 142 |
+
Predicted Label 0
|
| 143 |
+
True Label
|
| 144 |
+
0 16222
|
| 145 |
+
```
|
| 146 |
+
|
| 147 |
+
##### Classification Report
|
| 148 |
+
|
| 149 |
+
```
|
| 150 |
+
precision recall f1-score support
|
| 151 |
+
0 1.0 0.984345 0.992111 16480.0
|
| 152 |
+
micro avg 1.0 0.984345 0.992111 16480.0
|
| 153 |
+
macro avg 1.0 0.984345 0.992111 16480.0
|
| 154 |
+
weighted avg 1.0 0.984345 0.992111 16480.0
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
#### IoU Threshold: iou_0.70
|
| 158 |
+
|
| 159 |
+
- **Accuracy:** 0.983
|
| 160 |
+
- **Balanced Accuracy:** 0.983
|
| 161 |
+
- **Macro Precision:** 1.000
|
| 162 |
+
- **Macro Recall:** 0.983
|
| 163 |
+
- **Macro F1 Score:** 0.991
|
| 164 |
+
- **Cohen's Kappa:** 0.000
|
| 165 |
+
- **Matthews Corrcoef:** 0.000
|
| 166 |
+
|
| 167 |
+
##### Confusion Matrix
|
| 168 |
+
|
| 169 |
+
```
|
| 170 |
+
Predicted Label 0
|
| 171 |
+
True Label
|
| 172 |
+
0 16201
|
| 173 |
+
```
|
| 174 |
+
|
| 175 |
+
##### Classification Report
|
| 176 |
+
|
| 177 |
+
```
|
| 178 |
+
precision recall f1-score support
|
| 179 |
+
0 1.0 0.98307 0.991463 16480.0
|
| 180 |
+
micro avg 1.0 0.98307 0.991463 16480.0
|
| 181 |
+
macro avg 1.0 0.98307 0.991463 16480.0
|
| 182 |
+
weighted avg 1.0 0.98307 0.991463 16480.0
|
| 183 |
+
```
|
| 184 |
+
|
| 185 |
+
#### IoU Threshold: iou_0.75
|
| 186 |
+
|
| 187 |
+
- **Accuracy:** 0.980
|
| 188 |
+
- **Balanced Accuracy:** 0.980
|
| 189 |
+
- **Macro Precision:** 1.000
|
| 190 |
+
- **Macro Recall:** 0.980
|
| 191 |
+
- **Macro F1 Score:** 0.990
|
| 192 |
+
- **Cohen's Kappa:** 0.000
|
| 193 |
+
- **Matthews Corrcoef:** 0.000
|
| 194 |
+
|
| 195 |
+
##### Confusion Matrix
|
| 196 |
+
|
| 197 |
+
```
|
| 198 |
+
Predicted Label 0
|
| 199 |
+
True Label
|
| 200 |
+
0 16154
|
| 201 |
+
```
|
| 202 |
+
|
| 203 |
+
##### Classification Report
|
| 204 |
+
|
| 205 |
+
```
|
| 206 |
+
precision recall f1-score support
|
| 207 |
+
0 1.0 0.980218 0.99001 16480.0
|
| 208 |
+
micro avg 1.0 0.980218 0.99001 16480.0
|
| 209 |
+
macro avg 1.0 0.980218 0.99001 16480.0
|
| 210 |
+
weighted avg 1.0 0.980218 0.99001 16480.0
|
| 211 |
+
```
|
| 212 |
+
|
| 213 |
+
#### IoU Threshold: iou_0.80
|
| 214 |
+
|
| 215 |
+
- **Accuracy:** 0.977
|
| 216 |
+
- **Balanced Accuracy:** 0.977
|
| 217 |
+
- **Macro Precision:** 1.000
|
| 218 |
+
- **Macro Recall:** 0.977
|
| 219 |
+
- **Macro F1 Score:** 0.988
|
| 220 |
+
- **Cohen's Kappa:** 0.000
|
| 221 |
+
- **Matthews Corrcoef:** 0.000
|
| 222 |
+
|
| 223 |
+
##### Confusion Matrix
|
| 224 |
+
|
| 225 |
+
```
|
| 226 |
+
Predicted Label 0
|
| 227 |
+
True Label
|
| 228 |
+
0 16093
|
| 229 |
+
```
|
| 230 |
+
|
| 231 |
+
##### Classification Report
|
| 232 |
+
|
| 233 |
+
```
|
| 234 |
+
precision recall f1-score support
|
| 235 |
+
0 1.0 0.976517 0.988119 16480.0
|
| 236 |
+
micro avg 1.0 0.976517 0.988119 16480.0
|
| 237 |
+
macro avg 1.0 0.976517 0.988119 16480.0
|
| 238 |
+
weighted avg 1.0 0.976517 0.988119 16480.0
|
| 239 |
+
```
|
| 240 |
+
|
| 241 |
+
#### IoU Threshold: iou_0.85
|
| 242 |
+
|
| 243 |
+
- **Accuracy:** 0.969
|
| 244 |
+
- **Balanced Accuracy:** 0.969
|
| 245 |
+
- **Macro Precision:** 1.000
|
| 246 |
+
- **Macro Recall:** 0.969
|
| 247 |
+
- **Macro F1 Score:** 0.985
|
| 248 |
+
- **Cohen's Kappa:** 0.000
|
| 249 |
+
- **Matthews Corrcoef:** 0.000
|
| 250 |
+
|
| 251 |
+
##### Confusion Matrix
|
| 252 |
+
|
| 253 |
+
```
|
| 254 |
+
Predicted Label 0
|
| 255 |
+
True Label
|
| 256 |
+
0 15977
|
| 257 |
+
```
|
| 258 |
+
|
| 259 |
+
##### Classification Report
|
| 260 |
+
|
| 261 |
+
```
|
| 262 |
+
precision recall f1-score support
|
| 263 |
+
0 1.0 0.969478 0.984503 16480.0
|
| 264 |
+
micro avg 1.0 0.969478 0.984503 16480.0
|
| 265 |
+
macro avg 1.0 0.969478 0.984503 16480.0
|
| 266 |
+
weighted avg 1.0 0.969478 0.984503 16480.0
|
| 267 |
+
```
|
| 268 |
+
|
| 269 |
+
#### IoU Threshold: iou_0.90
|
| 270 |
+
|
| 271 |
+
- **Accuracy:** 0.957
|
| 272 |
+
- **Balanced Accuracy:** 0.957
|
| 273 |
+
- **Macro Precision:** 1.000
|
| 274 |
+
- **Macro Recall:** 0.957
|
| 275 |
+
- **Macro F1 Score:** 0.978
|
| 276 |
+
- **Cohen's Kappa:** 0.000
|
| 277 |
+
- **Matthews Corrcoef:** 0.000
|
| 278 |
+
|
| 279 |
+
##### Confusion Matrix
|
| 280 |
+
|
| 281 |
+
```
|
| 282 |
+
Predicted Label 0
|
| 283 |
+
True Label
|
| 284 |
+
0 15765
|
| 285 |
+
```
|
| 286 |
+
|
| 287 |
+
##### Classification Report
|
| 288 |
+
|
| 289 |
+
```
|
| 290 |
+
precision recall f1-score support
|
| 291 |
+
0 1.0 0.956614 0.977826 16480.0
|
| 292 |
+
micro avg 1.0 0.956614 0.977826 16480.0
|
| 293 |
+
macro avg 1.0 0.956614 0.977826 16480.0
|
| 294 |
+
weighted avg 1.0 0.956614 0.977826 16480.0
|
| 295 |
+
```
|
| 296 |
+
|
| 297 |
+
#### IoU Threshold: iou_0.95
|
| 298 |
+
|
| 299 |
+
- **Accuracy:** 0.743
|
| 300 |
+
- **Balanced Accuracy:** 0.743
|
| 301 |
+
- **Macro Precision:** 1.000
|
| 302 |
+
- **Macro Recall:** 0.743
|
| 303 |
+
- **Macro F1 Score:** 0.853
|
| 304 |
+
- **Cohen's Kappa:** 0.000
|
| 305 |
+
- **Matthews Corrcoef:** 0.000
|
| 306 |
+
|
| 307 |
+
##### Confusion Matrix
|
| 308 |
+
|
| 309 |
+
```
|
| 310 |
+
Predicted Label 0
|
| 311 |
+
True Label
|
| 312 |
+
0 12252
|
| 313 |
+
```
|
| 314 |
+
|
| 315 |
+
##### Classification Report
|
| 316 |
+
|
| 317 |
+
```
|
| 318 |
+
precision recall f1-score support
|
| 319 |
+
0 1.0 0.743447 0.852847 16480.0
|
| 320 |
+
micro avg 1.0 0.743447 0.852847 16480.0
|
| 321 |
+
macro avg 1.0 0.743447 0.852847 16480.0
|
| 322 |
+
weighted avg 1.0 0.743447 0.852847 16480.0
|
| 323 |
+
```
|
| 324 |
+
|
| 325 |
+
## Embedding Quality
|
| 326 |
+
|
| 327 |
+
### Internal Cluster Validation
|
| 328 |
+
|
| 329 |
+
| Silhouette_Score | Davies-Bouldin_Index | Calinski-Harabasz_Index |
|
| 330 |
+
|-------------------:|-----------------------:|--------------------------:|
|
| 331 |
+
| 0.646403 | 0.406169 | 53572 |
|
| 332 |
+
|
| 333 |
+
### External Cluster Validation
|
| 334 |
+
|
| 335 |
+
| ARI | NMI | Cluster_Purity |
|
| 336 |
+
|-----------:|----------:|-----------------:|
|
| 337 |
+
| 0.00297115 | 0.0383566 | 0.0771425 |
|
| 338 |
+
|
| 339 |
+
### Mantel Correlation
|
| 340 |
+
|
| 341 |
+
| r | p_value | n_items |
|
| 342 |
+
|-----------:|----------:|----------:|
|
| 343 |
+
| -0.0637179 | 0.66 | 32 |
|
| 344 |
+
|