--- language: en license: apache-2.0 library_name: transformers tags: - llama - vicuna - eagle - text-generation pipeline_tag: text-generation datasets: - Aeala/ShareGPT_Vicuna_unfiltered base_model: - lmsys/vicuna-13b-v1.3 --- # Eagle-Vicuna-13B-v1.3 This is a fine-tuned version of Vicuna-13B using the EAGLE method for fast inference. ## Model Details - **Base model**: [lmsys/vicuna-13b-v1.3](https://huggingface.co/lmsys/vicuna-13b-v1.3) - **Method**: EAGLE (Efficient speculative decoding) - **Training data**: ShareGPT, etc. ## 模型配置 base_model: lmsys/vicuna-13b-v1.3 eagle-model ```text Model( (embed_tokens): Embedding(32000, 4096, padding_idx=0) (layers): ModuleList( (0): LlamaDecoderLayer( (self_attn): LlamaAttention( (q_proj): Linear(in_features=4096, out_features=4096, bias=False) (k_proj): Linear(in_features=4096, out_features=4096, bias=False) (v_proj): Linear(in_features=4096, out_features=4096, bias=False) (o_proj): Linear(in_features=4096, out_features=4096, bias=False) (rotary_emb): LlamaRotaryEmbedding() ) (mlp): LlamaMLP( (gate_proj): Linear(in_features=4096, out_features=11008, bias=False) (up_proj): Linear(in_features=4096, out_features=11008, bias=False) (down_proj): Linear(in_features=11008, out_features=4096, bias=False) (act_fn): SiLU() ) (post_attention_layernorm): LlamaRMSNorm() ) ) (fc): Linear(in_features=8192, out_features=4096, bias=True) (act): SiLU() ) ``` vicuna-13B-config.json ```json { "architectures": [ "LlamaForCausalLM" ], "bos_token_id": 1, "eos_token_id": 2, "hidden_act": "silu", "hidden_size": 5120, "initializer_range": 0.02, "intermediate_size": 13824, "max_position_embeddings": 2048, "model_type": "llama", "num_attention_heads": 40, "num_hidden_layers": 1, "pad_token_id": 0, "rms_norm_eps": 1e-06, "tie_word_embeddings": false, "torch_dtype": "float16", "transformers_version": "4.28.1", "use_cache": true, "vocab_size": 32000 } ``` ## 模型训练 ### 数据生成 ```bash python -m eagle.ge_data.allocation --outdir ../data ``` ### 训练 ```bash accelerate launch -m --mixed_precision=bf16 eagle.train.main --tmpdir eagle/data/sharegpt_0_67999_mufp16 --cpdir eagle/checkpoint --configpath eagle/train/vicuna_13B_config.json ``` ### 模型上传 ```py from huggingface_hub import HfApi api = HfApi() # 只上传修改后的 README.md 文件 api.upload_file( path_or_fileobj="checkpoints/eagle-vicuna-13B/README.md", # 本地修改后的 README 路径 path_in_repo="README.md", # 仓库中的目标路径(根目录) repo_id="Gavin1104/eagle-vicuna-13b-v1.3", repo_type="model" ) ```