--- base_model: castorini/afriteva_v2_base library_name: peft license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: mono_self_amh results: [] --- # mono_self_amh This model is a fine-tuned version of [castorini/afriteva_v2_base](https://huggingface.co/castorini/afriteva_v2_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0401 - Accuracy: {'accuracy': 0.21588385158087275} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:---------------------------------:| | 3.3329 | 1.1655 | 500 | 1.7980 | {'accuracy': 0.1844460412856023} | | 1.831 | 2.3310 | 1000 | 1.5109 | {'accuracy': 0.19700483407368696} | | 1.5538 | 3.4965 | 1500 | 1.3840 | {'accuracy': 0.20110399790958974} | | 1.409 | 4.6620 | 2000 | 1.2974 | {'accuracy': 0.20477854716488111} | | 1.3144 | 5.8275 | 2500 | 1.2348 | {'accuracy': 0.2073588973085968} | | 1.2412 | 6.9930 | 3000 | 1.1953 | {'accuracy': 0.2086000783903841} | | 1.1535 | 8.1585 | 3500 | 1.1696 | {'accuracy': 0.2093349882414424} | | 1.1184 | 9.3240 | 4000 | 1.1589 | {'accuracy': 0.21016788607264175} | | 1.0845 | 10.4895 | 4500 | 1.1263 | {'accuracy': 0.21158871178468774} | | 1.0656 | 11.6550 | 5000 | 1.1136 | {'accuracy': 0.21162137444473478} | | 1.0409 | 12.8205 | 5500 | 1.1089 | {'accuracy': 0.2121276456754638} | | 1.0193 | 13.9860 | 6000 | 1.1017 | {'accuracy': 0.21263391690619285} | | 0.9882 | 15.1515 | 6500 | 1.0911 | {'accuracy': 0.2130748628168278} | | 0.9713 | 16.3170 | 7000 | 1.0774 | {'accuracy': 0.21389142931800365} | | 0.9578 | 17.4825 | 7500 | 1.0679 | {'accuracy': 0.213744447347792} | | 0.9462 | 18.6480 | 8000 | 1.0619 | {'accuracy': 0.21447935719885028} | | 0.937 | 19.8135 | 8500 | 1.0629 | {'accuracy': 0.21477332113927358} | | 0.9259 | 20.9790 | 9000 | 1.0580 | {'accuracy': 0.21457734517899138} | | 0.9075 | 22.1445 | 9500 | 1.0550 | {'accuracy': 0.21505095374967337} | | 0.9032 | 23.3100 | 10000 | 1.0549 | {'accuracy': 0.21513261039979095} | | 0.894 | 24.4755 | 10500 | 1.0494 | {'accuracy': 0.21568787562059055} | | 0.8849 | 25.6410 | 11000 | 1.0435 | {'accuracy': 0.21554089365037887} | | 0.8825 | 26.8065 | 11500 | 1.0481 | {'accuracy': 0.21575320094068462} | | 0.8758 | 27.9720 | 12000 | 1.0400 | {'accuracy': 0.21568787562059055} | | 0.8672 | 29.1375 | 12500 | 1.0401 | {'accuracy': 0.21588385158087275} | ### Framework versions - PEFT 0.7.1 - Transformers 4.43.3 - Pytorch 2.4.0+cu121 - Datasets 2.15.0 - Tokenizers 0.19.1