--- language: en tags: - question-answering - squad - transformers datasets: - squad metrics: - exact_match - f1 model-index: - name: HariomSahu/albert-squad-qa results: - task: type: question-answering name: Question Answering dataset: name: SQuAD type: squad metrics: - type: exact_match value: N/A - type: f1 value: 89.93540108105752 --- # albert-base-v2 fine-tuned on SQuAD This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the SQuAD dataset. ## Training Details ### Training Hyperparameters - **Model**: albert-base-v2 - **Dataset**: SQuAD - **Optimizer**: adamw - **Learning Rate Scheduler**: cosine_with_restarts - **Learning Rate**: 6e-05 - **Batch Size**: 28 per device - **Total Batch Size**: 224 - **Epochs**: 6 (with early stopping) - **Weight Decay**: 0.005 - **Warmup Ratio**: 0.08 - **Max Gradient Norm**: 0.5 ### Early Stopping - **Patience**: 4 - **Metric**: f1 - **Best Epoch**: 2 ## Usage ```python from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("HariomSahu/albert-squad-qa") model = AutoModelForQuestionAnswering.from_pretrained("HariomSahu/albert-squad-qa") # Example usage question = "What is the capital of France?" context = "France is a country in Europe. Its capital city is Paris." inputs = tokenizer(question, context, return_tensors="pt") outputs = model(**inputs) # Get answer start_scores, end_scores = outputs.start_logits, outputs.end_logits start_index = start_scores.argmax() end_index = end_scores.argmax() answer = tokenizer.decode(inputs["input_ids"][0][start_index:end_index+1]) print(f"Answer: {answer}") ``` ## Evaluation Results The model achieved the following results on the evaluation set: - **Exact Match**: 80.4541 - **F1 Score**: 88.7676 ## Training Configuration Hash Config Hash: a8d23824 This hash can be used to reproduce the exact training configuration.