ChristopherMarais commited on
Commit
5078dd1
·
verified ·
1 Parent(s): 833774e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -322
README.md CHANGED
@@ -1,344 +1,66 @@
1
  ---
2
  license: mit
3
  ---
4
- # Evaluation Report for yolov9e_bb_detect_model
5
 
6
- **Tasks:** Single-class Object Detection, Feature extraction
 
 
 
7
 
8
- ## Evaluation Notes
9
-
10
- This model does not identify individual species but detects a single category of object.
11
-
12
- The evaluation was performed on a single-class basis using the text prompt: **'bark_beetle'**.
13
-
14
- ### Mantel Correlation Explanation
15
-
16
- The Mantel R statistic is calculated by comparing the distances between clustering centroids of different species to their phylogenetic distances. This helps determine if the model's learned feature representations correlate with the evolutionary relationships between species.
17
-
18
- ## Object Classification Performance
19
-
20
- **mAP@[.5:.95]:** 0.945
21
-
22
- ### mAP per IoU Threshold
23
-
24
- | IoU Threshold | mAP |
25
- |:----------------|---------:|
26
- | [email protected] | 0.985164 |
27
- | [email protected] | 0.984198 |
28
- | [email protected] | 0.983082 |
29
- | [email protected] | 0.982256 |
30
- | [email protected] | 0.981038 |
31
- | [email protected] | 0.977971 |
32
- | [email protected] | 0.973752 |
33
- | [email protected] | 0.965713 |
34
- | [email protected] | 0.951162 |
35
- | [email protected] | 0.670233 |
36
-
37
- ### Average Precision per Class (at last IoU threshold)
38
-
39
- | Class | AP |
40
- |:------------|---------:|
41
- | bark_beetle | 0.670233 |
42
-
43
- ### Classification Metrics per IoU Threshold
44
-
45
- #### IoU Threshold: iou_0.50
46
-
47
- - **Accuracy:** 0.988
48
- - **Balanced Accuracy:** 0.988
49
- - **Macro Precision:** 1.000
50
- - **Macro Recall:** 0.988
51
- - **Macro F1 Score:** 0.994
52
- - **Cohen's Kappa:** 0.000
53
- - **Matthews Corrcoef:** 0.000
54
-
55
- ##### Confusion Matrix
56
-
57
- ```
58
- Predicted Label 0
59
- True Label
60
- 0 16289
61
- ```
62
-
63
- ##### Classification Report
64
-
65
- ```
66
- precision recall f1-score support
67
- 0 1.0 0.98841 0.994171 16480.0
68
- micro avg 1.0 0.98841 0.994171 16480.0
69
- macro avg 1.0 0.98841 0.994171 16480.0
70
- weighted avg 1.0 0.98841 0.994171 16480.0
71
- ```
72
-
73
- #### IoU Threshold: iou_0.55
74
-
75
- - **Accuracy:** 0.987
76
- - **Balanced Accuracy:** 0.987
77
- - **Macro Precision:** 1.000
78
- - **Macro Recall:** 0.987
79
- - **Macro F1 Score:** 0.994
80
- - **Cohen's Kappa:** 0.000
81
- - **Matthews Corrcoef:** 0.000
82
-
83
- ##### Confusion Matrix
84
-
85
- ```
86
- Predicted Label 0
87
- True Label
88
- 0 16269
89
- ```
90
-
91
- ##### Classification Report
92
-
93
- ```
94
- precision recall f1-score support
95
- 0 1.0 0.987197 0.993557 16480.0
96
- micro avg 1.0 0.987197 0.993557 16480.0
97
- macro avg 1.0 0.987197 0.993557 16480.0
98
- weighted avg 1.0 0.987197 0.993557 16480.0
99
- ```
100
-
101
- #### IoU Threshold: iou_0.60
102
-
103
- - **Accuracy:** 0.986
104
- - **Balanced Accuracy:** 0.986
105
- - **Macro Precision:** 1.000
106
- - **Macro Recall:** 0.986
107
- - **Macro F1 Score:** 0.993
108
- - **Cohen's Kappa:** 0.000
109
- - **Matthews Corrcoef:** 0.000
110
-
111
- ##### Confusion Matrix
112
-
113
- ```
114
- Predicted Label 0
115
- True Label
116
- 0 16242
117
- ```
118
-
119
- ##### Classification Report
120
-
121
- ```
122
- precision recall f1-score support
123
- 0 1.0 0.985558 0.992727 16480.0
124
- micro avg 1.0 0.985558 0.992727 16480.0
125
- macro avg 1.0 0.985558 0.992727 16480.0
126
- weighted avg 1.0 0.985558 0.992727 16480.0
127
- ```
128
-
129
- #### IoU Threshold: iou_0.65
130
-
131
- - **Accuracy:** 0.984
132
- - **Balanced Accuracy:** 0.984
133
- - **Macro Precision:** 1.000
134
- - **Macro Recall:** 0.984
135
- - **Macro F1 Score:** 0.992
136
- - **Cohen's Kappa:** 0.000
137
- - **Matthews Corrcoef:** 0.000
138
-
139
- ##### Confusion Matrix
140
-
141
- ```
142
- Predicted Label 0
143
- True Label
144
- 0 16222
145
- ```
146
-
147
- ##### Classification Report
148
-
149
- ```
150
- precision recall f1-score support
151
- 0 1.0 0.984345 0.992111 16480.0
152
- micro avg 1.0 0.984345 0.992111 16480.0
153
- macro avg 1.0 0.984345 0.992111 16480.0
154
- weighted avg 1.0 0.984345 0.992111 16480.0
155
- ```
156
-
157
- #### IoU Threshold: iou_0.70
158
-
159
- - **Accuracy:** 0.983
160
- - **Balanced Accuracy:** 0.983
161
- - **Macro Precision:** 1.000
162
- - **Macro Recall:** 0.983
163
- - **Macro F1 Score:** 0.991
164
- - **Cohen's Kappa:** 0.000
165
- - **Matthews Corrcoef:** 0.000
166
-
167
- ##### Confusion Matrix
168
-
169
- ```
170
- Predicted Label 0
171
- True Label
172
- 0 16201
173
- ```
174
-
175
- ##### Classification Report
176
-
177
- ```
178
- precision recall f1-score support
179
- 0 1.0 0.98307 0.991463 16480.0
180
- micro avg 1.0 0.98307 0.991463 16480.0
181
- macro avg 1.0 0.98307 0.991463 16480.0
182
- weighted avg 1.0 0.98307 0.991463 16480.0
183
- ```
184
-
185
- #### IoU Threshold: iou_0.75
186
-
187
- - **Accuracy:** 0.980
188
- - **Balanced Accuracy:** 0.980
189
- - **Macro Precision:** 1.000
190
- - **Macro Recall:** 0.980
191
- - **Macro F1 Score:** 0.990
192
- - **Cohen's Kappa:** 0.000
193
- - **Matthews Corrcoef:** 0.000
194
-
195
- ##### Confusion Matrix
196
-
197
- ```
198
- Predicted Label 0
199
- True Label
200
- 0 16154
201
- ```
202
-
203
- ##### Classification Report
204
-
205
- ```
206
- precision recall f1-score support
207
- 0 1.0 0.980218 0.99001 16480.0
208
- micro avg 1.0 0.980218 0.99001 16480.0
209
- macro avg 1.0 0.980218 0.99001 16480.0
210
- weighted avg 1.0 0.980218 0.99001 16480.0
211
- ```
212
-
213
- #### IoU Threshold: iou_0.80
214
-
215
- - **Accuracy:** 0.977
216
- - **Balanced Accuracy:** 0.977
217
- - **Macro Precision:** 1.000
218
- - **Macro Recall:** 0.977
219
- - **Macro F1 Score:** 0.988
220
- - **Cohen's Kappa:** 0.000
221
- - **Matthews Corrcoef:** 0.000
222
-
223
- ##### Confusion Matrix
224
-
225
- ```
226
- Predicted Label 0
227
- True Label
228
- 0 16093
229
- ```
230
-
231
- ##### Classification Report
232
-
233
- ```
234
- precision recall f1-score support
235
- 0 1.0 0.976517 0.988119 16480.0
236
- micro avg 1.0 0.976517 0.988119 16480.0
237
- macro avg 1.0 0.976517 0.988119 16480.0
238
- weighted avg 1.0 0.976517 0.988119 16480.0
239
- ```
240
-
241
- #### IoU Threshold: iou_0.85
242
-
243
- - **Accuracy:** 0.969
244
- - **Balanced Accuracy:** 0.969
245
- - **Macro Precision:** 1.000
246
- - **Macro Recall:** 0.969
247
- - **Macro F1 Score:** 0.985
248
- - **Cohen's Kappa:** 0.000
249
- - **Matthews Corrcoef:** 0.000
250
-
251
- ##### Confusion Matrix
252
-
253
- ```
254
- Predicted Label 0
255
- True Label
256
- 0 15977
257
- ```
258
-
259
- ##### Classification Report
260
-
261
- ```
262
- precision recall f1-score support
263
- 0 1.0 0.969478 0.984503 16480.0
264
- micro avg 1.0 0.969478 0.984503 16480.0
265
- macro avg 1.0 0.969478 0.984503 16480.0
266
- weighted avg 1.0 0.969478 0.984503 16480.0
267
- ```
268
-
269
- #### IoU Threshold: iou_0.90
270
-
271
- - **Accuracy:** 0.957
272
- - **Balanced Accuracy:** 0.957
273
- - **Macro Precision:** 1.000
274
- - **Macro Recall:** 0.957
275
- - **Macro F1 Score:** 0.978
276
- - **Cohen's Kappa:** 0.000
277
- - **Matthews Corrcoef:** 0.000
278
-
279
- ##### Confusion Matrix
280
 
281
- ```
282
- Predicted Label 0
283
- True Label
284
- 0 15765
285
- ```
286
 
287
- ##### Classification Report
288
 
289
- ```
290
- precision recall f1-score support
291
- 0 1.0 0.956614 0.977826 16480.0
292
- micro avg 1.0 0.956614 0.977826 16480.0
293
- macro avg 1.0 0.956614 0.977826 16480.0
294
- weighted avg 1.0 0.956614 0.977826 16480.0
295
- ```
296
 
297
- #### IoU Threshold: iou_0.95
298
 
299
- - **Accuracy:** 0.743
300
- - **Balanced Accuracy:** 0.743
301
- - **Macro Precision:** 1.000
302
- - **Macro Recall:** 0.743
303
- - **Macro F1 Score:** 0.853
304
- - **Cohen's Kappa:** 0.000
305
- - **Matthews Corrcoef:** 0.000
306
 
307
- ##### Confusion Matrix
 
308
 
309
- ```
310
- Predicted Label 0
311
- True Label
312
- 0 12252
313
- ```
314
 
315
- ##### Classification Report
316
 
317
- ```
318
- precision recall f1-score support
319
- 0 1.0 0.743447 0.852847 16480.0
320
- micro avg 1.0 0.743447 0.852847 16480.0
321
- macro avg 1.0 0.743447 0.852847 16480.0
322
- weighted avg 1.0 0.743447 0.852847 16480.0
323
- ```
324
 
325
- ## Embedding Quality
 
326
 
327
- ### Internal Cluster Validation
 
 
 
 
328
 
329
- | Silhouette_Score | Davies-Bouldin_Index | Calinski-Harabasz_Index |
330
- |-------------------:|-----------------------:|--------------------------:|
331
- | 0.646403 | 0.406169 | 53572 |
332
 
333
- ### External Cluster Validation
 
 
 
 
334
 
335
- | ARI | NMI | Cluster_Purity |
336
- |-----------:|----------:|-----------------:|
337
- | 0.00297115 | 0.0383566 | 0.0771425 |
338
 
339
- ### Mantel Correlation
 
340
 
341
- | r | p_value | n_items |
342
- |-----------:|----------:|----------:|
343
- | -0.0637179 | 0.66 | 32 |
344
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+ # Model Card: yolov9e_bb_detect_model
5
 
6
+ ## Model Details
7
+ - **Model Name:** `yolov9e_bb_detect_model`
8
+ - **Model Type:** Single-Class Object Detection and Feature Extractor
9
+ - **Description:** This model is designed to detect the presence of bark beetles in images. It identifies and places a bounding box around the target but does not classify different species of bark beetles. It operates under the single class label: **'bark_beetle'**.
10
 
11
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
+ ## Evaluation Datasets
 
 
 
 
14
 
15
+ To understand the model's capabilities, its performance was tested on two different types of datasets:
16
 
17
+ - **In-Distribution (ID):** This dataset contains images that are **similar to the data the model was trained on**. Performance on this dataset shows how well the model performs on familiar types of images.
18
+ - **Out-of-Distribution (OOD):** This dataset contains images that are **intentionally different species from the training data**.
 
 
 
 
 
19
 
20
+ ---
21
 
22
+ ## Performance
 
 
 
 
 
 
23
 
24
+ ### Object Detection
25
+ The model's ability to correctly identify and locate bark beetles is measured by its **mean Average Precision (mAP)**. This metric evaluates both the accuracy of the bounding box placement and the classification confidence. The score is averaged over multiple Intersection over Union (IoU) thresholds, from 50% overlap (`0.50`) to 95% overlap (`0.95`), providing a comprehensive view of prediction accuracy. A higher mAP score indicates better performance.
26
 
27
+ | Dataset | mAP (0.50 : 0.95) | Notes |
28
+ | :--- | :--- | :--- |
29
+ | **In-Distribution (ID)** | 🟩 0.9609 | Shows outstanding detection accuracy on images similar to its training data. |
30
+ | **Out-of-Distribution (OOD)**| 🟦 0.9447 | Maintains high accuracy on novel species, demonstrating strong generalization. |
 
31
 
32
+ <br>
33
 
34
+ ### Feature Extraction (Embedding Performance)
35
+ The model can also convert images into numerical representations (embeddings). The quality of these embeddings is evaluated by how well they group similar species together in a feature space.
 
 
 
 
 
36
 
37
+ #### Internal Cluster Validation
38
+ These metrics measure the quality of the clusters formed by the embeddings without referring to ground-truth labels. They assess how dense and well-separated the clusters are.
39
 
40
+ | Metric | ID Score | OOD Score | Interpretation |
41
+ | :--- | :--- | :--- | :--- |
42
+ | **Silhouette Score** | 0.6419 | 0.3866 | Measures how similar an object is to its own cluster compared to others. **Higher is better (closer to 1)**. The ID embeddings form better-defined clusters. |
43
+ | **Davies-Bouldin Index**| 0.3203 | 0.3103 | Measures the average similarity between each cluster and its most similar one. **Lower is better (closer to 0)**. Both datasets show a low degree of cluster overlap. |
44
+ | **Calinski-Harabasz Index**| 3127.21 | 721.657 | Measures the ratio of between-cluster dispersion to within-cluster dispersion. **Higher is better**. The ID embeddings form significantly denser and more separated clusters. |
45
 
46
+ #### External Cluster Validation
47
+ These metrics evaluate the clustering performance by comparing the results to the true species labels.
 
48
 
49
+ | Metric | ID Score | OOD Score | Interpretation |
50
+ | :--- | :--- | :--- | :--- |
51
+ | **Adjusted Rand Index (ARI)** | 0.0965 | 0.0047 | Measures the similarity between true and predicted labels, correcting for chance. **Higher is better (closer to 1)**. |
52
+ | **Normalized Mutual Info (NMI)** | 0.3698 | 0.2633 | Measures the agreement between the clustering and the true labels. **Higher is better (closer to 1)**. |
53
+ | **Cluster Purity** | 0.2473 | 0.1246 | Measures the extent to which clusters contain a single class. **Higher is better (closer to 1)**. |
54
 
55
+ **Conclusion:** The external validation scores are low for both datasets, indicating the model's feature representations do **not** effectively separate different species of bark beetles on their own.
 
 
56
 
57
+ #### Phylogenetic Correlation (Mantel Test)
58
+ This test determines if the model's learned features correlate with the evolutionary relationships (phylogeny) between different bark beetle species.
59
 
60
+ - **Mantel R-statistic:** This value ranges from -1 to 1. A positive value means species that are close in the model's feature space are also close evolutionarily. A value near zero indicates no correlation.
61
+ - **p-value:** Indicates the statistical significance of the result. A p-value below 0.05 typically suggests a significant correlation.
 
62
 
63
+ | Dataset | Mantel R-statistic | p-value | Interpretation |
64
+ | :--- | :--- | :--- | :--- |
65
+ | **In-Distribution (ID)** | 0.0621 | 0.5850 | There is **no statistically significant correlation** between the model's feature embeddings and the species' evolutionary history. |
66
+ | **Out-of-Distribution (OOD)**| 0.0388 | 0.6530 | There is **no statistically significant correlation** for the OOD data either. |