Update README.md
Browse files
README.md
CHANGED
|
@@ -1,344 +1,66 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
---
|
| 4 |
-
#
|
| 5 |
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
This model does not identify individual species but detects a single category of object.
|
| 11 |
-
|
| 12 |
-
The evaluation was performed on a single-class basis using the text prompt: **'bark_beetle'**.
|
| 13 |
-
|
| 14 |
-
### Mantel Correlation Explanation
|
| 15 |
-
|
| 16 |
-
The Mantel R statistic is calculated by comparing the distances between clustering centroids of different species to their phylogenetic distances. This helps determine if the model's learned feature representations correlate with the evolutionary relationships between species.
|
| 17 |
-
|
| 18 |
-
## Object Classification Performance
|
| 19 |
-
|
| 20 |
-
**mAP@[.5:.95]:** 0.933
|
| 21 |
-
|
| 22 |
-
### mAP per IoU Threshold
|
| 23 |
-
|
| 24 |
-
| IoU Threshold | mAP |
|
| 25 |
-
|:----------------|---------:|
|
| 26 |
-
| [email protected] | 0.988415 |
|
| 27 |
-
| [email protected] | 0.987142 |
|
| 28 |
-
| [email protected] | 0.986385 |
|
| 29 |
-
| [email protected] | 0.985255 |
|
| 30 |
-
| [email protected] | 0.984068 |
|
| 31 |
-
| [email protected] | 0.981365 |
|
| 32 |
-
| [email protected] | 0.977609 |
|
| 33 |
-
| [email protected] | 0.970177 |
|
| 34 |
-
| [email protected] | 0.943694 |
|
| 35 |
-
| [email protected] | 0.521599 |
|
| 36 |
-
|
| 37 |
-
### Average Precision per Class (at last IoU threshold)
|
| 38 |
-
|
| 39 |
-
| Class | AP |
|
| 40 |
-
|:------------|---------:|
|
| 41 |
-
| bark_beetle | 0.521599 |
|
| 42 |
-
|
| 43 |
-
### Classification Metrics per IoU Threshold
|
| 44 |
-
|
| 45 |
-
#### IoU Threshold: iou_0.50
|
| 46 |
-
|
| 47 |
-
- **Accuracy:** 0.992
|
| 48 |
-
- **Balanced Accuracy:** 0.992
|
| 49 |
-
- **Macro Precision:** 1.000
|
| 50 |
-
- **Macro Recall:** 0.992
|
| 51 |
-
- **Macro F1 Score:** 0.996
|
| 52 |
-
- **Cohen's Kappa:** 0.000
|
| 53 |
-
- **Matthews Corrcoef:** 0.000
|
| 54 |
-
|
| 55 |
-
##### Confusion Matrix
|
| 56 |
-
|
| 57 |
-
```
|
| 58 |
-
Predicted Label 0
|
| 59 |
-
True Label
|
| 60 |
-
0 16340
|
| 61 |
-
```
|
| 62 |
-
|
| 63 |
-
##### Classification Report
|
| 64 |
-
|
| 65 |
-
```
|
| 66 |
-
precision recall f1-score support
|
| 67 |
-
0 1.0 0.991505 0.995734 16480.0
|
| 68 |
-
micro avg 1.0 0.991505 0.995734 16480.0
|
| 69 |
-
macro avg 1.0 0.991505 0.995734 16480.0
|
| 70 |
-
weighted avg 1.0 0.991505 0.995734 16480.0
|
| 71 |
-
```
|
| 72 |
-
|
| 73 |
-
#### IoU Threshold: iou_0.55
|
| 74 |
-
|
| 75 |
-
- **Accuracy:** 0.990
|
| 76 |
-
- **Balanced Accuracy:** 0.990
|
| 77 |
-
- **Macro Precision:** 1.000
|
| 78 |
-
- **Macro Recall:** 0.990
|
| 79 |
-
- **Macro F1 Score:** 0.995
|
| 80 |
-
- **Cohen's Kappa:** 0.000
|
| 81 |
-
- **Matthews Corrcoef:** 0.000
|
| 82 |
-
|
| 83 |
-
##### Confusion Matrix
|
| 84 |
-
|
| 85 |
-
```
|
| 86 |
-
Predicted Label 0
|
| 87 |
-
True Label
|
| 88 |
-
0 16315
|
| 89 |
-
```
|
| 90 |
-
|
| 91 |
-
##### Classification Report
|
| 92 |
-
|
| 93 |
-
```
|
| 94 |
-
precision recall f1-score support
|
| 95 |
-
0 1.0 0.989988 0.994969 16480.0
|
| 96 |
-
micro avg 1.0 0.989988 0.994969 16480.0
|
| 97 |
-
macro avg 1.0 0.989988 0.994969 16480.0
|
| 98 |
-
weighted avg 1.0 0.989988 0.994969 16480.0
|
| 99 |
-
```
|
| 100 |
-
|
| 101 |
-
#### IoU Threshold: iou_0.60
|
| 102 |
-
|
| 103 |
-
- **Accuracy:** 0.989
|
| 104 |
-
- **Balanced Accuracy:** 0.989
|
| 105 |
-
- **Macro Precision:** 1.000
|
| 106 |
-
- **Macro Recall:** 0.989
|
| 107 |
-
- **Macro F1 Score:** 0.994
|
| 108 |
-
- **Cohen's Kappa:** 0.000
|
| 109 |
-
- **Matthews Corrcoef:** 0.000
|
| 110 |
-
|
| 111 |
-
##### Confusion Matrix
|
| 112 |
-
|
| 113 |
-
```
|
| 114 |
-
Predicted Label 0
|
| 115 |
-
True Label
|
| 116 |
-
0 16294
|
| 117 |
-
```
|
| 118 |
-
|
| 119 |
-
##### Classification Report
|
| 120 |
-
|
| 121 |
-
```
|
| 122 |
-
precision recall f1-score support
|
| 123 |
-
0 1.0 0.988714 0.994325 16480.0
|
| 124 |
-
micro avg 1.0 0.988714 0.994325 16480.0
|
| 125 |
-
macro avg 1.0 0.988714 0.994325 16480.0
|
| 126 |
-
weighted avg 1.0 0.988714 0.994325 16480.0
|
| 127 |
-
```
|
| 128 |
-
|
| 129 |
-
#### IoU Threshold: iou_0.65
|
| 130 |
-
|
| 131 |
-
- **Accuracy:** 0.987
|
| 132 |
-
- **Balanced Accuracy:** 0.987
|
| 133 |
-
- **Macro Precision:** 1.000
|
| 134 |
-
- **Macro Recall:** 0.987
|
| 135 |
-
- **Macro F1 Score:** 0.994
|
| 136 |
-
- **Cohen's Kappa:** 0.000
|
| 137 |
-
- **Matthews Corrcoef:** 0.000
|
| 138 |
-
|
| 139 |
-
##### Confusion Matrix
|
| 140 |
-
|
| 141 |
-
```
|
| 142 |
-
Predicted Label 0
|
| 143 |
-
True Label
|
| 144 |
-
0 16269
|
| 145 |
-
```
|
| 146 |
-
|
| 147 |
-
##### Classification Report
|
| 148 |
-
|
| 149 |
-
```
|
| 150 |
-
precision recall f1-score support
|
| 151 |
-
0 1.0 0.987197 0.993557 16480.0
|
| 152 |
-
micro avg 1.0 0.987197 0.993557 16480.0
|
| 153 |
-
macro avg 1.0 0.987197 0.993557 16480.0
|
| 154 |
-
weighted avg 1.0 0.987197 0.993557 16480.0
|
| 155 |
-
```
|
| 156 |
-
|
| 157 |
-
#### IoU Threshold: iou_0.70
|
| 158 |
-
|
| 159 |
-
- **Accuracy:** 0.986
|
| 160 |
-
- **Balanced Accuracy:** 0.986
|
| 161 |
-
- **Macro Precision:** 1.000
|
| 162 |
-
- **Macro Recall:** 0.986
|
| 163 |
-
- **Macro F1 Score:** 0.993
|
| 164 |
-
- **Cohen's Kappa:** 0.000
|
| 165 |
-
- **Matthews Corrcoef:** 0.000
|
| 166 |
-
|
| 167 |
-
##### Confusion Matrix
|
| 168 |
-
|
| 169 |
-
```
|
| 170 |
-
Predicted Label 0
|
| 171 |
-
True Label
|
| 172 |
-
0 16251
|
| 173 |
-
```
|
| 174 |
-
|
| 175 |
-
##### Classification Report
|
| 176 |
-
|
| 177 |
-
```
|
| 178 |
-
precision recall f1-score support
|
| 179 |
-
0 1.0 0.986104 0.993004 16480.0
|
| 180 |
-
micro avg 1.0 0.986104 0.993004 16480.0
|
| 181 |
-
macro avg 1.0 0.986104 0.993004 16480.0
|
| 182 |
-
weighted avg 1.0 0.986104 0.993004 16480.0
|
| 183 |
-
```
|
| 184 |
-
|
| 185 |
-
#### IoU Threshold: iou_0.75
|
| 186 |
-
|
| 187 |
-
- **Accuracy:** 0.984
|
| 188 |
-
- **Balanced Accuracy:** 0.984
|
| 189 |
-
- **Macro Precision:** 1.000
|
| 190 |
-
- **Macro Recall:** 0.984
|
| 191 |
-
- **Macro F1 Score:** 0.992
|
| 192 |
-
- **Cohen's Kappa:** 0.000
|
| 193 |
-
- **Matthews Corrcoef:** 0.000
|
| 194 |
-
|
| 195 |
-
##### Confusion Matrix
|
| 196 |
-
|
| 197 |
-
```
|
| 198 |
-
Predicted Label 0
|
| 199 |
-
True Label
|
| 200 |
-
0 16209
|
| 201 |
-
```
|
| 202 |
-
|
| 203 |
-
##### Classification Report
|
| 204 |
-
|
| 205 |
-
```
|
| 206 |
-
precision recall f1-score support
|
| 207 |
-
0 1.0 0.983556 0.99171 16480.0
|
| 208 |
-
micro avg 1.0 0.983556 0.99171 16480.0
|
| 209 |
-
macro avg 1.0 0.983556 0.99171 16480.0
|
| 210 |
-
weighted avg 1.0 0.983556 0.99171 16480.0
|
| 211 |
-
```
|
| 212 |
-
|
| 213 |
-
#### IoU Threshold: iou_0.80
|
| 214 |
-
|
| 215 |
-
- **Accuracy:** 0.980
|
| 216 |
-
- **Balanced Accuracy:** 0.980
|
| 217 |
-
- **Macro Precision:** 1.000
|
| 218 |
-
- **Macro Recall:** 0.980
|
| 219 |
-
- **Macro F1 Score:** 0.990
|
| 220 |
-
- **Cohen's Kappa:** 0.000
|
| 221 |
-
- **Matthews Corrcoef:** 0.000
|
| 222 |
-
|
| 223 |
-
##### Confusion Matrix
|
| 224 |
-
|
| 225 |
-
```
|
| 226 |
-
Predicted Label 0
|
| 227 |
-
True Label
|
| 228 |
-
0 16153
|
| 229 |
-
```
|
| 230 |
-
|
| 231 |
-
##### Classification Report
|
| 232 |
-
|
| 233 |
-
```
|
| 234 |
-
precision recall f1-score support
|
| 235 |
-
0 1.0 0.980158 0.989979 16480.0
|
| 236 |
-
micro avg 1.0 0.980158 0.989979 16480.0
|
| 237 |
-
macro avg 1.0 0.980158 0.989979 16480.0
|
| 238 |
-
weighted avg 1.0 0.980158 0.989979 16480.0
|
| 239 |
-
```
|
| 240 |
-
|
| 241 |
-
#### IoU Threshold: iou_0.85
|
| 242 |
-
|
| 243 |
-
- **Accuracy:** 0.973
|
| 244 |
-
- **Balanced Accuracy:** 0.973
|
| 245 |
-
- **Macro Precision:** 1.000
|
| 246 |
-
- **Macro Recall:** 0.973
|
| 247 |
-
- **Macro F1 Score:** 0.987
|
| 248 |
-
- **Cohen's Kappa:** 0.000
|
| 249 |
-
- **Matthews Corrcoef:** 0.000
|
| 250 |
-
|
| 251 |
-
##### Confusion Matrix
|
| 252 |
-
|
| 253 |
-
```
|
| 254 |
-
Predicted Label 0
|
| 255 |
-
True Label
|
| 256 |
-
0 16042
|
| 257 |
-
```
|
| 258 |
-
|
| 259 |
-
##### Classification Report
|
| 260 |
-
|
| 261 |
-
```
|
| 262 |
-
precision recall f1-score support
|
| 263 |
-
0 1.0 0.973422 0.986532 16480.0
|
| 264 |
-
micro avg 1.0 0.973422 0.986532 16480.0
|
| 265 |
-
macro avg 1.0 0.973422 0.986532 16480.0
|
| 266 |
-
weighted avg 1.0 0.973422 0.986532 16480.0
|
| 267 |
-
```
|
| 268 |
-
|
| 269 |
-
#### IoU Threshold: iou_0.90
|
| 270 |
-
|
| 271 |
-
- **Accuracy:** 0.950
|
| 272 |
-
- **Balanced Accuracy:** 0.950
|
| 273 |
-
- **Macro Precision:** 1.000
|
| 274 |
-
- **Macro Recall:** 0.950
|
| 275 |
-
- **Macro F1 Score:** 0.974
|
| 276 |
-
- **Cohen's Kappa:** 0.000
|
| 277 |
-
- **Matthews Corrcoef:** 0.000
|
| 278 |
-
|
| 279 |
-
##### Confusion Matrix
|
| 280 |
|
| 281 |
-
|
| 282 |
-
Predicted Label 0
|
| 283 |
-
True Label
|
| 284 |
-
0 15648
|
| 285 |
-
```
|
| 286 |
|
| 287 |
-
|
| 288 |
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
0 1.0 0.949515 0.974104 16480.0
|
| 292 |
-
micro avg 1.0 0.949515 0.974104 16480.0
|
| 293 |
-
macro avg 1.0 0.949515 0.974104 16480.0
|
| 294 |
-
weighted avg 1.0 0.949515 0.974104 16480.0
|
| 295 |
-
```
|
| 296 |
|
| 297 |
-
|
| 298 |
|
| 299 |
-
|
| 300 |
-
- **Balanced Accuracy:** 0.619
|
| 301 |
-
- **Macro Precision:** 1.000
|
| 302 |
-
- **Macro Recall:** 0.619
|
| 303 |
-
- **Macro F1 Score:** 0.764
|
| 304 |
-
- **Cohen's Kappa:** 0.000
|
| 305 |
-
- **Matthews Corrcoef:** 0.000
|
| 306 |
|
| 307 |
-
|
|
|
|
| 308 |
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
0
|
| 313 |
-
```
|
| 314 |
|
| 315 |
-
|
| 316 |
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
0 1.0 0.618689 0.764432 16480.0
|
| 320 |
-
micro avg 1.0 0.618689 0.764432 16480.0
|
| 321 |
-
macro avg 1.0 0.618689 0.764432 16480.0
|
| 322 |
-
weighted avg 1.0 0.618689 0.764432 16480.0
|
| 323 |
-
```
|
| 324 |
|
| 325 |
-
|
|
|
|
| 326 |
|
| 327 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
| 0.659463 | 0.337135 | 44803.3 |
|
| 332 |
|
| 333 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
|
| 335 |
-
|
| 336 |
-
|-----------:|----------:|-----------------:|
|
| 337 |
-
| 0.00523866 | 0.0704749 | 0.0848908 |
|
| 338 |
|
| 339 |
-
|
|
|
|
| 340 |
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
| -0.0414017 | 0.784 | 32 |
|
| 344 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
---
|
| 4 |
+
# Model Card: yolov11x_bb_detect_model
|
| 5 |
|
| 6 |
+
## Model Details
|
| 7 |
+
- **Model Name:** `yolov11x_bb_detect_model`
|
| 8 |
+
- **Model Type:** Single-Class Object Detection and Feature Extractor
|
| 9 |
+
- **Description:** This model is designed to detect the presence of bark beetles in images. It identifies and places a bounding box around the target but does not classify different species of bark beetles. It operates under the single class label: **'bark_beetle'**.
|
| 10 |
|
| 11 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
## Evaluation Datasets
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
To understand the model's capabilities, its performance was tested on two different types of datasets:
|
| 16 |
|
| 17 |
+
- **In-Distribution (ID):** This dataset contains images that are **similar to the data the model was trained on**. Performance on this dataset shows how well the model performs on familiar types of images.
|
| 18 |
+
- **Out-of-Distribution (OOD):** This dataset contains images that are **intentionally different species from the training data**.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
---
|
| 21 |
|
| 22 |
+
## Performance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
### Object Detection
|
| 25 |
+
The model's ability to correctly identify and locate bark beetles is measured by its **mean Average Precision (mAP)**. This metric evaluates both the accuracy of the bounding box placement and the classification confidence. The score is averaged over multiple Intersection over Union (IoU) thresholds, from 50% overlap (`0.50`) to 95% overlap (`0.95`), providing a comprehensive view of prediction accuracy. A higher mAP score indicates better performance.
|
| 26 |
|
| 27 |
+
| Dataset | mAP (0.50 : 0.95) | Notes |
|
| 28 |
+
| :--- | :--- | :--- |
|
| 29 |
+
| **In-Distribution (ID)** | 🟩 0.9485 | Shows excellent detection performance on images similar to its training data. |
|
| 30 |
+
| **Out-of-Distribution (OOD)**| 🟦 0.9271 | Retains strong performance on novel species, indicating good generalization. |
|
|
|
|
| 31 |
|
| 32 |
+
<br>
|
| 33 |
|
| 34 |
+
### Feature Extraction (Embedding Performance)
|
| 35 |
+
The model can also convert images into numerical representations (embeddings). The quality of these embeddings is evaluated by how well they group similar species together in a feature space.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
#### Internal Cluster Validation
|
| 38 |
+
These metrics measure the quality of the clusters formed by the embeddings without referring to ground-truth labels. They assess how dense and well-separated the clusters are.
|
| 39 |
|
| 40 |
+
| Metric | ID Score | OOD Score | Interpretation |
|
| 41 |
+
| :--- | :--- | :--- | :--- |
|
| 42 |
+
| **Silhouette Score** | 0.6000 | 0.4412 | Measures how similar an object is to its own cluster compared to others. **Higher is better (closer to 1)**. The ID embeddings form better-defined clusters. |
|
| 43 |
+
| **Davies-Bouldin Index**| 0.3823 | 0.2859 | Measures the average similarity between each cluster and its most similar one. **Lower is better (closer to 0)**. The OOD embeddings show less overlap between clusters. |
|
| 44 |
+
| **Calinski-Harabasz Index**| 1504.67 | 824.437 | Measures the ratio of between-cluster dispersion to within-cluster dispersion. **Higher is better**. The ID embeddings form denser and more separated clusters. |
|
| 45 |
|
| 46 |
+
#### External Cluster Validation
|
| 47 |
+
These metrics evaluate the clustering performance by comparing the results to the true species labels.
|
|
|
|
| 48 |
|
| 49 |
+
| Metric | ID Score | OOD Score | Interpretation |
|
| 50 |
+
| :--- | :--- | :--- | :--- |
|
| 51 |
+
| **Adjusted Rand Index (ARI)** | 0.1131 | 0.0049 | Measures the similarity between true and predicted labels, correcting for chance. **Higher is better (closer to 1)**. |
|
| 52 |
+
| **Normalized Mutual Info (NMI)** | 0.4576 | 0.2666 | Measures the agreement between the clustering and the true labels. **Higher is better (closer to 1)**. |
|
| 53 |
+
| **Cluster Purity** | 0.3051 | 0.1249 | Measures the extent to which clusters contain a single class. **Higher is better (closer to 1)**. |
|
| 54 |
|
| 55 |
+
**Conclusion:** The external validation scores are low for both datasets, indicating the model's feature representations do **not** effectively separate different species of bark beetles on their own.
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
#### Phylogenetic Correlation (Mantel Test)
|
| 58 |
+
This test determines if the model's learned features correlate with the evolutionary relationships (phylogeny) between different bark beetle species.
|
| 59 |
|
| 60 |
+
- **Mantel R-statistic:** This value ranges from -1 to 1. A positive value means species that are close in the model's feature space are also close evolutionarily. A value near zero indicates no correlation.
|
| 61 |
+
- **p-value:** Indicates the statistical significance of the result. A p-value below 0.05 typically suggests a significant correlation.
|
|
|
|
| 62 |
|
| 63 |
+
| Dataset | Mantel R-statistic | p-value | Interpretation |
|
| 64 |
+
| :--- | :--- | :--- | :--- |
|
| 65 |
+
| **In-Distribution (ID)** | 0.0451 | 0.6860 | There is **no statistically significant correlation** between the model's feature embeddings and the species' evolutionary history. |
|
| 66 |
+
| **Out-of-Distribution (OOD)**| 0.0631 | 0.4460 | There is **no statistically significant correlation** for the OOD data either. |
|