File size: 2,770 Bytes
c5e4dba
 
 
 
 
 
 
 
fc98f93
e45c256
fc98f93
066ae3a
c5e4dba
 
b5fba9f
 
06fc475
 
 
b9989d8
 
 
 
 
 
 
 
 
 
066ae3a
15830fa
 
350d110
 
76421cc
1b393aa
350d110
b9989d8
30f4d46
6b76032
 
 
bf44bf1
3afd8b6
bf44bf1
1e7f50b
 
 
d25c26c
df028eb
 
3afd8b6
bf44bf1
d25c26c
319ae52
6b76032
f01fd89
722ef9c
 
 
 
 
 
 
 
 
 
 
9be2e37
722ef9c
9be2e37
 
f01fd89
 
40e213d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: mit
language:
- en
tags:
- text-generation-inference
pipeline_tag: text-generation
---

![GPTUsenet2](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F64b7618e2f5a966b972e9978%2FFNEKaeJ3of0W_HQ8x3amo.jpeg%3C%2Fspan%3E)

## GPT-Usenet
An 81-million parameter LLM using GPT-2 encodings.
Trained using 10GB of USENET posts along with over 1 GB of miscellaneous BBS posts, digitized books, and text documents.
Supervised fine-tuning should be performed before use.

## Purpose of GPT-Usenet
LLMs are all currently focused on becoming larger and larger, able to do more and more. However, this just makes them jack of all trades, master of none. GPT-Usenet takes a different approach. Instead of trying to do everything perfectly, GPT-Usenet offers a digital stem cell, which can then be finetuned into a single, specialized role and run in parallel with copies of itself.

## Technical Information
|                                 |     |
|---------------------------------|----:|
|Layers                           |10|
|Heads                            |10|
|Embeddings                       |640|
|Context Window                   |1024 tokens|
|Tokenizer                        |GPT-2 BPE|


## Training Information
|                                 |     |
|---------------------------------|----:|
|Training Loss                    |2.3256|
|Validation Loss                  |2.3651|
|Device                           |Google Colab L4|
|Training Time                    |16 Hours|


## Example Syntax

|                                 |     |
|---------------------------------|----:|
|uucp:|The path of reasoning you want GPT-Usenet to use when thinking. Use lowercase words separated by exclamation points.|
|Internet:|The system calls relevant to this email|
|Path:|The path of reasoning you want GPT-Usenet to use when writing. Use lowercase words separated by exclamation points.|
|From:|The username who sent this message|
|Sender:|The group that username belongs to|
|Newsgroups:|The broad subject field of the email.|
|Subject:|The prompt|
|Message-ID:|The type of message this is.|
|Date:|Use this field to simulate urgency or moods.|
|Organization:|The system GPT-Usenet is running on.(testing... deployment... simulation)|
|Lines:|How long the message is.|
|Write the SFT response here. First, Prefix the first sentence with > to signify that it is a Reasoning sentence.||
|--|The stop tokens|

```
uucp:!field1!field2!
Internet:simulation
Path:!field1!field2!
From:user
Sender:usergroup
Newsgroups:motorskills.papercraft
Subject:Build a paper airplane
Message-ID:Command
Date:01 Jan 01 00:00:01 GMT
Organization:deployment
Lines: 1

>Provide detailed steps on building a paper airplane.

--
```

For finetuning, your data should be in the .mbox format.