--- language: en tags: - question-answering - squad - transformers datasets: - squad metrics: - exact_match - f1 model-index: - name: HariomSahu/distilbert-squad-qa results: - task: type: question-answering name: Question Answering dataset: name: SQuAD type: squad metrics: - type: exact_match value: N/A - type: f1 value: 85.3016055407403 --- # distilbert-base-uncased fine-tuned on SQuAD This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the SQuAD dataset. ## Training Details ### Training Hyperparameters - **Model**: distilbert-base-uncased - **Dataset**: SQuAD - **Optimizer**: adamw - **Learning Rate Scheduler**: cosine_with_restarts - **Learning Rate**: 3e-05 - **Batch Size**: 16 per device - **Total Batch Size**: 64 - **Epochs**: 5 (with early stopping) - **Weight Decay**: 0.01 - **Warmup Ratio**: 0.06 - **Max Gradient Norm**: 1.0 ### Early Stopping - **Patience**: 4 - **Metric**: f1 - **Best Epoch**: 3 ## Usage ```python from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("HariomSahu/distilbert-squad-qa") model = AutoModelForQuestionAnswering.from_pretrained("HariomSahu/distilbert-squad-qa") # Example usage question = "What is the capital of France?" context = "France is a country in Europe. Its capital city is Paris." inputs = tokenizer(question, context, return_tensors="pt") outputs = model(**inputs) # Get answer start_scores, end_scores = outputs.start_logits, outputs.end_logits start_index = start_scores.argmax() end_index = end_scores.argmax() answer = tokenizer.decode(inputs["input_ids"][0][start_index:end_index+1]) print(f"Answer: {answer}") ``` ## Evaluation Results The model achieved the following results on the evaluation set: - **Exact Match**: 76.9253 - **F1 Score**: 85.2786 ## Training Configuration Hash Config Hash: fe08f7bd This hash can be used to reproduce the exact training configuration.