Galuh Sahid
commited on
Commit
·
bb13925
1
Parent(s):
d354c6f
Add code
Browse files- hybrid_clip/configuration_hybrid_clip.py +108 -0
- hybrid_clip/modeling_hybrid_clip.py +433 -0
- hybrid_clip/requirements.txt +12 -0
- hybrid_clip/run_hybrid_clip.py +976 -0
- hybrid_clip/run_hybrid_clip_backup.py +970 -0
- hybrid_clip/run_hybrid_clip_backup_2.py +971 -0
- hybrid_clip/run_training.sh +31 -0
- hybrid_clip/run_training_backup.sh +30 -0
- hybrid_clip/run_training_unfreeze.sh +31 -0
- hybrid_clip/run_training_unfreeze_2.sh +31 -0
hybrid_clip/configuration_hybrid_clip.py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
|
| 3 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 4 |
+
from transformers.utils import logging
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
logger = logging.get_logger(__name__)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class HybridCLIPConfig(PretrainedConfig):
|
| 11 |
+
r"""
|
| 12 |
+
:class:`HybridCLIPConfig` is the configuration class to store the configuration of a
|
| 13 |
+
:class:`~HybridCLIPModel`. It is used to instantiate HybridCLIPModel model according to the specified arguments,
|
| 14 |
+
defining the text model and vision model configs.
|
| 15 |
+
|
| 16 |
+
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
|
| 17 |
+
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
text_config_dict (:obj:`dict`):
|
| 21 |
+
Dictionary of configuration options that defines text model config.
|
| 22 |
+
vision_config_dict (:obj:`dict`):
|
| 23 |
+
Dictionary of configuration options that defines vison model config.
|
| 24 |
+
projection_dim (:obj:`int`, `optional`, defaults to 512):
|
| 25 |
+
Dimentionality of text and vision projection layers.
|
| 26 |
+
kwargs (`optional`):
|
| 27 |
+
Dictionary of keyword arguments.
|
| 28 |
+
|
| 29 |
+
Examples::
|
| 30 |
+
|
| 31 |
+
>>> from transformers import BertConfig, CLIPConfig, HybridCLIPConfig, FlaxHybridCLIP
|
| 32 |
+
|
| 33 |
+
>>> # Initializing a BERT and CLIP configuration
|
| 34 |
+
>>> config_text = BertConfig()
|
| 35 |
+
>>> config_vision = CLIPConfig()
|
| 36 |
+
|
| 37 |
+
>>> config = HybridCLIPConfig.from_text_vision_configs(config_text, config_vision, projection_dim=512)
|
| 38 |
+
|
| 39 |
+
>>> # Initializing a BERT and CLIPVision model
|
| 40 |
+
>>> model = EncoderDecoderModel(config=config)
|
| 41 |
+
|
| 42 |
+
>>> # Accessing the model configuration
|
| 43 |
+
>>> config_text = model.config.text_config
|
| 44 |
+
>>> config_vision = model.config.vision_config
|
| 45 |
+
|
| 46 |
+
>>> # Saving the model, including its configuration
|
| 47 |
+
>>> model.save_pretrained('my-model')
|
| 48 |
+
|
| 49 |
+
>>> # loading model and config from pretrained folder
|
| 50 |
+
>>> encoder_decoder_config = HybridCLIPConfig.from_pretrained('my-model')
|
| 51 |
+
>>> model = FlaxHybridCLIP.from_pretrained('my-model', config=encoder_decoder_config)
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
model_type = "hybrid-clip"
|
| 55 |
+
is_composition = True
|
| 56 |
+
|
| 57 |
+
def __init__(self, projection_dim=512, **kwargs):
|
| 58 |
+
super().__init__(**kwargs)
|
| 59 |
+
|
| 60 |
+
if "text_config" not in kwargs:
|
| 61 |
+
raise ValueError("`text_config` can not be `None`.")
|
| 62 |
+
|
| 63 |
+
if "vision_config" not in kwargs:
|
| 64 |
+
raise ValueError("`vision_config` can not be `None`.")
|
| 65 |
+
|
| 66 |
+
text_config = kwargs.pop("text_config")
|
| 67 |
+
vision_config = kwargs.pop("vision_config")
|
| 68 |
+
|
| 69 |
+
text_model_type = text_config.pop("model_type")
|
| 70 |
+
vision_model_type = vision_config.pop("model_type")
|
| 71 |
+
|
| 72 |
+
from transformers import AutoConfig
|
| 73 |
+
|
| 74 |
+
self.text_config = AutoConfig.for_model(text_model_type, **text_config)
|
| 75 |
+
|
| 76 |
+
if vision_model_type == "clip":
|
| 77 |
+
self.vision_config = AutoConfig.for_model(vision_model_type, **vision_config).vision_config
|
| 78 |
+
else:
|
| 79 |
+
self.vision_config = AutoConfig.for_model(vision_model_type, **vision_config)
|
| 80 |
+
|
| 81 |
+
self.projection_dim = projection_dim
|
| 82 |
+
self.initializer_factor = 1.0
|
| 83 |
+
|
| 84 |
+
@classmethod
|
| 85 |
+
def from_text_vision_configs(cls, text_config: PretrainedConfig, vision_config: PretrainedConfig, **kwargs):
|
| 86 |
+
r"""
|
| 87 |
+
Instantiate a :class:`HybridCLIPConfig` (or a derived class) from text model configuration and
|
| 88 |
+
vision model configuration.
|
| 89 |
+
|
| 90 |
+
Returns:
|
| 91 |
+
:class:`HybridCLIPConfig`: An instance of a configuration object
|
| 92 |
+
"""
|
| 93 |
+
|
| 94 |
+
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
| 95 |
+
|
| 96 |
+
def to_dict(self):
|
| 97 |
+
"""
|
| 98 |
+
Serializes this instance to a Python dictionary. Override the default
|
| 99 |
+
:meth:`~transformers.PretrainedConfig.to_dict`.
|
| 100 |
+
|
| 101 |
+
Returns:
|
| 102 |
+
:obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
| 103 |
+
"""
|
| 104 |
+
output = copy.deepcopy(self.__dict__)
|
| 105 |
+
output["text_config"] = self.text_config.to_dict()
|
| 106 |
+
output["vision_config"] = self.vision_config.to_dict()
|
| 107 |
+
output["model_type"] = self.__class__.model_type
|
| 108 |
+
return output
|
hybrid_clip/modeling_hybrid_clip.py
ADDED
|
@@ -0,0 +1,433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
from typing import Optional, Tuple
|
| 17 |
+
|
| 18 |
+
import flax.linen as nn
|
| 19 |
+
import jax
|
| 20 |
+
import jax.numpy as jnp
|
| 21 |
+
from configuration_hybrid_clip import HybridCLIPConfig
|
| 22 |
+
from flax.core.frozen_dict import FrozenDict
|
| 23 |
+
from transformers import FLAX_MODEL_MAPPING, FlaxCLIPVisionModel
|
| 24 |
+
from transformers.modeling_flax_utils import FlaxPreTrainedModel
|
| 25 |
+
from transformers.models.clip.modeling_flax_clip import FlaxCLIPOutput
|
| 26 |
+
from transformers.utils import logging
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
logger = logging.get_logger(__name__)
|
| 30 |
+
|
| 31 |
+
import warnings
|
| 32 |
+
warnings.filterwarnings("ignore")
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class FlaxHybridCLIPModule(nn.Module):
|
| 36 |
+
config: HybridCLIPConfig
|
| 37 |
+
dtype: jnp.dtype = jnp.float32
|
| 38 |
+
freeze_backbones: bool = False
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def setup(self):
|
| 42 |
+
text_config = self.config.text_config
|
| 43 |
+
vision_config = self.config.vision_config
|
| 44 |
+
|
| 45 |
+
self.projection_dim = self.config.projection_dim
|
| 46 |
+
self.text_embed_dim = text_config.hidden_size
|
| 47 |
+
self.vision_embed_dim = vision_config.hidden_size
|
| 48 |
+
|
| 49 |
+
text_module = FLAX_MODEL_MAPPING[self.config.text_config.__class__].module_class
|
| 50 |
+
vision_module = FLAX_MODEL_MAPPING.get(self.config.vision_config.__class__, FlaxCLIPVisionModel).module_class
|
| 51 |
+
|
| 52 |
+
self.text_model = text_module(text_config, dtype=self.dtype)
|
| 53 |
+
self.vision_model = vision_module(vision_config, dtype=self.dtype)
|
| 54 |
+
|
| 55 |
+
self.visual_projection = nn.Dense(
|
| 56 |
+
self.projection_dim,
|
| 57 |
+
dtype=self.dtype,
|
| 58 |
+
kernel_init=jax.nn.initializers.normal(0.02, dtype=self.dtype),
|
| 59 |
+
use_bias=False,
|
| 60 |
+
)
|
| 61 |
+
self.text_projection = nn.Dense(
|
| 62 |
+
self.projection_dim,
|
| 63 |
+
dtype=self.dtype,
|
| 64 |
+
kernel_init=jax.nn.initializers.normal(0.02, dtype=self.dtype),
|
| 65 |
+
use_bias=False,
|
| 66 |
+
)
|
| 67 |
+
self.logit_scale = self.param("logit_scale", jax.nn.initializers.ones, []) * 20
|
| 68 |
+
#self.logit_scale = self.param("logit_scale", jnp.array([20.]), [], mutable=False)
|
| 69 |
+
#self.logit_scale = self.param("logit_scale", jax.nn.initializers.ones, [])
|
| 70 |
+
|
| 71 |
+
def __call__(
|
| 72 |
+
self,
|
| 73 |
+
input_ids=None,
|
| 74 |
+
pixel_values=None,
|
| 75 |
+
attention_mask=None,
|
| 76 |
+
position_ids=None,
|
| 77 |
+
token_type_ids=None,
|
| 78 |
+
deterministic: bool = True,
|
| 79 |
+
output_attentions=None,
|
| 80 |
+
output_hidden_states=None,
|
| 81 |
+
return_dict=None,
|
| 82 |
+
):
|
| 83 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 84 |
+
|
| 85 |
+
vision_outputs = self.vision_model(
|
| 86 |
+
pixel_values=pixel_values,
|
| 87 |
+
deterministic=deterministic,
|
| 88 |
+
output_attentions=output_attentions,
|
| 89 |
+
output_hidden_states=output_hidden_states,
|
| 90 |
+
return_dict=return_dict,
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
text_outputs = self.text_model(
|
| 94 |
+
input_ids=input_ids,
|
| 95 |
+
attention_mask=attention_mask,
|
| 96 |
+
token_type_ids=token_type_ids,
|
| 97 |
+
position_ids=position_ids,
|
| 98 |
+
deterministic=deterministic,
|
| 99 |
+
output_attentions=output_attentions,
|
| 100 |
+
output_hidden_states=output_hidden_states,
|
| 101 |
+
return_dict=return_dict,
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
image_embeds = vision_outputs[1]
|
| 105 |
+
if self.freeze_backbones:
|
| 106 |
+
image_embeds = jax.lax.stop_gradient(image_embeds)
|
| 107 |
+
image_embeds = self.visual_projection(image_embeds)
|
| 108 |
+
|
| 109 |
+
text_embeds = text_outputs[1]
|
| 110 |
+
if self.freeze_backbones:
|
| 111 |
+
text_embeds = jax.lax.stop_gradient(text_embeds)
|
| 112 |
+
text_embeds = self.text_projection(text_embeds)
|
| 113 |
+
|
| 114 |
+
# normalized features
|
| 115 |
+
image_embeds = image_embeds / jnp.linalg.norm(image_embeds, axis=-1, keepdims=True)
|
| 116 |
+
text_embeds = text_embeds / jnp.linalg.norm(text_embeds, axis=-1, keepdims=True)
|
| 117 |
+
|
| 118 |
+
# cosine similarity as logits
|
| 119 |
+
# logit_scale = jnp.exp(self.logit_scale)
|
| 120 |
+
logit_scale = jax.lax.stop_gradient(self.logit_scale)
|
| 121 |
+
logits_per_text = jnp.matmul(text_embeds, image_embeds.T) * logit_scale
|
| 122 |
+
logits_per_image = logits_per_text.T
|
| 123 |
+
|
| 124 |
+
if not return_dict:
|
| 125 |
+
return (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
| 126 |
+
|
| 127 |
+
return FlaxCLIPOutput(
|
| 128 |
+
logits_per_image=logits_per_image,
|
| 129 |
+
logits_per_text=logits_per_text,
|
| 130 |
+
text_embeds=text_embeds,
|
| 131 |
+
image_embeds=image_embeds,
|
| 132 |
+
text_model_output=text_outputs,
|
| 133 |
+
vision_model_output=vision_outputs,
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
class FlaxHybridCLIP(FlaxPreTrainedModel):
|
| 138 |
+
config_class = HybridCLIPConfig
|
| 139 |
+
module_class = FlaxHybridCLIPModule
|
| 140 |
+
|
| 141 |
+
def __init__(
|
| 142 |
+
self,
|
| 143 |
+
config: HybridCLIPConfig,
|
| 144 |
+
input_shape: Optional[Tuple] = None,
|
| 145 |
+
seed: int = 0,
|
| 146 |
+
dtype: jnp.dtype = jnp.float32,
|
| 147 |
+
**kwargs
|
| 148 |
+
):
|
| 149 |
+
if input_shape is None:
|
| 150 |
+
input_shape = ((1, 1), (1, config.vision_config.image_size, config.vision_config.image_size, 3))
|
| 151 |
+
|
| 152 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
| 153 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype)
|
| 154 |
+
|
| 155 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
|
| 156 |
+
# init input tensor
|
| 157 |
+
input_ids = jnp.zeros(input_shape[0], dtype="i4")
|
| 158 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape[0])
|
| 159 |
+
token_type_ids = jnp.ones_like(input_ids)
|
| 160 |
+
attention_mask = jnp.ones_like(input_ids)
|
| 161 |
+
|
| 162 |
+
pixel_values = jax.random.normal(rng, input_shape[1])
|
| 163 |
+
|
| 164 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
| 165 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
| 166 |
+
|
| 167 |
+
return self.module.init(rngs, input_ids, pixel_values, attention_mask, position_ids, token_type_ids)["params"]
|
| 168 |
+
|
| 169 |
+
def __call__(
|
| 170 |
+
self,
|
| 171 |
+
input_ids,
|
| 172 |
+
pixel_values,
|
| 173 |
+
attention_mask=None,
|
| 174 |
+
position_ids=None,
|
| 175 |
+
token_type_ids=None,
|
| 176 |
+
params: dict = None,
|
| 177 |
+
dropout_rng: jax.random.PRNGKey = None,
|
| 178 |
+
train: bool = False,
|
| 179 |
+
output_attentions: Optional[bool] = None,
|
| 180 |
+
output_hidden_states: Optional[bool] = None,
|
| 181 |
+
return_dict: Optional[bool] = None,
|
| 182 |
+
):
|
| 183 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 184 |
+
output_hidden_states = (
|
| 185 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 186 |
+
)
|
| 187 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 188 |
+
|
| 189 |
+
if position_ids is None:
|
| 190 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
| 191 |
+
|
| 192 |
+
if token_type_ids is None:
|
| 193 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
| 194 |
+
|
| 195 |
+
if attention_mask is None:
|
| 196 |
+
attention_mask = jnp.ones_like(input_ids)
|
| 197 |
+
|
| 198 |
+
# Handle any PRNG if needed
|
| 199 |
+
rngs = {}
|
| 200 |
+
if dropout_rng is not None:
|
| 201 |
+
rngs["dropout"] = dropout_rng
|
| 202 |
+
|
| 203 |
+
return self.module.apply(
|
| 204 |
+
{"params": params or self.params},
|
| 205 |
+
jnp.array(input_ids, dtype="i4"),
|
| 206 |
+
jnp.array(pixel_values, dtype=jnp.float32),
|
| 207 |
+
jnp.array(attention_mask, dtype="i4"),
|
| 208 |
+
jnp.array(position_ids, dtype="i4"),
|
| 209 |
+
jnp.array(token_type_ids, dtype="i4"),
|
| 210 |
+
not train,
|
| 211 |
+
output_attentions,
|
| 212 |
+
output_hidden_states,
|
| 213 |
+
return_dict,
|
| 214 |
+
rngs=rngs,
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
def get_text_features(
|
| 218 |
+
self,
|
| 219 |
+
input_ids,
|
| 220 |
+
attention_mask=None,
|
| 221 |
+
position_ids=None,
|
| 222 |
+
token_type_ids=None,
|
| 223 |
+
dropout_rng: jax.random.PRNGKey = None,
|
| 224 |
+
train=False,
|
| 225 |
+
):
|
| 226 |
+
r"""
|
| 227 |
+
Args:
|
| 228 |
+
input_ids (:obj:`numpy.ndarray` of shape :obj:`(batch_size, sequence_length)`):
|
| 229 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
| 230 |
+
provide it.
|
| 231 |
+
|
| 232 |
+
Indices can be obtained using :class:`~transformers.PreTrainedTokenizer`. See
|
| 233 |
+
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
|
| 234 |
+
for details.
|
| 235 |
+
|
| 236 |
+
`What are input IDs? <../glossary.html#input-ids>`__
|
| 237 |
+
|
| 238 |
+
Returns:
|
| 239 |
+
text_features (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, output_dim`): The text embeddings
|
| 240 |
+
obtained by applying the projection layer to the pooled output of text model.
|
| 241 |
+
"""
|
| 242 |
+
if position_ids is None:
|
| 243 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
| 244 |
+
|
| 245 |
+
if token_type_ids is None:
|
| 246 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
| 247 |
+
|
| 248 |
+
if attention_mask is None:
|
| 249 |
+
attention_mask = jnp.ones_like(input_ids)
|
| 250 |
+
|
| 251 |
+
# Handle any PRNG if needed
|
| 252 |
+
rngs = {}
|
| 253 |
+
if dropout_rng is not None:
|
| 254 |
+
rngs["dropout"] = dropout_rng
|
| 255 |
+
|
| 256 |
+
def _get_features(module, input_ids, attention_mask, position_ids, token_type_ids, deterministic):
|
| 257 |
+
text_outputs = module.text_model(
|
| 258 |
+
input_ids=input_ids,
|
| 259 |
+
attention_mask=attention_mask,
|
| 260 |
+
position_ids=position_ids,
|
| 261 |
+
token_type_ids=token_type_ids,
|
| 262 |
+
deterministic=deterministic,
|
| 263 |
+
)
|
| 264 |
+
pooled_output = text_outputs[1]
|
| 265 |
+
text_features = module.text_projection(pooled_output)
|
| 266 |
+
return text_features
|
| 267 |
+
|
| 268 |
+
return self.module.apply(
|
| 269 |
+
{"params": self.params},
|
| 270 |
+
jnp.array(input_ids, dtype="i4"),
|
| 271 |
+
jnp.array(attention_mask, dtype="i4"),
|
| 272 |
+
jnp.array(position_ids, dtype="i4"),
|
| 273 |
+
jnp.array(token_type_ids, dtype="i4"),
|
| 274 |
+
not train,
|
| 275 |
+
method=_get_features,
|
| 276 |
+
rngs=rngs,
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
def get_image_features(self, pixel_values, dropout_rng: jax.random.PRNGKey = None, train=False):
|
| 280 |
+
r"""
|
| 281 |
+
Args:
|
| 282 |
+
pixel_values (:obj:`numpy.ndarray` of shape :obj:`(batch_size, num_channels, height, width)`):
|
| 283 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained
|
| 284 |
+
using :class:`~transformers.ImageFeatureExtractionMixin`. See
|
| 285 |
+
:meth:`transformers.ImageFeatureExtractionMixin.__call__` for details.
|
| 286 |
+
|
| 287 |
+
Returns:
|
| 288 |
+
image_features (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, output_dim`): The image embeddings
|
| 289 |
+
obtained by applying the projection layer to the pooled output of vision model.
|
| 290 |
+
"""
|
| 291 |
+
|
| 292 |
+
# Handle any PRNG if needed
|
| 293 |
+
rngs = {}
|
| 294 |
+
if dropout_rng is not None:
|
| 295 |
+
rngs["dropout"] = dropout_rng
|
| 296 |
+
|
| 297 |
+
def _get_features(module, pixel_values, deterministic):
|
| 298 |
+
vision_outputs = module.vision_model(pixel_values=pixel_values, deterministic=deterministic)
|
| 299 |
+
pooled_output = vision_outputs[1] # pooled_output
|
| 300 |
+
image_features = module.visual_projection(pooled_output)
|
| 301 |
+
return image_features
|
| 302 |
+
|
| 303 |
+
return self.module.apply(
|
| 304 |
+
{"params": self.params},
|
| 305 |
+
jnp.array(pixel_values, dtype=jnp.float32),
|
| 306 |
+
not train,
|
| 307 |
+
method=_get_features,
|
| 308 |
+
rngs=rngs,
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
@classmethod
|
| 312 |
+
def from_text_vision_pretrained(
|
| 313 |
+
cls,
|
| 314 |
+
text_model_name_or_path: str = None,
|
| 315 |
+
vision_model_name_or_path: str = None,
|
| 316 |
+
*model_args,
|
| 317 |
+
**kwargs,
|
| 318 |
+
) -> FlaxPreTrainedModel:
|
| 319 |
+
"""
|
| 320 |
+
Params:
|
| 321 |
+
text_model_name_or_path (:obj: `str`, `optional`):
|
| 322 |
+
Information necessary to initiate the text model. Can be either:
|
| 323 |
+
|
| 324 |
+
- A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
|
| 325 |
+
Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
|
| 326 |
+
a user or organization name, like ``dbmdz/bert-base-german-cased``.
|
| 327 |
+
- A path to a `directory` containing model weights saved using
|
| 328 |
+
:func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
|
| 329 |
+
- A path or url to a `PyTorch checkpoint folder` (e.g, ``./pt_model``). In
|
| 330 |
+
this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided
|
| 331 |
+
as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in
|
| 332 |
+
a Flax model using the provided conversion scripts and loading the Flax model afterwards.
|
| 333 |
+
|
| 334 |
+
vision_model_name_or_path (:obj: `str`, `optional`, defaults to `None`):
|
| 335 |
+
Information necessary to initiate the vision model. Can be either:
|
| 336 |
+
|
| 337 |
+
- A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
|
| 338 |
+
Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
|
| 339 |
+
a user or organization name, like ``dbmdz/bert-base-german-cased``.
|
| 340 |
+
- A path to a `directory` containing model weights saved using
|
| 341 |
+
:func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
|
| 342 |
+
- A path or url to a `PyTorch checkpoint folder` (e.g, ``./pt_model``). In
|
| 343 |
+
this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided
|
| 344 |
+
as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in
|
| 345 |
+
a Flax model using the provided conversion scripts and loading the Flax model afterwards.
|
| 346 |
+
|
| 347 |
+
model_args (remaining positional arguments, `optional`):
|
| 348 |
+
All remaning positional arguments will be passed to the underlying model's ``__init__`` method.
|
| 349 |
+
|
| 350 |
+
kwargs (remaining dictionary of keyword arguments, `optional`):
|
| 351 |
+
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
|
| 352 |
+
:obj:`output_attentions=True`).
|
| 353 |
+
|
| 354 |
+
- To update the text configuration, use the prefix `text_` for each configuration parameter.
|
| 355 |
+
- To update the vision configuration, use the prefix `vision_` for each configuration parameter.
|
| 356 |
+
- To update the parent model configuration, do not use a prefix for each configuration parameter.
|
| 357 |
+
|
| 358 |
+
Behaves differently depending on whether a :obj:`config` is provided or automatically loaded.
|
| 359 |
+
|
| 360 |
+
Example::
|
| 361 |
+
|
| 362 |
+
>>> from transformers import FlaxHybridCLIP
|
| 363 |
+
>>> # initialize a model from pretrained BERT and CLIP models. Note that the projection layers will be randomly initialized.
|
| 364 |
+
>>> # If using CLIP's vision model the vision projection layer will be initialized using pre-trained weights
|
| 365 |
+
>>> model = FlaxHybridCLIP.from_text_vision_pretrained('bert-base-uncased', 'openai/clip-vit-base-patch32')
|
| 366 |
+
>>> # saving model after fine-tuning
|
| 367 |
+
>>> model.save_pretrained("./bert-clip")
|
| 368 |
+
>>> # load fine-tuned model
|
| 369 |
+
>>> model = FlaxHybridCLIP.from_pretrained("./bert-clip")
|
| 370 |
+
"""
|
| 371 |
+
|
| 372 |
+
kwargs_text = {
|
| 373 |
+
argument[len("text_") :]: value for argument, value in kwargs.items() if argument.startswith("text_")
|
| 374 |
+
}
|
| 375 |
+
|
| 376 |
+
kwargs_vision = {
|
| 377 |
+
argument[len("vision_") :]: value for argument, value in kwargs.items() if argument.startswith("vision_")
|
| 378 |
+
}
|
| 379 |
+
|
| 380 |
+
# remove text, vision kwargs from kwargs
|
| 381 |
+
for key in kwargs_text.keys():
|
| 382 |
+
del kwargs["text_" + key]
|
| 383 |
+
for key in kwargs_vision.keys():
|
| 384 |
+
del kwargs["vision_" + key]
|
| 385 |
+
|
| 386 |
+
# Load and initialize the text and vision model
|
| 387 |
+
text_model = kwargs_text.pop("model", None)
|
| 388 |
+
if text_model is None:
|
| 389 |
+
assert (
|
| 390 |
+
text_model_name_or_path is not None
|
| 391 |
+
), "If `model` is not defined as an argument, a `text_model_name_or_path` has to be defined"
|
| 392 |
+
from transformers import FlaxAutoModel
|
| 393 |
+
|
| 394 |
+
if "config" not in kwargs_text:
|
| 395 |
+
from transformers import AutoConfig
|
| 396 |
+
|
| 397 |
+
text_config = AutoConfig.from_pretrained(text_model_name_or_path)
|
| 398 |
+
kwargs_text["config"] = text_config
|
| 399 |
+
|
| 400 |
+
text_model = FlaxAutoModel.from_pretrained(text_model_name_or_path, *model_args, **kwargs_text)
|
| 401 |
+
|
| 402 |
+
vision_model = kwargs_vision.pop("model", None)
|
| 403 |
+
if vision_model is None:
|
| 404 |
+
assert (
|
| 405 |
+
vision_model_name_or_path is not None
|
| 406 |
+
), "If `model` is not defined as an argument, a `vision_model_name_or_path` has to be defined"
|
| 407 |
+
from transformers import FlaxAutoModel
|
| 408 |
+
|
| 409 |
+
if "config" not in kwargs_vision:
|
| 410 |
+
from transformers import AutoConfig
|
| 411 |
+
|
| 412 |
+
vision_config = AutoConfig.from_pretrained(vision_model_name_or_path)
|
| 413 |
+
kwargs_vision["config"] = vision_config
|
| 414 |
+
|
| 415 |
+
vision_model = FlaxAutoModel.from_pretrained(vision_model_name_or_path, *model_args, **kwargs_vision)
|
| 416 |
+
|
| 417 |
+
# instantiate config with corresponding kwargs
|
| 418 |
+
dtype = kwargs.pop("dtype", jnp.float32)
|
| 419 |
+
config = HybridCLIPConfig.from_text_vision_configs(text_model.config, vision_model.config, **kwargs)
|
| 420 |
+
|
| 421 |
+
# init model
|
| 422 |
+
model = cls(config, *model_args, dtype=dtype, **kwargs)
|
| 423 |
+
|
| 424 |
+
if vision_config.model_type == "clip":
|
| 425 |
+
model.params["vision_model"]["vision_model"] = vision_model.params["vision_model"]
|
| 426 |
+
model.params["visual_projection"]["kernel"] = vision_model.params["visual_projection"]["kernel"]
|
| 427 |
+
else:
|
| 428 |
+
model.params["vision_model"] = vision_model.params
|
| 429 |
+
|
| 430 |
+
model.params["text_model"] = text_model.params
|
| 431 |
+
|
| 432 |
+
return model
|
| 433 |
+
|
hybrid_clip/requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
jax>=0.2.8
|
| 2 |
+
jaxlib>=0.1.59
|
| 3 |
+
flax>=0.3.4
|
| 4 |
+
optax>=0.0.8
|
| 5 |
+
-f https://download.pytorch.org/whl/torch_stable.html
|
| 6 |
+
torch==1.9.0+cpu
|
| 7 |
+
-f https://download.pytorch.org/whl/torch_stable.html
|
| 8 |
+
torchvision==0.10.0+cpu
|
| 9 |
+
comet_ml==3.12.2
|
| 10 |
+
python-dotenv==0.18.0
|
| 11 |
+
tqdm
|
| 12 |
+
transformers
|
hybrid_clip/run_hybrid_clip.py
ADDED
|
@@ -0,0 +1,976 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding=utf-8
|
| 3 |
+
# Copyright 2021 The HuggingFace Team All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
"""
|
| 17 |
+
Training a CLIP like dual encoder models using text and vision encoders in the library.
|
| 18 |
+
|
| 19 |
+
The script can be used to train CLIP like models for languages other than english by using
|
| 20 |
+
a text encoder pre-trained in the desired language. Currently this script support the following vision
|
| 21 |
+
and text models:
|
| 22 |
+
Vision models: ViT(https://huggingface.co/models?filter=vit), CLIP (https://huggingface.co/models?filter=clip)
|
| 23 |
+
Text models: BERT, ROBERTa (https://huggingface.co/models?filter=masked-lm)
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
import json
|
| 27 |
+
import logging
|
| 28 |
+
import os
|
| 29 |
+
import sys
|
| 30 |
+
import time
|
| 31 |
+
import numpy as np
|
| 32 |
+
from dataclasses import dataclass, field
|
| 33 |
+
from pathlib import Path
|
| 34 |
+
from typing import Callable, Optional
|
| 35 |
+
import shutil
|
| 36 |
+
import gc
|
| 37 |
+
import pyarrow as pa
|
| 38 |
+
|
| 39 |
+
try:
|
| 40 |
+
from dotenv import load_dotenv
|
| 41 |
+
load_dotenv("../.env")
|
| 42 |
+
except:
|
| 43 |
+
print("Couldn't find ../.env file")
|
| 44 |
+
|
| 45 |
+
import wandb
|
| 46 |
+
from transformers.file_utils import PushToHubMixin
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
import torch
|
| 50 |
+
from torchvision.datasets import VisionDataset
|
| 51 |
+
from torchvision.io import ImageReadMode, read_image
|
| 52 |
+
from torchvision.transforms import (
|
| 53 |
+
CenterCrop,
|
| 54 |
+
ConvertImageDtype,
|
| 55 |
+
Normalize,
|
| 56 |
+
Resize,
|
| 57 |
+
ColorJitter,
|
| 58 |
+
RandomHorizontalFlip,
|
| 59 |
+
RandomRotation,
|
| 60 |
+
RandomCrop,
|
| 61 |
+
RandomAffine,
|
| 62 |
+
RandomPerspective,
|
| 63 |
+
RandomAutocontrast,
|
| 64 |
+
RandomEqualize,
|
| 65 |
+
)
|
| 66 |
+
from torchvision.transforms.functional import InterpolationMode
|
| 67 |
+
from tqdm import tqdm
|
| 68 |
+
|
| 69 |
+
import jax
|
| 70 |
+
import jax.numpy as jnp
|
| 71 |
+
import optax
|
| 72 |
+
import transformers
|
| 73 |
+
from flax import jax_utils
|
| 74 |
+
from flax.jax_utils import unreplicate
|
| 75 |
+
from flax.training import train_state
|
| 76 |
+
from flax.training.common_utils import get_metrics, shard, shard_prng_key
|
| 77 |
+
from modeling_hybrid_clip import FlaxHybridCLIP
|
| 78 |
+
from configuration_hybrid_clip import HybridCLIPConfig
|
| 79 |
+
from transformers import (
|
| 80 |
+
AutoTokenizer,
|
| 81 |
+
HfArgumentParser,
|
| 82 |
+
TrainingArguments,
|
| 83 |
+
is_tensorboard_available,
|
| 84 |
+
set_seed,
|
| 85 |
+
)
|
| 86 |
+
from numpy.random import default_rng
|
| 87 |
+
from flax.serialization import to_bytes, from_bytes
|
| 88 |
+
|
| 89 |
+
logger = logging.getLogger(__name__)
|
| 90 |
+
|
| 91 |
+
def mb_item(x):
|
| 92 |
+
return x.item() if hasattr(x, "item") else x
|
| 93 |
+
|
| 94 |
+
# checkpoint functions
|
| 95 |
+
def save_model_checkpoint(
|
| 96 |
+
model,
|
| 97 |
+
save_dir,
|
| 98 |
+
state,
|
| 99 |
+
logger,
|
| 100 |
+
organization,
|
| 101 |
+
with_opt: bool = False,
|
| 102 |
+
push_to_hub: bool = False,
|
| 103 |
+
overwrite=False,
|
| 104 |
+
**kwargs,
|
| 105 |
+
):
|
| 106 |
+
state = jax_utils.unreplicate(state)
|
| 107 |
+
#params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
| 108 |
+
logger.info(f"Saving Checkpoint in {save_dir}")
|
| 109 |
+
ckpt_save_dir = f"{save_dir}/ckpt-{mb_item(state.step)-1}"
|
| 110 |
+
if os.path.exists(ckpt_save_dir) and not overwrite:
|
| 111 |
+
logger.info("checkpoint exists, skipping overwrite")
|
| 112 |
+
else:
|
| 113 |
+
model.save_pretrained(
|
| 114 |
+
ckpt_save_dir, params=state.params, push_to_hub=False, **kwargs
|
| 115 |
+
)
|
| 116 |
+
if with_opt:
|
| 117 |
+
with open(os.path.join(ckpt_save_dir, "opt_state.msgpack"), "wb") as f:
|
| 118 |
+
f.write(to_bytes(state.opt_state))
|
| 119 |
+
with open(os.path.join(ckpt_save_dir, "training_state.json"), "w") as f:
|
| 120 |
+
json.dump({"step": state.step.item()}, f)
|
| 121 |
+
|
| 122 |
+
logger.info("checkpoint saved")
|
| 123 |
+
|
| 124 |
+
if push_to_hub:
|
| 125 |
+
repo_name = Path(save_dir).name
|
| 126 |
+
repo_url = PushToHubMixin._get_repo_url_from_name(
|
| 127 |
+
repo_name, organization=organization, private=False, use_auth_token=True
|
| 128 |
+
)
|
| 129 |
+
repo = PushToHubMixin._create_or_get_repo(
|
| 130 |
+
save_dir,
|
| 131 |
+
repo_url=repo_url,
|
| 132 |
+
organization=organization,
|
| 133 |
+
use_auth_token=True,
|
| 134 |
+
)
|
| 135 |
+
commit_message = f"Saving weights and logs at step {mb_item(state.step)-1}"
|
| 136 |
+
url = PushToHubMixin._push_to_hub(repo=repo, commit_message=commit_message)
|
| 137 |
+
logger.info(f"Model pushed to the hub in this commit: {url}")
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def restore_model_checkpoint(save_dir, state, logger):
|
| 141 |
+
logger.info(f"Restoring checkpoint from {save_dir}.")
|
| 142 |
+
with open(os.path.join(save_dir, "flax_model.msgpack"), "rb") as f:
|
| 143 |
+
params = from_bytes(state.params, f.read())
|
| 144 |
+
|
| 145 |
+
with open(os.path.join(save_dir, "opt_state.msgpack"), "rb") as f:
|
| 146 |
+
opt_state = from_bytes(state.opt_state, f.read())
|
| 147 |
+
|
| 148 |
+
with open(os.path.join(save_dir, "training_state.json"), "r") as f:
|
| 149 |
+
training_state = json.load(f)
|
| 150 |
+
step = training_state["step"]
|
| 151 |
+
|
| 152 |
+
logger.info("checkpoint restored")
|
| 153 |
+
# return state.replace(step=step, params=params, opt_state=opt_state), step
|
| 154 |
+
return params, opt_state, step
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def rotate_checkpoints(ckpt_dir: str, save_total_limit: int, logger):
|
| 158 |
+
"Removes older checkpoints so that `save_total_limit` checkpoints are kept"
|
| 159 |
+
# TODO: what to remove is decided using step number only, we might want to improve that
|
| 160 |
+
ckpts = [str(x) for x in Path(ckpt_dir).glob("ckpt-*")]
|
| 161 |
+
# sort checkpoints by step
|
| 162 |
+
ckpts_sorted = sorted(ckpts, key=lambda x: int(x.split("-")[-1]))
|
| 163 |
+
ckpts_to_delete = ckpts_sorted[:-save_total_limit]
|
| 164 |
+
for ckpt in ckpts_to_delete:
|
| 165 |
+
logger.info(
|
| 166 |
+
f"Deleting older checkpoint [{ckpt}] due to save_total_limit ({save_total_limit})"
|
| 167 |
+
)
|
| 168 |
+
shutil.rmtree(ckpt)
|
| 169 |
+
|
| 170 |
+
# Cache the result
|
| 171 |
+
has_tensorboard = is_tensorboard_available()
|
| 172 |
+
if has_tensorboard:
|
| 173 |
+
try:
|
| 174 |
+
from flax.metrics.tensorboard import SummaryWriter
|
| 175 |
+
except ImportError as ie:
|
| 176 |
+
has_tensorboard = False
|
| 177 |
+
print(
|
| 178 |
+
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
else:
|
| 182 |
+
print(
|
| 183 |
+
"Unable to display metrics through TensorBoard because the package is not installed: "
|
| 184 |
+
"Please run pip install tensorboard to enable."
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
@dataclass
|
| 189 |
+
class ModelArguments:
|
| 190 |
+
"""
|
| 191 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
|
| 192 |
+
"""
|
| 193 |
+
|
| 194 |
+
text_model_name_or_path: str = field(
|
| 195 |
+
metadata={
|
| 196 |
+
"help": "The text model checkpoint for weights initialization."
|
| 197 |
+
"Don't set if you want to train a model from scratch."
|
| 198 |
+
},
|
| 199 |
+
)
|
| 200 |
+
vision_model_name_or_path: str = field(
|
| 201 |
+
metadata={
|
| 202 |
+
"help": "The vision model checkpoint for weights initialization."
|
| 203 |
+
"Don't set if you want to train a model from scratch."
|
| 204 |
+
},
|
| 205 |
+
)
|
| 206 |
+
from_pt: bool = field(
|
| 207 |
+
default=True,
|
| 208 |
+
metadata={
|
| 209 |
+
"help": "whether to load the text and vision model using PyTorch checkpoints."
|
| 210 |
+
},
|
| 211 |
+
)
|
| 212 |
+
config_name: Optional[str] = field(
|
| 213 |
+
default=None,
|
| 214 |
+
metadata={
|
| 215 |
+
"help": "Pretrained config name or path if not the same as model_name"
|
| 216 |
+
},
|
| 217 |
+
)
|
| 218 |
+
tokenizer_name: Optional[str] = field(
|
| 219 |
+
default=None,
|
| 220 |
+
metadata={
|
| 221 |
+
"help": "Pretrained tokenizer name or path if not the same as model_name"
|
| 222 |
+
},
|
| 223 |
+
)
|
| 224 |
+
cache_dir: Optional[str] = field(
|
| 225 |
+
default=None,
|
| 226 |
+
metadata={
|
| 227 |
+
"help": "Where do you want to store the pretrained models downloaded from s3"
|
| 228 |
+
},
|
| 229 |
+
)
|
| 230 |
+
use_fast_tokenizer: bool = field(
|
| 231 |
+
default=True,
|
| 232 |
+
metadata={
|
| 233 |
+
"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."
|
| 234 |
+
},
|
| 235 |
+
)
|
| 236 |
+
dtype: Optional[str] = field(
|
| 237 |
+
default="float32",
|
| 238 |
+
metadata={
|
| 239 |
+
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
|
| 240 |
+
},
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
@dataclass
|
| 245 |
+
class DataTrainingArguments:
|
| 246 |
+
"""
|
| 247 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
| 248 |
+
"""
|
| 249 |
+
|
| 250 |
+
data_dir: Optional[str] = field(
|
| 251 |
+
default=None, metadata={"help": "The data directory containing input files."}
|
| 252 |
+
)
|
| 253 |
+
train_file: Optional[str] = field(
|
| 254 |
+
default=None,
|
| 255 |
+
metadata={"help": "The input training data file (a jsonlines file)."},
|
| 256 |
+
)
|
| 257 |
+
validation_file: Optional[str] = field(
|
| 258 |
+
default=None,
|
| 259 |
+
metadata={"help": "An optional input evaluation data file (a jsonlines file)."},
|
| 260 |
+
)
|
| 261 |
+
max_seq_length: Optional[int] = field(
|
| 262 |
+
default=72,
|
| 263 |
+
metadata={
|
| 264 |
+
"help": "The maximum total input sequence length after tokenization. Sequences longer "
|
| 265 |
+
"than this will be truncated, sequences shorter will be padded."
|
| 266 |
+
},
|
| 267 |
+
)
|
| 268 |
+
max_train_samples: Optional[int] = field(
|
| 269 |
+
default=None,
|
| 270 |
+
metadata={
|
| 271 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
| 272 |
+
"value if set."
|
| 273 |
+
},
|
| 274 |
+
)
|
| 275 |
+
max_eval_samples: Optional[int] = field(
|
| 276 |
+
default=None,
|
| 277 |
+
metadata={
|
| 278 |
+
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
| 279 |
+
"value if set."
|
| 280 |
+
},
|
| 281 |
+
)
|
| 282 |
+
overwrite_cache: bool = field(
|
| 283 |
+
default=False,
|
| 284 |
+
metadata={"help": "Overwrite the cached training and evaluation sets"},
|
| 285 |
+
)
|
| 286 |
+
overwrite_cache: bool = field(
|
| 287 |
+
default=False,
|
| 288 |
+
metadata={"help": "Overwrite the cached training and evaluation sets"},
|
| 289 |
+
)
|
| 290 |
+
preprocessing_num_workers: Optional[int] = field(
|
| 291 |
+
default=None,
|
| 292 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
def __post_init__(self):
|
| 296 |
+
if self.train_file is None and self.validation_file is None:
|
| 297 |
+
raise ValueError(
|
| 298 |
+
"Need either a dataset name or a training/validation file."
|
| 299 |
+
)
|
| 300 |
+
else:
|
| 301 |
+
if self.train_file is not None:
|
| 302 |
+
extension = self.train_file.split(".")[-1]
|
| 303 |
+
assert extension == "json", "`train_file` should be a json file."
|
| 304 |
+
if self.validation_file is not None:
|
| 305 |
+
extension = self.validation_file.split(".")[-1]
|
| 306 |
+
assert extension == "json", "`validation_file` should be a json file."
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
# We use torchvision for faster image pre-processing.
|
| 310 |
+
# We need to ensure faster processing speed as it can become a bottleneck on TPU
|
| 311 |
+
class Transform(torch.nn.Module):
|
| 312 |
+
def __init__(self, image_size, augment=False):
|
| 313 |
+
super().__init__()
|
| 314 |
+
if not augment:
|
| 315 |
+
self.transforms = torch.nn.Sequential(
|
| 316 |
+
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
|
| 317 |
+
CenterCrop(image_size),
|
| 318 |
+
ConvertImageDtype(torch.float),
|
| 319 |
+
Normalize(
|
| 320 |
+
(0.48145466, 0.4578275, 0.40821073),
|
| 321 |
+
(0.26862954, 0.26130258, 0.27577711),
|
| 322 |
+
),
|
| 323 |
+
)
|
| 324 |
+
else:
|
| 325 |
+
self.transforms = torch.nn.Sequential(
|
| 326 |
+
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
|
| 327 |
+
# CenterCrop(image_size),
|
| 328 |
+
RandomCrop([image_size], pad_if_needed=True, padding_mode="edge"),
|
| 329 |
+
ColorJitter(hue=0.1),
|
| 330 |
+
RandomHorizontalFlip(),
|
| 331 |
+
# RandomRotation(15, interpolation=InterpolationMode.BILINEAR, fill=128),
|
| 332 |
+
RandomAffine(
|
| 333 |
+
degrees=15,
|
| 334 |
+
translate=(0.1, 0.1),
|
| 335 |
+
scale=(0.8, 1.2),
|
| 336 |
+
shear=(-15, 15, -15, 15),
|
| 337 |
+
interpolation=InterpolationMode.BILINEAR,
|
| 338 |
+
fill=127,
|
| 339 |
+
),
|
| 340 |
+
RandomPerspective(
|
| 341 |
+
distortion_scale=0.3,
|
| 342 |
+
p=0.3,
|
| 343 |
+
interpolation=InterpolationMode.BILINEAR,
|
| 344 |
+
fill=127,
|
| 345 |
+
),
|
| 346 |
+
RandomAutocontrast(p=0.3),
|
| 347 |
+
RandomEqualize(p=0.3),
|
| 348 |
+
ConvertImageDtype(torch.float),
|
| 349 |
+
Normalize(
|
| 350 |
+
(0.48145466, 0.4578275, 0.40821073),
|
| 351 |
+
(0.26862954, 0.26130258, 0.27577711),
|
| 352 |
+
),
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 356 |
+
with torch.no_grad():
|
| 357 |
+
x = self.transforms(x)
|
| 358 |
+
return x
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
class ImageTextDataset(VisionDataset):
|
| 362 |
+
"""
|
| 363 |
+
Dtaset for loading image-text data for tasks like CLIP training, Image Captioning.
|
| 364 |
+
|
| 365 |
+
Args:
|
| 366 |
+
root: (string): The root path where the dataset is stored
|
| 367 |
+
file_path: (string): Path to the file containing the image_paths and associated captions.
|
| 368 |
+
The expected format is jsonlines where each line is a json object containing to keys.
|
| 369 |
+
`image_path`: The path to the image.
|
| 370 |
+
`captions`: An `array` of captions.
|
| 371 |
+
transform (callable, optional): A function/transform that takes in an PIL image
|
| 372 |
+
and returns a transformed version. E.g, ``transforms.ToTensor``
|
| 373 |
+
target_transform (callable, optional): A function/transform that takes in the
|
| 374 |
+
target and transforms it.
|
| 375 |
+
transforms (callable, optional): A function/transform that takes input sample and its target as entry
|
| 376 |
+
and returns a transformed version.
|
| 377 |
+
"""
|
| 378 |
+
|
| 379 |
+
def __init__(
|
| 380 |
+
self,
|
| 381 |
+
root: str,
|
| 382 |
+
file_path: str,
|
| 383 |
+
captions_per_image=-1,
|
| 384 |
+
transform: Optional[Callable] = None,
|
| 385 |
+
target_transform: Optional[Callable] = None,
|
| 386 |
+
transforms: Optional[Callable] = None,
|
| 387 |
+
seed=42,
|
| 388 |
+
):
|
| 389 |
+
super().__init__(root, transforms, transform, target_transform)
|
| 390 |
+
with open(file_path, "r") as f:
|
| 391 |
+
examples = [json.loads(line) for line in f.readlines()]
|
| 392 |
+
#examples = pa.array([json.loads(line) for line in f.readlines()])
|
| 393 |
+
|
| 394 |
+
self.rand_generator = default_rng(seed)
|
| 395 |
+
|
| 396 |
+
self.captions = []
|
| 397 |
+
self.image_paths = []
|
| 398 |
+
|
| 399 |
+
for example in examples:
|
| 400 |
+
if captions_per_image <= -1:
|
| 401 |
+
self.captions.append(example["captions"])
|
| 402 |
+
elif captions_per_image > 0:
|
| 403 |
+
self.captions.append(example["captions"][:captions_per_image])
|
| 404 |
+
else:
|
| 405 |
+
raise ValueError("captions per image cannot be zero")
|
| 406 |
+
|
| 407 |
+
#self.image_paths.append(str(example["image_path"]))
|
| 408 |
+
self.image_paths.append(example["image_path"])
|
| 409 |
+
|
| 410 |
+
self.captions = self.captions
|
| 411 |
+
self.image_paths = self.image_paths
|
| 412 |
+
|
| 413 |
+
def _load_image(self, idx: int):
|
| 414 |
+
path = self.image_paths[idx]
|
| 415 |
+
im = read_image(path, mode=ImageReadMode.RGB)
|
| 416 |
+
return im
|
| 417 |
+
|
| 418 |
+
def _load_target(self, idx):
|
| 419 |
+
return str(self.rand_generator.choice(self.captions[idx]))
|
| 420 |
+
# if len(self.captions[idx]) > 1:
|
| 421 |
+
# caption_idx = np.random.randint(0, len(self.captions[idx]))
|
| 422 |
+
# else:
|
| 423 |
+
# caption_idx = 0
|
| 424 |
+
# return self.captions[idx][caption_idx]
|
| 425 |
+
|
| 426 |
+
def __getitem__(self, index: int):
|
| 427 |
+
image = self._load_image(index)
|
| 428 |
+
target = self._load_target(index)
|
| 429 |
+
|
| 430 |
+
if self.transforms is not None:
|
| 431 |
+
image, target = self.transforms(image, target)
|
| 432 |
+
|
| 433 |
+
return image, target
|
| 434 |
+
|
| 435 |
+
def __len__(self) -> int:
|
| 436 |
+
return len(self.captions)
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
class TrainState(train_state.TrainState):
|
| 440 |
+
dropout_rng: jnp.ndarray
|
| 441 |
+
|
| 442 |
+
def replicate(self):
|
| 443 |
+
return jax_utils.replicate(self).replace(
|
| 444 |
+
dropout_rng=shard_prng_key(self.dropout_rng)
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
def write_train_metric(summary_writer, train_metrics, train_time, step):
|
| 448 |
+
summary_writer.scalar("train_time", train_time, step)
|
| 449 |
+
|
| 450 |
+
train_metrics = get_metrics(train_metrics)
|
| 451 |
+
for key, vals in train_metrics.items():
|
| 452 |
+
tag = f"train_{key}"
|
| 453 |
+
for i, val in enumerate(vals):
|
| 454 |
+
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
def write_eval_metric(summary_writer, eval_metrics, step):
|
| 458 |
+
for metric_name, value in eval_metrics.items():
|
| 459 |
+
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):
|
| 463 |
+
summary_writer.scalar("train_time", train_time, step)
|
| 464 |
+
|
| 465 |
+
train_metrics = get_metrics(train_metrics)
|
| 466 |
+
for key, vals in train_metrics.items():
|
| 467 |
+
tag = f"train_{key}"
|
| 468 |
+
for i, val in enumerate(vals):
|
| 469 |
+
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
| 470 |
+
|
| 471 |
+
for metric_name, value in eval_metrics.items():
|
| 472 |
+
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
def create_learning_rate_fn(
|
| 476 |
+
train_ds_size: int,
|
| 477 |
+
train_batch_size: int,
|
| 478 |
+
num_train_epochs: int,
|
| 479 |
+
num_warmup_steps: int,
|
| 480 |
+
learning_rate: float,
|
| 481 |
+
linear=False,
|
| 482 |
+
) -> Callable[[int], jnp.array]:
|
| 483 |
+
"""Returns a linear warmup, linear_decay learning rate function."""
|
| 484 |
+
steps_per_epoch = train_ds_size // train_batch_size
|
| 485 |
+
num_train_steps = steps_per_epoch * num_train_epochs
|
| 486 |
+
if linear:
|
| 487 |
+
warmup_fn = optax.linear_schedule(
|
| 488 |
+
init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps
|
| 489 |
+
)
|
| 490 |
+
decay_fn = optax.linear_schedule(
|
| 491 |
+
init_value=learning_rate,
|
| 492 |
+
end_value=0,
|
| 493 |
+
transition_steps=num_train_steps - num_warmup_steps,
|
| 494 |
+
)
|
| 495 |
+
else:
|
| 496 |
+
warmup_fn = optax.linear_schedule(
|
| 497 |
+
init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps
|
| 498 |
+
)
|
| 499 |
+
decay_fn = optax.cosine_decay_schedule(
|
| 500 |
+
init_value=learning_rate,
|
| 501 |
+
decay_steps=num_train_steps - num_warmup_steps,
|
| 502 |
+
alpha=0.0,
|
| 503 |
+
)
|
| 504 |
+
schedule_fn = optax.join_schedules(
|
| 505 |
+
schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]
|
| 506 |
+
)
|
| 507 |
+
return schedule_fn
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
def main():
|
| 511 |
+
parser = HfArgumentParser(
|
| 512 |
+
(ModelArguments, DataTrainingArguments, TrainingArguments)
|
| 513 |
+
)
|
| 514 |
+
parser.add_argument("--log_wandb", action="store_true")
|
| 515 |
+
parser.add_argument("--freeze_backbones", action="store_true")
|
| 516 |
+
parser.add_argument("--exp_name", type=str, default=None)
|
| 517 |
+
parser.add_argument("--run_from_checkpoint", type=str, default=None)
|
| 518 |
+
|
| 519 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
| 520 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
| 521 |
+
# let's parse it to get our arguments.
|
| 522 |
+
model_args, data_args, training_args = parser.parse_json_file(
|
| 523 |
+
json_file=os.path.abspath(sys.argv[1])
|
| 524 |
+
)
|
| 525 |
+
else:
|
| 526 |
+
(
|
| 527 |
+
model_args,
|
| 528 |
+
data_args,
|
| 529 |
+
training_args,
|
| 530 |
+
args,
|
| 531 |
+
) = parser.parse_args_into_dataclasses()
|
| 532 |
+
|
| 533 |
+
if (
|
| 534 |
+
os.path.exists(training_args.output_dir)
|
| 535 |
+
and os.listdir(training_args.output_dir)
|
| 536 |
+
and training_args.do_train
|
| 537 |
+
and not training_args.overwrite_output_dir
|
| 538 |
+
):
|
| 539 |
+
raise ValueError(
|
| 540 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty."
|
| 541 |
+
"Use --overwrite_output_dir to overcome."
|
| 542 |
+
)
|
| 543 |
+
|
| 544 |
+
# Make one log on every process with the configuration for debugging.
|
| 545 |
+
logging.basicConfig(
|
| 546 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 547 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
| 548 |
+
level=logging.INFO,
|
| 549 |
+
)
|
| 550 |
+
# Setup logging, we only want one process per machine to log things on the screen.
|
| 551 |
+
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
| 552 |
+
if jax.process_index() == 0:
|
| 553 |
+
transformers.utils.logging.set_verbosity_info()
|
| 554 |
+
else:
|
| 555 |
+
transformers.utils.logging.set_verbosity_error()
|
| 556 |
+
|
| 557 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
| 558 |
+
logger.info(f"Training/evaluation parameters {training_args}")
|
| 559 |
+
|
| 560 |
+
if model_args.tokenizer_name:
|
| 561 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 562 |
+
model_args.tokenizer_name,
|
| 563 |
+
cache_dir=model_args.cache_dir,
|
| 564 |
+
use_fast=model_args.use_fast_tokenizer
|
| 565 |
+
)
|
| 566 |
+
elif model_args.text_model_name_or_path:
|
| 567 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 568 |
+
model_args.text_model_name_or_path,
|
| 569 |
+
cache_dir=model_args.cache_dir,
|
| 570 |
+
use_fast=model_args.use_fast_tokenizer,
|
| 571 |
+
)
|
| 572 |
+
else:
|
| 573 |
+
raise ValueError(
|
| 574 |
+
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
|
| 575 |
+
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
| 576 |
+
)
|
| 577 |
+
|
| 578 |
+
|
| 579 |
+
if args.run_from_checkpoint is not None:
|
| 580 |
+
with open(f"{args.run_from_checkpoint}/config.json", "r") as fp:
|
| 581 |
+
config_dict = json.load(fp)
|
| 582 |
+
config_dict["vision_config"]["model_type"] = "clip"
|
| 583 |
+
config = HybridCLIPConfig(**config_dict)
|
| 584 |
+
model = FlaxHybridCLIP.from_pretrained(
|
| 585 |
+
args.run_from_checkpoint,
|
| 586 |
+
seed=training_args.seed,
|
| 587 |
+
dtype=getattr(jnp, model_args.dtype),
|
| 588 |
+
config=config,
|
| 589 |
+
freeze_backbones=args.freeze_backbones
|
| 590 |
+
)
|
| 591 |
+
else:
|
| 592 |
+
|
| 593 |
+
model = FlaxHybridCLIP.from_text_vision_pretrained(
|
| 594 |
+
model_args.text_model_name_or_path,
|
| 595 |
+
model_args.vision_model_name_or_path,
|
| 596 |
+
seed=training_args.seed,
|
| 597 |
+
dtype=getattr(jnp, model_args.dtype),
|
| 598 |
+
text_from_pt=False,
|
| 599 |
+
vision_from_pt=model_args.from_pt,
|
| 600 |
+
freeze_backbones=args.freeze_backbones
|
| 601 |
+
)
|
| 602 |
+
config = model.config
|
| 603 |
+
# set seed for torch dataloaders
|
| 604 |
+
set_seed(training_args.seed)
|
| 605 |
+
|
| 606 |
+
# Initialize torchvision transforms and jit them for faster processing
|
| 607 |
+
train_preprocess = Transform(config.vision_config.image_size, augment=True)
|
| 608 |
+
train_preprocess = torch.jit.script(train_preprocess)
|
| 609 |
+
|
| 610 |
+
val_preprocess = Transform(config.vision_config.image_size)
|
| 611 |
+
val_preprocess = torch.jit.script(val_preprocess)
|
| 612 |
+
|
| 613 |
+
# Initialize the image-text dataset
|
| 614 |
+
train_dataset = ImageTextDataset(
|
| 615 |
+
data_args.data_dir,
|
| 616 |
+
data_args.train_file,
|
| 617 |
+
captions_per_image=-1,
|
| 618 |
+
transform=train_preprocess,
|
| 619 |
+
seed=training_args.seed,
|
| 620 |
+
)
|
| 621 |
+
|
| 622 |
+
eval_dataset = ImageTextDataset(
|
| 623 |
+
data_args.data_dir,
|
| 624 |
+
data_args.validation_file,
|
| 625 |
+
captions_per_image=-1,
|
| 626 |
+
transform=val_preprocess,
|
| 627 |
+
seed=training_args.seed,
|
| 628 |
+
)
|
| 629 |
+
|
| 630 |
+
# Store some constant
|
| 631 |
+
num_epochs = int(training_args.num_train_epochs)
|
| 632 |
+
train_batch_size = (
|
| 633 |
+
int(training_args.per_device_train_batch_size) * jax.device_count()
|
| 634 |
+
)
|
| 635 |
+
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
|
| 636 |
+
steps_per_epoch = len(train_dataset) // train_batch_size
|
| 637 |
+
total_train_steps = steps_per_epoch * num_epochs
|
| 638 |
+
|
| 639 |
+
# Use collate function to tokenizer the text and convert the processed images to numpy
|
| 640 |
+
def collate_fn(examples):
|
| 641 |
+
pixel_values = (
|
| 642 |
+
torch.stack([example[0] for example in examples])
|
| 643 |
+
.permute(0, 2, 3, 1)
|
| 644 |
+
.numpy()
|
| 645 |
+
)
|
| 646 |
+
captions = [example[1] for example in examples]
|
| 647 |
+
inputs = tokenizer(
|
| 648 |
+
captions,
|
| 649 |
+
max_length=data_args.max_seq_length,
|
| 650 |
+
padding="max_length",
|
| 651 |
+
truncation=True,
|
| 652 |
+
return_tensors="np",
|
| 653 |
+
)
|
| 654 |
+
|
| 655 |
+
batch = {
|
| 656 |
+
"pixel_values": pixel_values,
|
| 657 |
+
"input_ids": inputs["input_ids"],
|
| 658 |
+
"attention_mask": inputs["attention_mask"],
|
| 659 |
+
}
|
| 660 |
+
|
| 661 |
+
return batch
|
| 662 |
+
|
| 663 |
+
# Create data loaders
|
| 664 |
+
train_loader = torch.utils.data.DataLoader(
|
| 665 |
+
train_dataset,
|
| 666 |
+
batch_size=train_batch_size,
|
| 667 |
+
shuffle=True,
|
| 668 |
+
num_workers=data_args.preprocessing_num_workers,
|
| 669 |
+
#persistent_workers=True,
|
| 670 |
+
drop_last=True,
|
| 671 |
+
collate_fn=collate_fn,
|
| 672 |
+
)
|
| 673 |
+
|
| 674 |
+
eval_loader = torch.utils.data.DataLoader(
|
| 675 |
+
eval_dataset,
|
| 676 |
+
batch_size=eval_batch_size,
|
| 677 |
+
shuffle=False,
|
| 678 |
+
num_workers=data_args.preprocessing_num_workers,
|
| 679 |
+
#persistent_workers=True,
|
| 680 |
+
drop_last=True,
|
| 681 |
+
collate_fn=collate_fn,
|
| 682 |
+
)
|
| 683 |
+
|
| 684 |
+
# Enable tensorboard only on the master node
|
| 685 |
+
if has_tensorboard and jax.process_index() == 0:
|
| 686 |
+
summary_writer = SummaryWriter(
|
| 687 |
+
log_dir=Path(training_args.output_dir).joinpath("logs").as_posix()
|
| 688 |
+
)
|
| 689 |
+
|
| 690 |
+
# Enable wandb
|
| 691 |
+
if jax.process_index() == 0 and args.log_wandb:
|
| 692 |
+
try:
|
| 693 |
+
wandb.init(
|
| 694 |
+
name=args.exp_name,
|
| 695 |
+
entity="galuh",
|
| 696 |
+
project="indoclip",
|
| 697 |
+
sync_tensorboard=True
|
| 698 |
+
)
|
| 699 |
+
wandb.config.update(training_args)
|
| 700 |
+
wandb.config.update(model_args)
|
| 701 |
+
wandb.config.update(data_args)
|
| 702 |
+
except ImportError as e:
|
| 703 |
+
print(e)
|
| 704 |
+
|
| 705 |
+
# Initialize our training
|
| 706 |
+
rng = jax.random.PRNGKey(training_args.seed)
|
| 707 |
+
rng, dropout_rng = jax.random.split(rng)
|
| 708 |
+
|
| 709 |
+
# Create learning rate schedule
|
| 710 |
+
if training_args.warmup_steps:
|
| 711 |
+
warmup_steps = training_args.warmup_steps
|
| 712 |
+
elif training_args.warmup_ratio:
|
| 713 |
+
warmup_steps = int(training_args.warmup_ratio * total_train_steps)
|
| 714 |
+
else:
|
| 715 |
+
raise RuntimeError(
|
| 716 |
+
"You have to specify either the warmup_steps or warmup_ratio CLI parameter"
|
| 717 |
+
)
|
| 718 |
+
|
| 719 |
+
decay_lr_schedule_fn = create_learning_rate_fn(
|
| 720 |
+
len(train_dataset),
|
| 721 |
+
train_batch_size,
|
| 722 |
+
training_args.num_train_epochs,
|
| 723 |
+
warmup_steps,
|
| 724 |
+
training_args.learning_rate,
|
| 725 |
+
linear=False, # set False to activate cosine annealing
|
| 726 |
+
)
|
| 727 |
+
|
| 728 |
+
# create adam optimizer
|
| 729 |
+
# optimizer = optax.adamw(
|
| 730 |
+
# learning_rate=decay_lr_schedule_fn,
|
| 731 |
+
# b1=training_args.adam_beta1,
|
| 732 |
+
# b2=training_args.adam_beta2,
|
| 733 |
+
# eps=training_args.adam_epsilon,
|
| 734 |
+
# weight_decay=training_args.weight_decay,
|
| 735 |
+
# )
|
| 736 |
+
|
| 737 |
+
optimizer = optax.chain(
|
| 738 |
+
optax.adaptive_grad_clip(0.01, eps=0.001),
|
| 739 |
+
optax.scale_by_belief(),
|
| 740 |
+
optax.scale_by_schedule(decay_lr_schedule_fn),
|
| 741 |
+
optax.scale(-1.0),
|
| 742 |
+
)
|
| 743 |
+
|
| 744 |
+
'''optimizer = optax.adafactor(
|
| 745 |
+
learning_rate=decay_lr_schedule_fn,
|
| 746 |
+
)'''
|
| 747 |
+
|
| 748 |
+
# Setup train state
|
| 749 |
+
state = TrainState.create(
|
| 750 |
+
apply_fn=model.__call__,
|
| 751 |
+
params=model.params,
|
| 752 |
+
tx=optimizer,
|
| 753 |
+
dropout_rng=dropout_rng,
|
| 754 |
+
)
|
| 755 |
+
|
| 756 |
+
def cross_entropy(logits, axis):
|
| 757 |
+
logprobs = jax.nn.log_softmax(logits, axis=axis)
|
| 758 |
+
nll = jnp.diag(logprobs)
|
| 759 |
+
ce = -jnp.mean(nll)
|
| 760 |
+
return ce
|
| 761 |
+
|
| 762 |
+
def clip_loss(similarity):
|
| 763 |
+
loss = (
|
| 764 |
+
cross_entropy(similarity, axis=0) + cross_entropy(similarity, axis=1)
|
| 765 |
+
) / 2
|
| 766 |
+
return loss
|
| 767 |
+
|
| 768 |
+
# Define gradient update step fn
|
| 769 |
+
def train_step(state, batch):
|
| 770 |
+
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
|
| 771 |
+
|
| 772 |
+
def compute_loss(params):
|
| 773 |
+
logits = state.apply_fn(
|
| 774 |
+
**batch, params=params, dropout_rng=dropout_rng, train=True
|
| 775 |
+
)[0]
|
| 776 |
+
loss = clip_loss(logits)
|
| 777 |
+
return loss
|
| 778 |
+
|
| 779 |
+
grad_fn = jax.value_and_grad(compute_loss)
|
| 780 |
+
loss, grad = grad_fn(state.params)
|
| 781 |
+
grad = jax.lax.pmean(grad, "batch")
|
| 782 |
+
|
| 783 |
+
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
|
| 784 |
+
|
| 785 |
+
metrics = {
|
| 786 |
+
"loss": loss,
|
| 787 |
+
"learning_rate": decay_lr_schedule_fn(state.step),
|
| 788 |
+
}
|
| 789 |
+
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
| 790 |
+
|
| 791 |
+
return new_state, metrics
|
| 792 |
+
|
| 793 |
+
# Define eval fn
|
| 794 |
+
def eval_step(params, batch):
|
| 795 |
+
logits = model(**batch, params=params, train=False)[0]
|
| 796 |
+
loss = clip_loss(logits)
|
| 797 |
+
|
| 798 |
+
# summarize metrics
|
| 799 |
+
metrics = {"loss": loss}
|
| 800 |
+
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
| 801 |
+
return metrics
|
| 802 |
+
|
| 803 |
+
# Create parallel version of the train and eval step
|
| 804 |
+
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
|
| 805 |
+
p_eval_step = jax.pmap(eval_step, "batch")
|
| 806 |
+
|
| 807 |
+
# Replicate the train state on each device
|
| 808 |
+
state = state.replicate()
|
| 809 |
+
|
| 810 |
+
logger.info("***** Running training *****")
|
| 811 |
+
logger.info(f" TPU = {jax.device_count()}")
|
| 812 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
| 813 |
+
logger.info(f" Num Epochs = {num_epochs}")
|
| 814 |
+
logger.info(
|
| 815 |
+
f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}"
|
| 816 |
+
)
|
| 817 |
+
logger.info(
|
| 818 |
+
f" Total train batch size (w. parallel & distributed) = {train_batch_size}"
|
| 819 |
+
)
|
| 820 |
+
logger.info(f" Total optimization steps = {total_train_steps}")
|
| 821 |
+
logger.info(f" Total warmup steps = {warmup_steps}")
|
| 822 |
+
|
| 823 |
+
train_time = 0
|
| 824 |
+
# Create sampling rng
|
| 825 |
+
rng, input_rng = jax.random.split(rng)
|
| 826 |
+
|
| 827 |
+
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
|
| 828 |
+
for epoch in epochs:
|
| 829 |
+
# ======================== Training ================================
|
| 830 |
+
train_start = time.time()
|
| 831 |
+
|
| 832 |
+
# Create sampling rng
|
| 833 |
+
rng, input_rng = jax.random.split(rng)
|
| 834 |
+
train_metrics = []
|
| 835 |
+
|
| 836 |
+
num_train_samples = len(train_dataset)
|
| 837 |
+
|
| 838 |
+
steps_per_epoch = len(train_dataset) // train_batch_size
|
| 839 |
+
train_step_progress_bar = tqdm(
|
| 840 |
+
total=steps_per_epoch, desc="Training...", position=1, leave=False
|
| 841 |
+
)
|
| 842 |
+
# train
|
| 843 |
+
for step, batch in enumerate(train_loader):
|
| 844 |
+
batch = shard(batch)
|
| 845 |
+
state, train_metric = p_train_step(state, batch)
|
| 846 |
+
train_metrics.append(train_metric)
|
| 847 |
+
|
| 848 |
+
train_step_progress_bar.update(1)
|
| 849 |
+
|
| 850 |
+
cur_step = epoch * (num_train_samples // train_batch_size) + step + 1
|
| 851 |
+
|
| 852 |
+
if cur_step % training_args.logging_steps == 0 and cur_step > 0:
|
| 853 |
+
train_time += time.time() - train_start
|
| 854 |
+
train_metric = unreplicate(train_metric)
|
| 855 |
+
|
| 856 |
+
# Save tensorboard metrics
|
| 857 |
+
if has_tensorboard and jax.process_index() == 0:
|
| 858 |
+
write_train_metric(
|
| 859 |
+
summary_writer, train_metrics, train_time, cur_step
|
| 860 |
+
)
|
| 861 |
+
|
| 862 |
+
# Save wandb metrics
|
| 863 |
+
if args.log_wandb and jax.process_index() == 0:
|
| 864 |
+
#_metrics = {k if k=="learning_rate" else f"train_{k}":mb_item(v.mean()) for k, v in train_metric.items()}
|
| 865 |
+
#_metrics = {k if k=="learning_rate" else f"train_{k}":mb_item(v.mean()) for k, v in train_metric.items()}
|
| 866 |
+
_metrics = {f'train_{k}': jax.device_get(v) for k,v in train_metric.items()}
|
| 867 |
+
wandb.log({"train_step":cur_step, **_metrics}, commit=True)
|
| 868 |
+
|
| 869 |
+
epochs.write(
|
| 870 |
+
f"Log at Step: {cur_step} (Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
|
| 871 |
+
)
|
| 872 |
+
|
| 873 |
+
logging.info("Emptying train metrics")
|
| 874 |
+
|
| 875 |
+
del train_metric
|
| 876 |
+
del train_metrics
|
| 877 |
+
train_metrics = []
|
| 878 |
+
|
| 879 |
+
gc.collect()
|
| 880 |
+
torch.cuda.empty_cache()
|
| 881 |
+
|
| 882 |
+
if cur_step % training_args.eval_steps == 0 and cur_step > 0:
|
| 883 |
+
# ======================== Evaluating ==============================
|
| 884 |
+
num_eval_samples = len(eval_dataset)
|
| 885 |
+
eval_metrics = []
|
| 886 |
+
eval_steps = len(eval_dataset) // eval_batch_size
|
| 887 |
+
eval_step_progress_bar = tqdm(
|
| 888 |
+
total=eval_steps, desc="Evaluating...", position=2, leave=False
|
| 889 |
+
)
|
| 890 |
+
for batch in eval_loader:
|
| 891 |
+
# Model forward
|
| 892 |
+
batch = shard(batch)
|
| 893 |
+
metrics = p_eval_step(state.params, batch)
|
| 894 |
+
eval_metrics.append(metrics)
|
| 895 |
+
|
| 896 |
+
eval_step_progress_bar.update(1)
|
| 897 |
+
|
| 898 |
+
# normalize eval metrics
|
| 899 |
+
eval_metrics = get_metrics(eval_metrics)
|
| 900 |
+
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
|
| 901 |
+
|
| 902 |
+
# Print metrics and update progress bar
|
| 903 |
+
desc = f"Eval at Step: {cur_step} (Loss: {eval_metrics['loss']})"
|
| 904 |
+
epochs.write(desc)
|
| 905 |
+
epochs.desc = desc
|
| 906 |
+
|
| 907 |
+
# Save tfboard eval
|
| 908 |
+
if has_tensorboard and jax.process_index() == 0:
|
| 909 |
+
write_eval_metric(summary_writer, eval_metrics, cur_step)
|
| 910 |
+
|
| 911 |
+
# Save eval wandb
|
| 912 |
+
if args.log_wandb and jax.process_index() == 0:
|
| 913 |
+
#_metrics = {f"eval_{k}":mb_item(v) for k, v in eval_metrics.items()}
|
| 914 |
+
_metrics = {f'eval_{k}': jax.device_get(v) for k,v in eval_metrics.items()}
|
| 915 |
+
wandb.log({"eval_step":cur_step, **_metrics})
|
| 916 |
+
|
| 917 |
+
logging.info("Emptying eval metrics")
|
| 918 |
+
del eval_metrics
|
| 919 |
+
|
| 920 |
+
eval_metrics = []
|
| 921 |
+
|
| 922 |
+
if cur_step % training_args.save_steps == 0 and cur_step > 0:
|
| 923 |
+
# save checkpoint after each epoch and push checkpoint to the hub
|
| 924 |
+
if jax.process_index() == 0:
|
| 925 |
+
# params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
| 926 |
+
# model.save_pretrained(
|
| 927 |
+
# training_args.output_dir,
|
| 928 |
+
# params=params,
|
| 929 |
+
# push_to_hub=training_args.push_to_hub,
|
| 930 |
+
# commit_message=f"Saving weights and logs of step {cur_step}",
|
| 931 |
+
# )
|
| 932 |
+
save_model_checkpoint(
|
| 933 |
+
model,
|
| 934 |
+
training_args.output_dir,
|
| 935 |
+
state,
|
| 936 |
+
logger,
|
| 937 |
+
training_args.push_to_hub_organization,
|
| 938 |
+
with_opt=True,
|
| 939 |
+
push_to_hub=training_args.push_to_hub,
|
| 940 |
+
overwrite=True,
|
| 941 |
+
)
|
| 942 |
+
# if model_args.save_optimizer:
|
| 943 |
+
# # this saves full state including optimizer
|
| 944 |
+
# save_checkpoint(training_args.output_dir, state, state.step, keep=training_args.save_total_limit, overwrite=True)
|
| 945 |
+
if training_args.save_total_limit is not None:
|
| 946 |
+
rotate_checkpoints(
|
| 947 |
+
training_args.output_dir,
|
| 948 |
+
training_args.save_total_limit,
|
| 949 |
+
logger,
|
| 950 |
+
)
|
| 951 |
+
|
| 952 |
+
train_step_progress_bar.close() #check
|
| 953 |
+
|
| 954 |
+
'''# save checkpoint after each epoch and push checkpoint to the hub
|
| 955 |
+
if jax.process_index() == 0:
|
| 956 |
+
params = jax.device_get(unreplicate(state.params))
|
| 957 |
+
model.save_pretrained(
|
| 958 |
+
training_args.output_dir + f"/{epoch+1}/",
|
| 959 |
+
params=params,
|
| 960 |
+
push_to_hub=training_args.push_to_hub,
|
| 961 |
+
commit_message=f"Saving weights and logs of epoch {epoch+1}",
|
| 962 |
+
)'''
|
| 963 |
+
|
| 964 |
+
# save model after training is over
|
| 965 |
+
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
| 966 |
+
model.save_pretrained(
|
| 967 |
+
training_args.output_dir,
|
| 968 |
+
params=params,
|
| 969 |
+
push_to_hub=training_args.push_to_hub,
|
| 970 |
+
commit_message="Add final model",
|
| 971 |
+
)
|
| 972 |
+
|
| 973 |
+
|
| 974 |
+
if __name__ == "__main__":
|
| 975 |
+
main()
|
| 976 |
+
|
hybrid_clip/run_hybrid_clip_backup.py
ADDED
|
@@ -0,0 +1,970 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding=utf-8
|
| 3 |
+
# Copyright 2021 The HuggingFace Team All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
"""
|
| 17 |
+
Training a CLIP like dual encoder models using text and vision encoders in the library.
|
| 18 |
+
|
| 19 |
+
The script can be used to train CLIP like models for languages other than english by using
|
| 20 |
+
a text encoder pre-trained in the desired language. Currently this script support the following vision
|
| 21 |
+
and text models:
|
| 22 |
+
Vision models: ViT(https://huggingface.co/models?filter=vit), CLIP (https://huggingface.co/models?filter=clip)
|
| 23 |
+
Text models: BERT, ROBERTa (https://huggingface.co/models?filter=masked-lm)
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
import json
|
| 27 |
+
import logging
|
| 28 |
+
import os
|
| 29 |
+
import sys
|
| 30 |
+
import time
|
| 31 |
+
import numpy as np
|
| 32 |
+
from dataclasses import dataclass, field
|
| 33 |
+
from pathlib import Path
|
| 34 |
+
from typing import Callable, Optional
|
| 35 |
+
import shutil
|
| 36 |
+
import gc
|
| 37 |
+
|
| 38 |
+
try:
|
| 39 |
+
from dotenv import load_dotenv
|
| 40 |
+
load_dotenv("../.env")
|
| 41 |
+
except:
|
| 42 |
+
print("Couldn't find ../.env file")
|
| 43 |
+
|
| 44 |
+
import wandb
|
| 45 |
+
from transformers.file_utils import PushToHubMixin
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
import torch
|
| 49 |
+
from torchvision.datasets import VisionDataset
|
| 50 |
+
from torchvision.io import ImageReadMode, read_image
|
| 51 |
+
from torchvision.transforms import (
|
| 52 |
+
CenterCrop,
|
| 53 |
+
ConvertImageDtype,
|
| 54 |
+
Normalize,
|
| 55 |
+
Resize,
|
| 56 |
+
ColorJitter,
|
| 57 |
+
RandomHorizontalFlip,
|
| 58 |
+
RandomRotation,
|
| 59 |
+
RandomCrop,
|
| 60 |
+
RandomAffine,
|
| 61 |
+
RandomPerspective,
|
| 62 |
+
RandomAutocontrast,
|
| 63 |
+
RandomEqualize,
|
| 64 |
+
)
|
| 65 |
+
from torchvision.transforms.functional import InterpolationMode
|
| 66 |
+
from tqdm import tqdm
|
| 67 |
+
|
| 68 |
+
import jax
|
| 69 |
+
import jax.numpy as jnp
|
| 70 |
+
import optax
|
| 71 |
+
import transformers
|
| 72 |
+
from flax import jax_utils
|
| 73 |
+
from flax.jax_utils import unreplicate
|
| 74 |
+
from flax.training import train_state
|
| 75 |
+
from flax.training.common_utils import get_metrics, shard, shard_prng_key
|
| 76 |
+
from modeling_hybrid_clip import FlaxHybridCLIP
|
| 77 |
+
from configuration_hybrid_clip import HybridCLIPConfig
|
| 78 |
+
from transformers import (
|
| 79 |
+
AutoTokenizer,
|
| 80 |
+
HfArgumentParser,
|
| 81 |
+
TrainingArguments,
|
| 82 |
+
is_tensorboard_available,
|
| 83 |
+
set_seed,
|
| 84 |
+
)
|
| 85 |
+
from numpy.random import default_rng
|
| 86 |
+
from flax.serialization import to_bytes, from_bytes
|
| 87 |
+
|
| 88 |
+
logger = logging.getLogger(__name__)
|
| 89 |
+
|
| 90 |
+
def mb_item(x):
|
| 91 |
+
return x.item() if hasattr(x, "item") else x
|
| 92 |
+
|
| 93 |
+
# checkpoint functions
|
| 94 |
+
def save_model_checkpoint(
|
| 95 |
+
model,
|
| 96 |
+
save_dir,
|
| 97 |
+
state,
|
| 98 |
+
logger,
|
| 99 |
+
organization,
|
| 100 |
+
with_opt: bool = False,
|
| 101 |
+
push_to_hub: bool = False,
|
| 102 |
+
overwrite=False,
|
| 103 |
+
**kwargs,
|
| 104 |
+
):
|
| 105 |
+
state = jax_utils.unreplicate(state)
|
| 106 |
+
#params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
| 107 |
+
logger.info(f"Saving Checkpoint in {save_dir}")
|
| 108 |
+
ckpt_save_dir = f"{save_dir}/ckpt-{mb_item(state.step)-1}"
|
| 109 |
+
if os.path.exists(ckpt_save_dir) and not overwrite:
|
| 110 |
+
logger.info("checkpoint exists, skipping overwrite")
|
| 111 |
+
else:
|
| 112 |
+
model.save_pretrained(
|
| 113 |
+
ckpt_save_dir, params=state.params, push_to_hub=False, **kwargs
|
| 114 |
+
)
|
| 115 |
+
if with_opt:
|
| 116 |
+
with open(os.path.join(ckpt_save_dir, "opt_state.msgpack"), "wb") as f:
|
| 117 |
+
f.write(to_bytes(state.opt_state))
|
| 118 |
+
with open(os.path.join(ckpt_save_dir, "training_state.json"), "w") as f:
|
| 119 |
+
json.dump({"step": state.step.item()}, f)
|
| 120 |
+
|
| 121 |
+
logger.info("checkpoint saved")
|
| 122 |
+
|
| 123 |
+
if push_to_hub:
|
| 124 |
+
repo_name = Path(save_dir).name
|
| 125 |
+
repo_url = PushToHubMixin._get_repo_url_from_name(
|
| 126 |
+
repo_name, organization=organization, private=False, use_auth_token=True
|
| 127 |
+
)
|
| 128 |
+
repo = PushToHubMixin._create_or_get_repo(
|
| 129 |
+
save_dir,
|
| 130 |
+
repo_url=repo_url,
|
| 131 |
+
organization=organization,
|
| 132 |
+
use_auth_token=True,
|
| 133 |
+
)
|
| 134 |
+
commit_message = f"Saving weights and logs at step {mb_item(state.step)-1}"
|
| 135 |
+
url = PushToHubMixin._push_to_hub(repo=repo, commit_message=commit_message)
|
| 136 |
+
logger.info(f"Model pushed to the hub in this commit: {url}")
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def restore_model_checkpoint(save_dir, state, logger):
|
| 140 |
+
logger.info(f"Restoring checkpoint from {save_dir}.")
|
| 141 |
+
with open(os.path.join(save_dir, "flax_model.msgpack"), "rb") as f:
|
| 142 |
+
params = from_bytes(state.params, f.read())
|
| 143 |
+
|
| 144 |
+
with open(os.path.join(save_dir, "opt_state.msgpack"), "rb") as f:
|
| 145 |
+
opt_state = from_bytes(state.opt_state, f.read())
|
| 146 |
+
|
| 147 |
+
with open(os.path.join(save_dir, "training_state.json"), "r") as f:
|
| 148 |
+
training_state = json.load(f)
|
| 149 |
+
step = training_state["step"]
|
| 150 |
+
|
| 151 |
+
logger.info("checkpoint restored")
|
| 152 |
+
# return state.replace(step=step, params=params, opt_state=opt_state), step
|
| 153 |
+
return params, opt_state, step
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def rotate_checkpoints(ckpt_dir: str, save_total_limit: int, logger):
|
| 157 |
+
"Removes older checkpoints so that `save_total_limit` checkpoints are kept"
|
| 158 |
+
# TODO: what to remove is decided using step number only, we might want to improve that
|
| 159 |
+
ckpts = [str(x) for x in Path(ckpt_dir).glob("ckpt-*")]
|
| 160 |
+
# sort checkpoints by step
|
| 161 |
+
ckpts_sorted = sorted(ckpts, key=lambda x: int(x.split("-")[-1]))
|
| 162 |
+
ckpts_to_delete = ckpts_sorted[:-save_total_limit]
|
| 163 |
+
for ckpt in ckpts_to_delete:
|
| 164 |
+
logger.info(
|
| 165 |
+
f"Deleting older checkpoint [{ckpt}] due to save_total_limit ({save_total_limit})"
|
| 166 |
+
)
|
| 167 |
+
shutil.rmtree(ckpt)
|
| 168 |
+
|
| 169 |
+
# Cache the result
|
| 170 |
+
has_tensorboard = is_tensorboard_available()
|
| 171 |
+
if has_tensorboard:
|
| 172 |
+
try:
|
| 173 |
+
from flax.metrics.tensorboard import SummaryWriter
|
| 174 |
+
except ImportError as ie:
|
| 175 |
+
has_tensorboard = False
|
| 176 |
+
print(
|
| 177 |
+
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
else:
|
| 181 |
+
print(
|
| 182 |
+
"Unable to display metrics through TensorBoard because the package is not installed: "
|
| 183 |
+
"Please run pip install tensorboard to enable."
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
@dataclass
|
| 188 |
+
class ModelArguments:
|
| 189 |
+
"""
|
| 190 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
|
| 191 |
+
"""
|
| 192 |
+
|
| 193 |
+
text_model_name_or_path: str = field(
|
| 194 |
+
metadata={
|
| 195 |
+
"help": "The text model checkpoint for weights initialization."
|
| 196 |
+
"Don't set if you want to train a model from scratch."
|
| 197 |
+
},
|
| 198 |
+
)
|
| 199 |
+
vision_model_name_or_path: str = field(
|
| 200 |
+
metadata={
|
| 201 |
+
"help": "The vision model checkpoint for weights initialization."
|
| 202 |
+
"Don't set if you want to train a model from scratch."
|
| 203 |
+
},
|
| 204 |
+
)
|
| 205 |
+
from_pt: bool = field(
|
| 206 |
+
default=True,
|
| 207 |
+
metadata={
|
| 208 |
+
"help": "whether to load the text and vision model using PyTorch checkpoints."
|
| 209 |
+
},
|
| 210 |
+
)
|
| 211 |
+
config_name: Optional[str] = field(
|
| 212 |
+
default=None,
|
| 213 |
+
metadata={
|
| 214 |
+
"help": "Pretrained config name or path if not the same as model_name"
|
| 215 |
+
},
|
| 216 |
+
)
|
| 217 |
+
tokenizer_name: Optional[str] = field(
|
| 218 |
+
default=None,
|
| 219 |
+
metadata={
|
| 220 |
+
"help": "Pretrained tokenizer name or path if not the same as model_name"
|
| 221 |
+
},
|
| 222 |
+
)
|
| 223 |
+
cache_dir: Optional[str] = field(
|
| 224 |
+
default=None,
|
| 225 |
+
metadata={
|
| 226 |
+
"help": "Where do you want to store the pretrained models downloaded from s3"
|
| 227 |
+
},
|
| 228 |
+
)
|
| 229 |
+
use_fast_tokenizer: bool = field(
|
| 230 |
+
default=True,
|
| 231 |
+
metadata={
|
| 232 |
+
"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."
|
| 233 |
+
},
|
| 234 |
+
)
|
| 235 |
+
dtype: Optional[str] = field(
|
| 236 |
+
default="float32",
|
| 237 |
+
metadata={
|
| 238 |
+
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
|
| 239 |
+
},
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
@dataclass
|
| 244 |
+
class DataTrainingArguments:
|
| 245 |
+
"""
|
| 246 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
| 247 |
+
"""
|
| 248 |
+
|
| 249 |
+
data_dir: Optional[str] = field(
|
| 250 |
+
default=None, metadata={"help": "The data directory containing input files."}
|
| 251 |
+
)
|
| 252 |
+
train_file: Optional[str] = field(
|
| 253 |
+
default=None,
|
| 254 |
+
metadata={"help": "The input training data file (a jsonlines file)."},
|
| 255 |
+
)
|
| 256 |
+
validation_file: Optional[str] = field(
|
| 257 |
+
default=None,
|
| 258 |
+
metadata={"help": "An optional input evaluation data file (a jsonlines file)."},
|
| 259 |
+
)
|
| 260 |
+
max_seq_length: Optional[int] = field(
|
| 261 |
+
default=72,
|
| 262 |
+
metadata={
|
| 263 |
+
"help": "The maximum total input sequence length after tokenization. Sequences longer "
|
| 264 |
+
"than this will be truncated, sequences shorter will be padded."
|
| 265 |
+
},
|
| 266 |
+
)
|
| 267 |
+
max_train_samples: Optional[int] = field(
|
| 268 |
+
default=None,
|
| 269 |
+
metadata={
|
| 270 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
| 271 |
+
"value if set."
|
| 272 |
+
},
|
| 273 |
+
)
|
| 274 |
+
max_eval_samples: Optional[int] = field(
|
| 275 |
+
default=None,
|
| 276 |
+
metadata={
|
| 277 |
+
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
| 278 |
+
"value if set."
|
| 279 |
+
},
|
| 280 |
+
)
|
| 281 |
+
overwrite_cache: bool = field(
|
| 282 |
+
default=False,
|
| 283 |
+
metadata={"help": "Overwrite the cached training and evaluation sets"},
|
| 284 |
+
)
|
| 285 |
+
overwrite_cache: bool = field(
|
| 286 |
+
default=False,
|
| 287 |
+
metadata={"help": "Overwrite the cached training and evaluation sets"},
|
| 288 |
+
)
|
| 289 |
+
preprocessing_num_workers: Optional[int] = field(
|
| 290 |
+
default=None,
|
| 291 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
def __post_init__(self):
|
| 295 |
+
if self.train_file is None and self.validation_file is None:
|
| 296 |
+
raise ValueError(
|
| 297 |
+
"Need either a dataset name or a training/validation file."
|
| 298 |
+
)
|
| 299 |
+
else:
|
| 300 |
+
if self.train_file is not None:
|
| 301 |
+
extension = self.train_file.split(".")[-1]
|
| 302 |
+
assert extension == "json", "`train_file` should be a json file."
|
| 303 |
+
if self.validation_file is not None:
|
| 304 |
+
extension = self.validation_file.split(".")[-1]
|
| 305 |
+
assert extension == "json", "`validation_file` should be a json file."
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
# We use torchvision for faster image pre-processing.
|
| 309 |
+
# We need to ensure faster processing speed as it can become a bottleneck on TPU
|
| 310 |
+
class Transform(torch.nn.Module):
|
| 311 |
+
def __init__(self, image_size, augment=False):
|
| 312 |
+
super().__init__()
|
| 313 |
+
if not augment:
|
| 314 |
+
self.transforms = torch.nn.Sequential(
|
| 315 |
+
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
|
| 316 |
+
CenterCrop(image_size),
|
| 317 |
+
ConvertImageDtype(torch.float),
|
| 318 |
+
Normalize(
|
| 319 |
+
(0.48145466, 0.4578275, 0.40821073),
|
| 320 |
+
(0.26862954, 0.26130258, 0.27577711),
|
| 321 |
+
),
|
| 322 |
+
)
|
| 323 |
+
else:
|
| 324 |
+
self.transforms = torch.nn.Sequential(
|
| 325 |
+
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
|
| 326 |
+
# CenterCrop(image_size),
|
| 327 |
+
RandomCrop([image_size], pad_if_needed=True, padding_mode="edge"),
|
| 328 |
+
ColorJitter(hue=0.1),
|
| 329 |
+
RandomHorizontalFlip(),
|
| 330 |
+
# RandomRotation(15, interpolation=InterpolationMode.BILINEAR, fill=128),
|
| 331 |
+
RandomAffine(
|
| 332 |
+
degrees=15,
|
| 333 |
+
translate=(0.1, 0.1),
|
| 334 |
+
scale=(0.8, 1.2),
|
| 335 |
+
shear=(-15, 15, -15, 15),
|
| 336 |
+
interpolation=InterpolationMode.BILINEAR,
|
| 337 |
+
fill=127,
|
| 338 |
+
),
|
| 339 |
+
RandomPerspective(
|
| 340 |
+
distortion_scale=0.3,
|
| 341 |
+
p=0.3,
|
| 342 |
+
interpolation=InterpolationMode.BILINEAR,
|
| 343 |
+
fill=127,
|
| 344 |
+
),
|
| 345 |
+
RandomAutocontrast(p=0.3),
|
| 346 |
+
RandomEqualize(p=0.3),
|
| 347 |
+
ConvertImageDtype(torch.float),
|
| 348 |
+
Normalize(
|
| 349 |
+
(0.48145466, 0.4578275, 0.40821073),
|
| 350 |
+
(0.26862954, 0.26130258, 0.27577711),
|
| 351 |
+
),
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 355 |
+
with torch.no_grad():
|
| 356 |
+
x = self.transforms(x)
|
| 357 |
+
return x
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
class ImageTextDataset(VisionDataset):
|
| 361 |
+
"""
|
| 362 |
+
Dtaset for loading image-text data for tasks like CLIP training, Image Captioning.
|
| 363 |
+
|
| 364 |
+
Args:
|
| 365 |
+
root: (string): The root path where the dataset is stored
|
| 366 |
+
file_path: (string): Path to the file containing the image_paths and associated captions.
|
| 367 |
+
The expected format is jsonlines where each line is a json object containing to keys.
|
| 368 |
+
`image_path`: The path to the image.
|
| 369 |
+
`captions`: An `array` of captions.
|
| 370 |
+
transform (callable, optional): A function/transform that takes in an PIL image
|
| 371 |
+
and returns a transformed version. E.g, ``transforms.ToTensor``
|
| 372 |
+
target_transform (callable, optional): A function/transform that takes in the
|
| 373 |
+
target and transforms it.
|
| 374 |
+
transforms (callable, optional): A function/transform that takes input sample and its target as entry
|
| 375 |
+
and returns a transformed version.
|
| 376 |
+
"""
|
| 377 |
+
|
| 378 |
+
def __init__(
|
| 379 |
+
self,
|
| 380 |
+
root: str,
|
| 381 |
+
file_path: str,
|
| 382 |
+
captions_per_image=-1,
|
| 383 |
+
transform: Optional[Callable] = None,
|
| 384 |
+
target_transform: Optional[Callable] = None,
|
| 385 |
+
transforms: Optional[Callable] = None,
|
| 386 |
+
seed=42,
|
| 387 |
+
):
|
| 388 |
+
super().__init__(root, transforms, transform, target_transform)
|
| 389 |
+
with open(file_path, "r") as f:
|
| 390 |
+
examples = [json.loads(line) for line in f.readlines()]
|
| 391 |
+
|
| 392 |
+
self.rand_generator = default_rng(seed)
|
| 393 |
+
|
| 394 |
+
self.captions = []
|
| 395 |
+
self.image_paths = []
|
| 396 |
+
|
| 397 |
+
for example in examples:
|
| 398 |
+
if captions_per_image <= -1:
|
| 399 |
+
self.captions.append(example["captions"])
|
| 400 |
+
elif captions_per_image > 0:
|
| 401 |
+
self.captions.append(example["captions"][:captions_per_image])
|
| 402 |
+
else:
|
| 403 |
+
raise ValueError("captions per image cannot be zero")
|
| 404 |
+
|
| 405 |
+
self.image_paths.append(example["image_path"])
|
| 406 |
+
|
| 407 |
+
def _load_image(self, idx: int):
|
| 408 |
+
path = self.image_paths[idx]
|
| 409 |
+
im = read_image(path, mode=ImageReadMode.RGB)
|
| 410 |
+
return im
|
| 411 |
+
|
| 412 |
+
def _load_target(self, idx):
|
| 413 |
+
return self.rand_generator.choice(self.captions[idx])
|
| 414 |
+
# if len(self.captions[idx]) > 1:
|
| 415 |
+
# caption_idx = np.random.randint(0, len(self.captions[idx]))
|
| 416 |
+
# else:
|
| 417 |
+
# caption_idx = 0
|
| 418 |
+
# return self.captions[idx][caption_idx]
|
| 419 |
+
|
| 420 |
+
def __getitem__(self, index: int):
|
| 421 |
+
image = self._load_image(index)
|
| 422 |
+
target = self._load_target(index)
|
| 423 |
+
|
| 424 |
+
if self.transforms is not None:
|
| 425 |
+
image, target = self.transforms(image, target)
|
| 426 |
+
|
| 427 |
+
return image, target
|
| 428 |
+
|
| 429 |
+
def __len__(self) -> int:
|
| 430 |
+
return len(self.captions)
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
class TrainState(train_state.TrainState):
|
| 434 |
+
dropout_rng: jnp.ndarray
|
| 435 |
+
|
| 436 |
+
def replicate(self):
|
| 437 |
+
return jax_utils.replicate(self).replace(
|
| 438 |
+
dropout_rng=shard_prng_key(self.dropout_rng)
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
def write_train_metric(summary_writer, train_metrics, train_time, step):
|
| 442 |
+
summary_writer.scalar("train_time", train_time, step)
|
| 443 |
+
|
| 444 |
+
train_metrics = get_metrics(train_metrics)
|
| 445 |
+
for key, vals in train_metrics.items():
|
| 446 |
+
tag = f"train_{key}"
|
| 447 |
+
for i, val in enumerate(vals):
|
| 448 |
+
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
def write_eval_metric(summary_writer, eval_metrics, step):
|
| 452 |
+
for metric_name, value in eval_metrics.items():
|
| 453 |
+
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
| 454 |
+
|
| 455 |
+
|
| 456 |
+
def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):
|
| 457 |
+
summary_writer.scalar("train_time", train_time, step)
|
| 458 |
+
|
| 459 |
+
train_metrics = get_metrics(train_metrics)
|
| 460 |
+
for key, vals in train_metrics.items():
|
| 461 |
+
tag = f"train_{key}"
|
| 462 |
+
for i, val in enumerate(vals):
|
| 463 |
+
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
| 464 |
+
|
| 465 |
+
for metric_name, value in eval_metrics.items():
|
| 466 |
+
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
def create_learning_rate_fn(
|
| 470 |
+
train_ds_size: int,
|
| 471 |
+
train_batch_size: int,
|
| 472 |
+
num_train_epochs: int,
|
| 473 |
+
num_warmup_steps: int,
|
| 474 |
+
learning_rate: float,
|
| 475 |
+
linear=False,
|
| 476 |
+
) -> Callable[[int], jnp.array]:
|
| 477 |
+
"""Returns a linear warmup, linear_decay learning rate function."""
|
| 478 |
+
steps_per_epoch = train_ds_size // train_batch_size
|
| 479 |
+
num_train_steps = steps_per_epoch * num_train_epochs
|
| 480 |
+
if linear:
|
| 481 |
+
warmup_fn = optax.linear_schedule(
|
| 482 |
+
init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps
|
| 483 |
+
)
|
| 484 |
+
decay_fn = optax.linear_schedule(
|
| 485 |
+
init_value=learning_rate,
|
| 486 |
+
end_value=0,
|
| 487 |
+
transition_steps=num_train_steps - num_warmup_steps,
|
| 488 |
+
)
|
| 489 |
+
else:
|
| 490 |
+
warmup_fn = optax.linear_schedule(
|
| 491 |
+
init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps
|
| 492 |
+
)
|
| 493 |
+
decay_fn = optax.cosine_decay_schedule(
|
| 494 |
+
init_value=learning_rate,
|
| 495 |
+
decay_steps=num_train_steps - num_warmup_steps,
|
| 496 |
+
alpha=0.0,
|
| 497 |
+
)
|
| 498 |
+
schedule_fn = optax.join_schedules(
|
| 499 |
+
schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]
|
| 500 |
+
)
|
| 501 |
+
return schedule_fn
|
| 502 |
+
|
| 503 |
+
|
| 504 |
+
def main():
|
| 505 |
+
parser = HfArgumentParser(
|
| 506 |
+
(ModelArguments, DataTrainingArguments, TrainingArguments)
|
| 507 |
+
)
|
| 508 |
+
parser.add_argument("--log_wandb", action="store_true")
|
| 509 |
+
parser.add_argument("--freeze_backbones", action="store_true")
|
| 510 |
+
parser.add_argument("--exp_name", type=str, default=None)
|
| 511 |
+
parser.add_argument("--run_from_checkpoint", type=str, default=None)
|
| 512 |
+
|
| 513 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
| 514 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
| 515 |
+
# let's parse it to get our arguments.
|
| 516 |
+
model_args, data_args, training_args = parser.parse_json_file(
|
| 517 |
+
json_file=os.path.abspath(sys.argv[1])
|
| 518 |
+
)
|
| 519 |
+
else:
|
| 520 |
+
(
|
| 521 |
+
model_args,
|
| 522 |
+
data_args,
|
| 523 |
+
training_args,
|
| 524 |
+
args,
|
| 525 |
+
) = parser.parse_args_into_dataclasses()
|
| 526 |
+
|
| 527 |
+
if (
|
| 528 |
+
os.path.exists(training_args.output_dir)
|
| 529 |
+
and os.listdir(training_args.output_dir)
|
| 530 |
+
and training_args.do_train
|
| 531 |
+
and not training_args.overwrite_output_dir
|
| 532 |
+
):
|
| 533 |
+
raise ValueError(
|
| 534 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty."
|
| 535 |
+
"Use --overwrite_output_dir to overcome."
|
| 536 |
+
)
|
| 537 |
+
|
| 538 |
+
# Make one log on every process with the configuration for debugging.
|
| 539 |
+
logging.basicConfig(
|
| 540 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 541 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
| 542 |
+
level=logging.INFO,
|
| 543 |
+
)
|
| 544 |
+
# Setup logging, we only want one process per machine to log things on the screen.
|
| 545 |
+
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
| 546 |
+
if jax.process_index() == 0:
|
| 547 |
+
transformers.utils.logging.set_verbosity_info()
|
| 548 |
+
else:
|
| 549 |
+
transformers.utils.logging.set_verbosity_error()
|
| 550 |
+
|
| 551 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
| 552 |
+
logger.info(f"Training/evaluation parameters {training_args}")
|
| 553 |
+
|
| 554 |
+
if model_args.tokenizer_name:
|
| 555 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 556 |
+
model_args.tokenizer_name,
|
| 557 |
+
cache_dir=model_args.cache_dir,
|
| 558 |
+
use_fast=model_args.use_fast_tokenizer
|
| 559 |
+
)
|
| 560 |
+
elif model_args.text_model_name_or_path:
|
| 561 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 562 |
+
model_args.text_model_name_or_path,
|
| 563 |
+
cache_dir=model_args.cache_dir,
|
| 564 |
+
use_fast=model_args.use_fast_tokenizer,
|
| 565 |
+
)
|
| 566 |
+
else:
|
| 567 |
+
raise ValueError(
|
| 568 |
+
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
|
| 569 |
+
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
| 570 |
+
)
|
| 571 |
+
|
| 572 |
+
|
| 573 |
+
if args.run_from_checkpoint is not None:
|
| 574 |
+
with open(f"{args.run_from_checkpoint}/config.json", "r") as fp:
|
| 575 |
+
config_dict = json.load(fp)
|
| 576 |
+
config_dict["vision_config"]["model_type"] = "clip"
|
| 577 |
+
config = HybridCLIPConfig(**config_dict)
|
| 578 |
+
model = FlaxHybridCLIP.from_pretrained(
|
| 579 |
+
args.run_from_checkpoint,
|
| 580 |
+
seed=training_args.seed,
|
| 581 |
+
dtype=getattr(jnp, model_args.dtype),
|
| 582 |
+
config=config,
|
| 583 |
+
freeze_backbones=args.freeze_backbones
|
| 584 |
+
)
|
| 585 |
+
else:
|
| 586 |
+
|
| 587 |
+
model = FlaxHybridCLIP.from_text_vision_pretrained(
|
| 588 |
+
model_args.text_model_name_or_path,
|
| 589 |
+
model_args.vision_model_name_or_path,
|
| 590 |
+
seed=training_args.seed,
|
| 591 |
+
dtype=getattr(jnp, model_args.dtype),
|
| 592 |
+
text_from_pt=False,
|
| 593 |
+
vision_from_pt=model_args.from_pt,
|
| 594 |
+
freeze_backbones=args.freeze_backbones
|
| 595 |
+
)
|
| 596 |
+
config = model.config
|
| 597 |
+
# set seed for torch dataloaders
|
| 598 |
+
set_seed(training_args.seed)
|
| 599 |
+
|
| 600 |
+
# Initialize torchvision transforms and jit them for faster processing
|
| 601 |
+
train_preprocess = Transform(config.vision_config.image_size, augment=True)
|
| 602 |
+
train_preprocess = torch.jit.script(train_preprocess)
|
| 603 |
+
|
| 604 |
+
val_preprocess = Transform(config.vision_config.image_size)
|
| 605 |
+
val_preprocess = torch.jit.script(val_preprocess)
|
| 606 |
+
|
| 607 |
+
# Initialize the image-text dataset
|
| 608 |
+
train_dataset = ImageTextDataset(
|
| 609 |
+
data_args.data_dir,
|
| 610 |
+
data_args.train_file,
|
| 611 |
+
captions_per_image=-1,
|
| 612 |
+
transform=train_preprocess,
|
| 613 |
+
seed=training_args.seed,
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
eval_dataset = ImageTextDataset(
|
| 617 |
+
data_args.data_dir,
|
| 618 |
+
data_args.validation_file,
|
| 619 |
+
captions_per_image=-1,
|
| 620 |
+
transform=val_preprocess,
|
| 621 |
+
seed=training_args.seed,
|
| 622 |
+
)
|
| 623 |
+
|
| 624 |
+
# Store some constant
|
| 625 |
+
num_epochs = int(training_args.num_train_epochs)
|
| 626 |
+
train_batch_size = (
|
| 627 |
+
int(training_args.per_device_train_batch_size) * jax.device_count()
|
| 628 |
+
)
|
| 629 |
+
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
|
| 630 |
+
steps_per_epoch = len(train_dataset) // train_batch_size
|
| 631 |
+
total_train_steps = steps_per_epoch * num_epochs
|
| 632 |
+
|
| 633 |
+
# Use collate function to tokenizer the text and convert the processed images to numpy
|
| 634 |
+
def collate_fn(examples):
|
| 635 |
+
pixel_values = (
|
| 636 |
+
torch.stack([example[0] for example in examples])
|
| 637 |
+
.permute(0, 2, 3, 1)
|
| 638 |
+
.numpy()
|
| 639 |
+
)
|
| 640 |
+
captions = [example[1] for example in examples]
|
| 641 |
+
inputs = tokenizer(
|
| 642 |
+
captions,
|
| 643 |
+
max_length=data_args.max_seq_length,
|
| 644 |
+
padding="max_length",
|
| 645 |
+
truncation=True,
|
| 646 |
+
return_tensors="np",
|
| 647 |
+
)
|
| 648 |
+
|
| 649 |
+
batch = {
|
| 650 |
+
"pixel_values": pixel_values,
|
| 651 |
+
"input_ids": inputs["input_ids"],
|
| 652 |
+
"attention_mask": inputs["attention_mask"],
|
| 653 |
+
}
|
| 654 |
+
|
| 655 |
+
return batch
|
| 656 |
+
|
| 657 |
+
# Create data loaders
|
| 658 |
+
train_loader = torch.utils.data.DataLoader(
|
| 659 |
+
train_dataset,
|
| 660 |
+
batch_size=train_batch_size,
|
| 661 |
+
shuffle=True,
|
| 662 |
+
num_workers=data_args.preprocessing_num_workers,
|
| 663 |
+
#persistent_workers=True,
|
| 664 |
+
drop_last=True,
|
| 665 |
+
collate_fn=collate_fn,
|
| 666 |
+
)
|
| 667 |
+
|
| 668 |
+
eval_loader = torch.utils.data.DataLoader(
|
| 669 |
+
eval_dataset,
|
| 670 |
+
batch_size=eval_batch_size,
|
| 671 |
+
shuffle=False,
|
| 672 |
+
num_workers=data_args.preprocessing_num_workers,
|
| 673 |
+
#persistent_workers=True,
|
| 674 |
+
drop_last=True,
|
| 675 |
+
collate_fn=collate_fn,
|
| 676 |
+
)
|
| 677 |
+
|
| 678 |
+
# Enable tensorboard only on the master node
|
| 679 |
+
if has_tensorboard and jax.process_index() == 0:
|
| 680 |
+
summary_writer = SummaryWriter(
|
| 681 |
+
log_dir=Path(training_args.output_dir).joinpath("logs").as_posix()
|
| 682 |
+
)
|
| 683 |
+
|
| 684 |
+
# Enable wandb
|
| 685 |
+
if jax.process_index() == 0 and args.log_wandb:
|
| 686 |
+
try:
|
| 687 |
+
wandb.init(
|
| 688 |
+
name=args.exp_name,
|
| 689 |
+
entity="galuh",
|
| 690 |
+
project="clip-indonesian",
|
| 691 |
+
sync_tensorboard=True
|
| 692 |
+
)
|
| 693 |
+
wandb.config.update(training_args)
|
| 694 |
+
wandb.config.update(model_args)
|
| 695 |
+
wandb.config.update(data_args)
|
| 696 |
+
except ImportError as e:
|
| 697 |
+
print(e)
|
| 698 |
+
|
| 699 |
+
# Initialize our training
|
| 700 |
+
rng = jax.random.PRNGKey(training_args.seed)
|
| 701 |
+
rng, dropout_rng = jax.random.split(rng)
|
| 702 |
+
|
| 703 |
+
# Create learning rate schedule
|
| 704 |
+
if training_args.warmup_steps:
|
| 705 |
+
warmup_steps = training_args.warmup_steps
|
| 706 |
+
elif training_args.warmup_ratio:
|
| 707 |
+
warmup_steps = int(training_args.warmup_ratio * total_train_steps)
|
| 708 |
+
else:
|
| 709 |
+
raise RuntimeError(
|
| 710 |
+
"You have to specify either the warmup_steps or warmup_ratio CLI parameter"
|
| 711 |
+
)
|
| 712 |
+
|
| 713 |
+
decay_lr_schedule_fn = create_learning_rate_fn(
|
| 714 |
+
len(train_dataset),
|
| 715 |
+
train_batch_size,
|
| 716 |
+
training_args.num_train_epochs,
|
| 717 |
+
warmup_steps,
|
| 718 |
+
training_args.learning_rate,
|
| 719 |
+
linear=False, # set False to activate cosine annealing
|
| 720 |
+
)
|
| 721 |
+
|
| 722 |
+
# create adam optimizer
|
| 723 |
+
# optimizer = optax.adamw(
|
| 724 |
+
# learning_rate=decay_lr_schedule_fn,
|
| 725 |
+
# b1=training_args.adam_beta1,
|
| 726 |
+
# b2=training_args.adam_beta2,
|
| 727 |
+
# eps=training_args.adam_epsilon,
|
| 728 |
+
# weight_decay=training_args.weight_decay,
|
| 729 |
+
# )
|
| 730 |
+
|
| 731 |
+
optimizer = optax.chain(
|
| 732 |
+
optax.adaptive_grad_clip(0.01, eps=0.001),
|
| 733 |
+
optax.scale_by_belief(),
|
| 734 |
+
optax.scale_by_schedule(decay_lr_schedule_fn),
|
| 735 |
+
optax.scale(-1.0),
|
| 736 |
+
)
|
| 737 |
+
|
| 738 |
+
'''optimizer = optax.adafactor(
|
| 739 |
+
learning_rate=decay_lr_schedule_fn,
|
| 740 |
+
)'''
|
| 741 |
+
|
| 742 |
+
# Setup train state
|
| 743 |
+
state = TrainState.create(
|
| 744 |
+
apply_fn=model.__call__,
|
| 745 |
+
params=model.params,
|
| 746 |
+
tx=optimizer,
|
| 747 |
+
dropout_rng=dropout_rng,
|
| 748 |
+
)
|
| 749 |
+
|
| 750 |
+
def cross_entropy(logits, axis):
|
| 751 |
+
logprobs = jax.nn.log_softmax(logits, axis=axis)
|
| 752 |
+
nll = jnp.diag(logprobs)
|
| 753 |
+
ce = -jnp.mean(nll)
|
| 754 |
+
return ce
|
| 755 |
+
|
| 756 |
+
def clip_loss(similarity):
|
| 757 |
+
loss = (
|
| 758 |
+
cross_entropy(similarity, axis=0) + cross_entropy(similarity, axis=1)
|
| 759 |
+
) / 2
|
| 760 |
+
return loss
|
| 761 |
+
|
| 762 |
+
# Define gradient update step fn
|
| 763 |
+
def train_step(state, batch):
|
| 764 |
+
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
|
| 765 |
+
|
| 766 |
+
def compute_loss(params):
|
| 767 |
+
logits = state.apply_fn(
|
| 768 |
+
**batch, params=params, dropout_rng=dropout_rng, train=True
|
| 769 |
+
)[0]
|
| 770 |
+
loss = clip_loss(logits)
|
| 771 |
+
return loss
|
| 772 |
+
|
| 773 |
+
grad_fn = jax.value_and_grad(compute_loss)
|
| 774 |
+
loss, grad = grad_fn(state.params)
|
| 775 |
+
grad = jax.lax.pmean(grad, "batch")
|
| 776 |
+
|
| 777 |
+
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
|
| 778 |
+
|
| 779 |
+
metrics = {
|
| 780 |
+
"loss": loss,
|
| 781 |
+
"learning_rate": decay_lr_schedule_fn(state.step),
|
| 782 |
+
}
|
| 783 |
+
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
| 784 |
+
|
| 785 |
+
return new_state, metrics
|
| 786 |
+
|
| 787 |
+
# Define eval fn
|
| 788 |
+
def eval_step(params, batch):
|
| 789 |
+
logits = model(**batch, params=params, train=False)[0]
|
| 790 |
+
loss = clip_loss(logits)
|
| 791 |
+
|
| 792 |
+
# summarize metrics
|
| 793 |
+
metrics = {"loss": loss}
|
| 794 |
+
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
| 795 |
+
return metrics
|
| 796 |
+
|
| 797 |
+
# Create parallel version of the train and eval step
|
| 798 |
+
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
|
| 799 |
+
p_eval_step = jax.pmap(eval_step, "batch")
|
| 800 |
+
|
| 801 |
+
# Replicate the train state on each device
|
| 802 |
+
state = state.replicate()
|
| 803 |
+
|
| 804 |
+
logger.info("***** Running training *****")
|
| 805 |
+
logger.info(f" TPU = {jax.device_count()}")
|
| 806 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
| 807 |
+
logger.info(f" Num Epochs = {num_epochs}")
|
| 808 |
+
logger.info(
|
| 809 |
+
f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}"
|
| 810 |
+
)
|
| 811 |
+
logger.info(
|
| 812 |
+
f" Total train batch size (w. parallel & distributed) = {train_batch_size}"
|
| 813 |
+
)
|
| 814 |
+
logger.info(f" Total optimization steps = {total_train_steps}")
|
| 815 |
+
logger.info(f" Total warmup steps = {warmup_steps}")
|
| 816 |
+
|
| 817 |
+
train_time = 0
|
| 818 |
+
# Create sampling rng
|
| 819 |
+
rng, input_rng = jax.random.split(rng)
|
| 820 |
+
|
| 821 |
+
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
|
| 822 |
+
for epoch in epochs:
|
| 823 |
+
# ======================== Training ================================
|
| 824 |
+
train_start = time.time()
|
| 825 |
+
|
| 826 |
+
# Create sampling rng
|
| 827 |
+
rng, input_rng = jax.random.split(rng)
|
| 828 |
+
train_metrics = []
|
| 829 |
+
|
| 830 |
+
num_train_samples = len(train_dataset)
|
| 831 |
+
|
| 832 |
+
steps_per_epoch = len(train_dataset) // train_batch_size
|
| 833 |
+
train_step_progress_bar = tqdm(
|
| 834 |
+
total=steps_per_epoch, desc="Training...", position=1, leave=False
|
| 835 |
+
)
|
| 836 |
+
# train
|
| 837 |
+
for step, batch in enumerate(train_loader):
|
| 838 |
+
batch = shard(batch)
|
| 839 |
+
state, train_metric = p_train_step(state, batch)
|
| 840 |
+
train_metrics.append(train_metric)
|
| 841 |
+
|
| 842 |
+
train_step_progress_bar.update(1)
|
| 843 |
+
|
| 844 |
+
cur_step = epoch * (num_train_samples // train_batch_size) + step + 1
|
| 845 |
+
|
| 846 |
+
if cur_step % training_args.logging_steps == 0 and cur_step > 0:
|
| 847 |
+
train_time += time.time() - train_start
|
| 848 |
+
train_metric = unreplicate(train_metric)
|
| 849 |
+
|
| 850 |
+
# Save tensorboard metrics
|
| 851 |
+
if has_tensorboard and jax.process_index() == 0:
|
| 852 |
+
write_train_metric(
|
| 853 |
+
summary_writer, train_metrics, train_time, cur_step
|
| 854 |
+
)
|
| 855 |
+
|
| 856 |
+
# Save wandb metrics
|
| 857 |
+
if args.log_wandb and jax.process_index() == 0:
|
| 858 |
+
#_metrics = {k if k=="learning_rate" else f"train_{k}":mb_item(v.mean()) for k, v in train_metric.items()}
|
| 859 |
+
#_metrics = {k if k=="learning_rate" else f"train_{k}":mb_item(v.mean()) for k, v in train_metric.items()}
|
| 860 |
+
_metrics = {f'train_{k}': jax.device_get(v) for k,v in train_metric.items()}
|
| 861 |
+
wandb.log({"train_step":cur_step, **_metrics}, commit=True)
|
| 862 |
+
|
| 863 |
+
epochs.write(
|
| 864 |
+
f"Log at Step: {cur_step} (Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
|
| 865 |
+
)
|
| 866 |
+
|
| 867 |
+
logging.info("Emptying train metrics")
|
| 868 |
+
|
| 869 |
+
del train_metric
|
| 870 |
+
del train_metrics
|
| 871 |
+
train_metrics = []
|
| 872 |
+
|
| 873 |
+
gc.collect()
|
| 874 |
+
torch.cuda.empty_cache()
|
| 875 |
+
|
| 876 |
+
if cur_step % training_args.eval_steps == 0 and cur_step > 0:
|
| 877 |
+
# ======================== Evaluating ==============================
|
| 878 |
+
num_eval_samples = len(eval_dataset)
|
| 879 |
+
eval_metrics = []
|
| 880 |
+
eval_steps = len(eval_dataset) // eval_batch_size
|
| 881 |
+
eval_step_progress_bar = tqdm(
|
| 882 |
+
total=eval_steps, desc="Evaluating...", position=2, leave=False
|
| 883 |
+
)
|
| 884 |
+
for batch in eval_loader:
|
| 885 |
+
# Model forward
|
| 886 |
+
batch = shard(batch)
|
| 887 |
+
metrics = p_eval_step(state.params, batch)
|
| 888 |
+
eval_metrics.append(metrics)
|
| 889 |
+
|
| 890 |
+
eval_step_progress_bar.update(1)
|
| 891 |
+
|
| 892 |
+
# normalize eval metrics
|
| 893 |
+
eval_metrics = get_metrics(eval_metrics)
|
| 894 |
+
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
|
| 895 |
+
|
| 896 |
+
# Print metrics and update progress bar
|
| 897 |
+
desc = f"Eval at Step: {cur_step} (Loss: {eval_metrics['loss']})"
|
| 898 |
+
epochs.write(desc)
|
| 899 |
+
epochs.desc = desc
|
| 900 |
+
|
| 901 |
+
# Save tfboard eval
|
| 902 |
+
if has_tensorboard and jax.process_index() == 0:
|
| 903 |
+
write_eval_metric(summary_writer, eval_metrics, cur_step)
|
| 904 |
+
|
| 905 |
+
# Save eval wandb
|
| 906 |
+
if args.log_wandb and jax.process_index() == 0:
|
| 907 |
+
#_metrics = {f"eval_{k}":mb_item(v) for k, v in eval_metrics.items()}
|
| 908 |
+
_metrics = {f'eval_{k}': jax.device_get(v) for k,v in eval_metrics.items()}
|
| 909 |
+
wandb.log({"eval_step":cur_step, **_metrics})
|
| 910 |
+
|
| 911 |
+
logging.info("Emptying eval metrics")
|
| 912 |
+
del eval_metrics
|
| 913 |
+
|
| 914 |
+
eval_metrics = []
|
| 915 |
+
|
| 916 |
+
if cur_step % training_args.save_steps == 0 and cur_step > 0:
|
| 917 |
+
# save checkpoint after each epoch and push checkpoint to the hub
|
| 918 |
+
if jax.process_index() == 0:
|
| 919 |
+
# params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
| 920 |
+
# model.save_pretrained(
|
| 921 |
+
# training_args.output_dir,
|
| 922 |
+
# params=params,
|
| 923 |
+
# push_to_hub=training_args.push_to_hub,
|
| 924 |
+
# commit_message=f"Saving weights and logs of step {cur_step}",
|
| 925 |
+
# )
|
| 926 |
+
save_model_checkpoint(
|
| 927 |
+
model,
|
| 928 |
+
training_args.output_dir,
|
| 929 |
+
state,
|
| 930 |
+
logger,
|
| 931 |
+
training_args.push_to_hub_organization,
|
| 932 |
+
with_opt=True,
|
| 933 |
+
push_to_hub=training_args.push_to_hub,
|
| 934 |
+
overwrite=True,
|
| 935 |
+
)
|
| 936 |
+
# if model_args.save_optimizer:
|
| 937 |
+
# # this saves full state including optimizer
|
| 938 |
+
# save_checkpoint(training_args.output_dir, state, state.step, keep=training_args.save_total_limit, overwrite=True)
|
| 939 |
+
if training_args.save_total_limit is not None:
|
| 940 |
+
rotate_checkpoints(
|
| 941 |
+
training_args.output_dir,
|
| 942 |
+
training_args.save_total_limit,
|
| 943 |
+
logger,
|
| 944 |
+
)
|
| 945 |
+
|
| 946 |
+
train_step_progress_bar.close() #check
|
| 947 |
+
|
| 948 |
+
'''# save checkpoint after each epoch and push checkpoint to the hub
|
| 949 |
+
if jax.process_index() == 0:
|
| 950 |
+
params = jax.device_get(unreplicate(state.params))
|
| 951 |
+
model.save_pretrained(
|
| 952 |
+
training_args.output_dir + f"/{epoch+1}/",
|
| 953 |
+
params=params,
|
| 954 |
+
push_to_hub=training_args.push_to_hub,
|
| 955 |
+
commit_message=f"Saving weights and logs of epoch {epoch+1}",
|
| 956 |
+
)'''
|
| 957 |
+
|
| 958 |
+
# save model after training is over
|
| 959 |
+
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
| 960 |
+
model.save_pretrained(
|
| 961 |
+
training_args.output_dir,
|
| 962 |
+
params=params,
|
| 963 |
+
push_to_hub=training_args.push_to_hub,
|
| 964 |
+
commit_message="Add final model",
|
| 965 |
+
)
|
| 966 |
+
|
| 967 |
+
|
| 968 |
+
if __name__ == "__main__":
|
| 969 |
+
main()
|
| 970 |
+
|
hybrid_clip/run_hybrid_clip_backup_2.py
ADDED
|
@@ -0,0 +1,971 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding=utf-8
|
| 3 |
+
# Copyright 2021 The HuggingFace Team All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
"""
|
| 17 |
+
Training a CLIP like dual encoder models using text and vision encoders in the library.
|
| 18 |
+
|
| 19 |
+
The script can be used to train CLIP like models for languages other than english by using
|
| 20 |
+
a text encoder pre-trained in the desired language. Currently this script support the following vision
|
| 21 |
+
and text models:
|
| 22 |
+
Vision models: ViT(https://huggingface.co/models?filter=vit), CLIP (https://huggingface.co/models?filter=clip)
|
| 23 |
+
Text models: BERT, ROBERTa (https://huggingface.co/models?filter=masked-lm)
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
import json
|
| 27 |
+
import logging
|
| 28 |
+
import os
|
| 29 |
+
import sys
|
| 30 |
+
import time
|
| 31 |
+
import numpy as np
|
| 32 |
+
from dataclasses import dataclass, field
|
| 33 |
+
from pathlib import Path
|
| 34 |
+
from typing import Callable, Optional
|
| 35 |
+
import shutil
|
| 36 |
+
import gc
|
| 37 |
+
|
| 38 |
+
try:
|
| 39 |
+
from dotenv import load_dotenv
|
| 40 |
+
load_dotenv("../.env")
|
| 41 |
+
except:
|
| 42 |
+
print("Couldn't find ../.env file")
|
| 43 |
+
|
| 44 |
+
import wandb
|
| 45 |
+
from transformers.file_utils import PushToHubMixin
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
import torch
|
| 49 |
+
from torchvision.datasets import VisionDataset
|
| 50 |
+
from torchvision.io import ImageReadMode, read_image
|
| 51 |
+
from torchvision.transforms import (
|
| 52 |
+
CenterCrop,
|
| 53 |
+
ConvertImageDtype,
|
| 54 |
+
Normalize,
|
| 55 |
+
Resize,
|
| 56 |
+
ColorJitter,
|
| 57 |
+
RandomHorizontalFlip,
|
| 58 |
+
RandomRotation,
|
| 59 |
+
RandomCrop,
|
| 60 |
+
RandomAffine,
|
| 61 |
+
RandomPerspective,
|
| 62 |
+
RandomAutocontrast,
|
| 63 |
+
RandomEqualize,
|
| 64 |
+
)
|
| 65 |
+
from torchvision.transforms.functional import InterpolationMode
|
| 66 |
+
from tqdm import tqdm
|
| 67 |
+
|
| 68 |
+
import jax
|
| 69 |
+
import jax.numpy as jnp
|
| 70 |
+
import optax
|
| 71 |
+
import transformers
|
| 72 |
+
from flax import jax_utils
|
| 73 |
+
from flax.jax_utils import unreplicate
|
| 74 |
+
from flax.training import train_state
|
| 75 |
+
from flax.training.common_utils import get_metrics, shard, shard_prng_key
|
| 76 |
+
from modeling_hybrid_clip import FlaxHybridCLIP
|
| 77 |
+
from configuration_hybrid_clip import HybridCLIPConfig
|
| 78 |
+
from transformers import (
|
| 79 |
+
AutoTokenizer,
|
| 80 |
+
HfArgumentParser,
|
| 81 |
+
TrainingArguments,
|
| 82 |
+
is_tensorboard_available,
|
| 83 |
+
set_seed,
|
| 84 |
+
)
|
| 85 |
+
from numpy.random import default_rng
|
| 86 |
+
from flax.serialization import to_bytes, from_bytes
|
| 87 |
+
|
| 88 |
+
logger = logging.getLogger(__name__)
|
| 89 |
+
|
| 90 |
+
def mb_item(x):
|
| 91 |
+
return x.item() if hasattr(x, "item") else x
|
| 92 |
+
|
| 93 |
+
# checkpoint functions
|
| 94 |
+
def save_model_checkpoint(
|
| 95 |
+
model,
|
| 96 |
+
save_dir,
|
| 97 |
+
state,
|
| 98 |
+
logger,
|
| 99 |
+
organization,
|
| 100 |
+
with_opt: bool = False,
|
| 101 |
+
push_to_hub: bool = False,
|
| 102 |
+
overwrite=False,
|
| 103 |
+
**kwargs,
|
| 104 |
+
):
|
| 105 |
+
state = jax_utils.unreplicate(state)
|
| 106 |
+
#params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
| 107 |
+
logger.info(f"Saving Checkpoint in {save_dir}")
|
| 108 |
+
ckpt_save_dir = f"{save_dir}/ckpt-{mb_item(state.step)-1}"
|
| 109 |
+
if os.path.exists(ckpt_save_dir) and not overwrite:
|
| 110 |
+
logger.info("checkpoint exists, skipping overwrite")
|
| 111 |
+
else:
|
| 112 |
+
model.save_pretrained(
|
| 113 |
+
ckpt_save_dir, params=state.params, push_to_hub=False, **kwargs
|
| 114 |
+
)
|
| 115 |
+
if with_opt:
|
| 116 |
+
with open(os.path.join(ckpt_save_dir, "opt_state.msgpack"), "wb") as f:
|
| 117 |
+
f.write(to_bytes(state.opt_state))
|
| 118 |
+
with open(os.path.join(ckpt_save_dir, "training_state.json"), "w") as f:
|
| 119 |
+
json.dump({"step": state.step.item()}, f)
|
| 120 |
+
|
| 121 |
+
logger.info("checkpoint saved")
|
| 122 |
+
|
| 123 |
+
if push_to_hub:
|
| 124 |
+
repo_name = Path(save_dir).name
|
| 125 |
+
repo_url = PushToHubMixin._get_repo_url_from_name(
|
| 126 |
+
repo_name, organization=organization, private=False, use_auth_token=True
|
| 127 |
+
)
|
| 128 |
+
repo = PushToHubMixin._create_or_get_repo(
|
| 129 |
+
save_dir,
|
| 130 |
+
repo_url=repo_url,
|
| 131 |
+
organization=organization,
|
| 132 |
+
use_auth_token=True,
|
| 133 |
+
)
|
| 134 |
+
commit_message = f"Saving weights and logs at step {mb_item(state.step)-1}"
|
| 135 |
+
url = PushToHubMixin._push_to_hub(repo=repo, commit_message=commit_message)
|
| 136 |
+
logger.info(f"Model pushed to the hub in this commit: {url}")
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def restore_model_checkpoint(save_dir, state, logger):
|
| 140 |
+
logger.info(f"Restoring checkpoint from {save_dir}.")
|
| 141 |
+
with open(os.path.join(save_dir, "flax_model.msgpack"), "rb") as f:
|
| 142 |
+
params = from_bytes(state.params, f.read())
|
| 143 |
+
|
| 144 |
+
with open(os.path.join(save_dir, "opt_state.msgpack"), "rb") as f:
|
| 145 |
+
opt_state = from_bytes(state.opt_state, f.read())
|
| 146 |
+
|
| 147 |
+
with open(os.path.join(save_dir, "training_state.json"), "r") as f:
|
| 148 |
+
training_state = json.load(f)
|
| 149 |
+
step = training_state["step"]
|
| 150 |
+
|
| 151 |
+
logger.info("checkpoint restored")
|
| 152 |
+
# return state.replace(step=step, params=params, opt_state=opt_state), step
|
| 153 |
+
return params, opt_state, step
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def rotate_checkpoints(ckpt_dir: str, save_total_limit: int, logger):
|
| 157 |
+
"Removes older checkpoints so that `save_total_limit` checkpoints are kept"
|
| 158 |
+
# TODO: what to remove is decided using step number only, we might want to improve that
|
| 159 |
+
ckpts = [str(x) for x in Path(ckpt_dir).glob("ckpt-*")]
|
| 160 |
+
# sort checkpoints by step
|
| 161 |
+
ckpts_sorted = sorted(ckpts, key=lambda x: int(x.split("-")[-1]))
|
| 162 |
+
ckpts_to_delete = ckpts_sorted[:-save_total_limit]
|
| 163 |
+
for ckpt in ckpts_to_delete:
|
| 164 |
+
logger.info(
|
| 165 |
+
f"Deleting older checkpoint [{ckpt}] due to save_total_limit ({save_total_limit})"
|
| 166 |
+
)
|
| 167 |
+
shutil.rmtree(ckpt)
|
| 168 |
+
|
| 169 |
+
# Cache the result
|
| 170 |
+
has_tensorboard = is_tensorboard_available()
|
| 171 |
+
if has_tensorboard:
|
| 172 |
+
try:
|
| 173 |
+
from flax.metrics.tensorboard import SummaryWriter
|
| 174 |
+
except ImportError as ie:
|
| 175 |
+
has_tensorboard = False
|
| 176 |
+
print(
|
| 177 |
+
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
else:
|
| 181 |
+
print(
|
| 182 |
+
"Unable to display metrics through TensorBoard because the package is not installed: "
|
| 183 |
+
"Please run pip install tensorboard to enable."
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
@dataclass
|
| 188 |
+
class ModelArguments:
|
| 189 |
+
"""
|
| 190 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
|
| 191 |
+
"""
|
| 192 |
+
|
| 193 |
+
text_model_name_or_path: str = field(
|
| 194 |
+
metadata={
|
| 195 |
+
"help": "The text model checkpoint for weights initialization."
|
| 196 |
+
"Don't set if you want to train a model from scratch."
|
| 197 |
+
},
|
| 198 |
+
)
|
| 199 |
+
vision_model_name_or_path: str = field(
|
| 200 |
+
metadata={
|
| 201 |
+
"help": "The vision model checkpoint for weights initialization."
|
| 202 |
+
"Don't set if you want to train a model from scratch."
|
| 203 |
+
},
|
| 204 |
+
)
|
| 205 |
+
from_pt: bool = field(
|
| 206 |
+
default=True,
|
| 207 |
+
metadata={
|
| 208 |
+
"help": "whether to load the text and vision model using PyTorch checkpoints."
|
| 209 |
+
},
|
| 210 |
+
)
|
| 211 |
+
config_name: Optional[str] = field(
|
| 212 |
+
default=None,
|
| 213 |
+
metadata={
|
| 214 |
+
"help": "Pretrained config name or path if not the same as model_name"
|
| 215 |
+
},
|
| 216 |
+
)
|
| 217 |
+
tokenizer_name: Optional[str] = field(
|
| 218 |
+
default=None,
|
| 219 |
+
metadata={
|
| 220 |
+
"help": "Pretrained tokenizer name or path if not the same as model_name"
|
| 221 |
+
},
|
| 222 |
+
)
|
| 223 |
+
cache_dir: Optional[str] = field(
|
| 224 |
+
default=None,
|
| 225 |
+
metadata={
|
| 226 |
+
"help": "Where do you want to store the pretrained models downloaded from s3"
|
| 227 |
+
},
|
| 228 |
+
)
|
| 229 |
+
use_fast_tokenizer: bool = field(
|
| 230 |
+
default=True,
|
| 231 |
+
metadata={
|
| 232 |
+
"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."
|
| 233 |
+
},
|
| 234 |
+
)
|
| 235 |
+
dtype: Optional[str] = field(
|
| 236 |
+
default="float32",
|
| 237 |
+
metadata={
|
| 238 |
+
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
|
| 239 |
+
},
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
@dataclass
|
| 244 |
+
class DataTrainingArguments:
|
| 245 |
+
"""
|
| 246 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
| 247 |
+
"""
|
| 248 |
+
|
| 249 |
+
data_dir: Optional[str] = field(
|
| 250 |
+
default=None, metadata={"help": "The data directory containing input files."}
|
| 251 |
+
)
|
| 252 |
+
train_file: Optional[str] = field(
|
| 253 |
+
default=None,
|
| 254 |
+
metadata={"help": "The input training data file (a jsonlines file)."},
|
| 255 |
+
)
|
| 256 |
+
validation_file: Optional[str] = field(
|
| 257 |
+
default=None,
|
| 258 |
+
metadata={"help": "An optional input evaluation data file (a jsonlines file)."},
|
| 259 |
+
)
|
| 260 |
+
max_seq_length: Optional[int] = field(
|
| 261 |
+
default=72,
|
| 262 |
+
metadata={
|
| 263 |
+
"help": "The maximum total input sequence length after tokenization. Sequences longer "
|
| 264 |
+
"than this will be truncated, sequences shorter will be padded."
|
| 265 |
+
},
|
| 266 |
+
)
|
| 267 |
+
max_train_samples: Optional[int] = field(
|
| 268 |
+
default=None,
|
| 269 |
+
metadata={
|
| 270 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
| 271 |
+
"value if set."
|
| 272 |
+
},
|
| 273 |
+
)
|
| 274 |
+
max_eval_samples: Optional[int] = field(
|
| 275 |
+
default=None,
|
| 276 |
+
metadata={
|
| 277 |
+
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
| 278 |
+
"value if set."
|
| 279 |
+
},
|
| 280 |
+
)
|
| 281 |
+
overwrite_cache: bool = field(
|
| 282 |
+
default=False,
|
| 283 |
+
metadata={"help": "Overwrite the cached training and evaluation sets"},
|
| 284 |
+
)
|
| 285 |
+
overwrite_cache: bool = field(
|
| 286 |
+
default=False,
|
| 287 |
+
metadata={"help": "Overwrite the cached training and evaluation sets"},
|
| 288 |
+
)
|
| 289 |
+
preprocessing_num_workers: Optional[int] = field(
|
| 290 |
+
default=None,
|
| 291 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
def __post_init__(self):
|
| 295 |
+
if self.train_file is None and self.validation_file is None:
|
| 296 |
+
raise ValueError(
|
| 297 |
+
"Need either a dataset name or a training/validation file."
|
| 298 |
+
)
|
| 299 |
+
else:
|
| 300 |
+
if self.train_file is not None:
|
| 301 |
+
extension = self.train_file.split(".")[-1]
|
| 302 |
+
assert extension == "json", "`train_file` should be a json file."
|
| 303 |
+
if self.validation_file is not None:
|
| 304 |
+
extension = self.validation_file.split(".")[-1]
|
| 305 |
+
assert extension == "json", "`validation_file` should be a json file."
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
# We use torchvision for faster image pre-processing.
|
| 309 |
+
# We need to ensure faster processing speed as it can become a bottleneck on TPU
|
| 310 |
+
class Transform(torch.nn.Module):
|
| 311 |
+
def __init__(self, image_size, augment=False):
|
| 312 |
+
super().__init__()
|
| 313 |
+
if not augment:
|
| 314 |
+
self.transforms = torch.nn.Sequential(
|
| 315 |
+
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
|
| 316 |
+
CenterCrop(image_size),
|
| 317 |
+
ConvertImageDtype(torch.float),
|
| 318 |
+
Normalize(
|
| 319 |
+
(0.48145466, 0.4578275, 0.40821073),
|
| 320 |
+
(0.26862954, 0.26130258, 0.27577711),
|
| 321 |
+
),
|
| 322 |
+
)
|
| 323 |
+
else:
|
| 324 |
+
self.transforms = torch.nn.Sequential(
|
| 325 |
+
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
|
| 326 |
+
# CenterCrop(image_size),
|
| 327 |
+
RandomCrop([image_size], pad_if_needed=True, padding_mode="edge"),
|
| 328 |
+
ColorJitter(hue=0.1),
|
| 329 |
+
RandomHorizontalFlip(),
|
| 330 |
+
# RandomRotation(15, interpolation=InterpolationMode.BILINEAR, fill=128),
|
| 331 |
+
RandomAffine(
|
| 332 |
+
degrees=15,
|
| 333 |
+
translate=(0.1, 0.1),
|
| 334 |
+
scale=(0.8, 1.2),
|
| 335 |
+
shear=(-15, 15, -15, 15),
|
| 336 |
+
interpolation=InterpolationMode.BILINEAR,
|
| 337 |
+
fill=127,
|
| 338 |
+
),
|
| 339 |
+
RandomPerspective(
|
| 340 |
+
distortion_scale=0.3,
|
| 341 |
+
p=0.3,
|
| 342 |
+
interpolation=InterpolationMode.BILINEAR,
|
| 343 |
+
fill=127,
|
| 344 |
+
),
|
| 345 |
+
RandomAutocontrast(p=0.3),
|
| 346 |
+
RandomEqualize(p=0.3),
|
| 347 |
+
ConvertImageDtype(torch.float),
|
| 348 |
+
Normalize(
|
| 349 |
+
(0.48145466, 0.4578275, 0.40821073),
|
| 350 |
+
(0.26862954, 0.26130258, 0.27577711),
|
| 351 |
+
),
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 355 |
+
with torch.no_grad():
|
| 356 |
+
x = self.transforms(x)
|
| 357 |
+
return x
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
class ImageTextDataset(VisionDataset):
|
| 361 |
+
"""
|
| 362 |
+
Dtaset for loading image-text data for tasks like CLIP training, Image Captioning.
|
| 363 |
+
|
| 364 |
+
Args:
|
| 365 |
+
root: (string): The root path where the dataset is stored
|
| 366 |
+
file_path: (string): Path to the file containing the image_paths and associated captions.
|
| 367 |
+
The expected format is jsonlines where each line is a json object containing to keys.
|
| 368 |
+
`image_path`: The path to the image.
|
| 369 |
+
`captions`: An `array` of captions.
|
| 370 |
+
transform (callable, optional): A function/transform that takes in an PIL image
|
| 371 |
+
and returns a transformed version. E.g, ``transforms.ToTensor``
|
| 372 |
+
target_transform (callable, optional): A function/transform that takes in the
|
| 373 |
+
target and transforms it.
|
| 374 |
+
transforms (callable, optional): A function/transform that takes input sample and its target as entry
|
| 375 |
+
and returns a transformed version.
|
| 376 |
+
"""
|
| 377 |
+
|
| 378 |
+
def __init__(
|
| 379 |
+
self,
|
| 380 |
+
root: str,
|
| 381 |
+
file_path: str,
|
| 382 |
+
captions_per_image=-1,
|
| 383 |
+
transform: Optional[Callable] = None,
|
| 384 |
+
target_transform: Optional[Callable] = None,
|
| 385 |
+
transforms: Optional[Callable] = None,
|
| 386 |
+
seed=42,
|
| 387 |
+
):
|
| 388 |
+
super().__init__(root, transforms, transform, target_transform)
|
| 389 |
+
with open(file_path, "r") as f:
|
| 390 |
+
#examples = [json.loads(line) for line in f.readlines()]
|
| 391 |
+
examples = np.array([json.loads(line) for line in f.readlines()])
|
| 392 |
+
|
| 393 |
+
self.rand_generator = default_rng(seed)
|
| 394 |
+
|
| 395 |
+
self.captions = []
|
| 396 |
+
self.image_paths = []
|
| 397 |
+
|
| 398 |
+
for example in examples:
|
| 399 |
+
if captions_per_image <= -1:
|
| 400 |
+
self.captions.append(example["captions"])
|
| 401 |
+
elif captions_per_image > 0:
|
| 402 |
+
self.captions.append(example["captions"][:captions_per_image])
|
| 403 |
+
else:
|
| 404 |
+
raise ValueError("captions per image cannot be zero")
|
| 405 |
+
|
| 406 |
+
self.image_paths.append(example["image_path"])
|
| 407 |
+
|
| 408 |
+
def _load_image(self, idx: int):
|
| 409 |
+
path = self.image_paths[idx]
|
| 410 |
+
im = read_image(path, mode=ImageReadMode.RGB)
|
| 411 |
+
return im
|
| 412 |
+
|
| 413 |
+
def _load_target(self, idx):
|
| 414 |
+
return self.rand_generator.choice(self.captions[idx])
|
| 415 |
+
# if len(self.captions[idx]) > 1:
|
| 416 |
+
# caption_idx = np.random.randint(0, len(self.captions[idx]))
|
| 417 |
+
# else:
|
| 418 |
+
# caption_idx = 0
|
| 419 |
+
# return self.captions[idx][caption_idx]
|
| 420 |
+
|
| 421 |
+
def __getitem__(self, index: int):
|
| 422 |
+
image = self._load_image(index)
|
| 423 |
+
target = self._load_target(index)
|
| 424 |
+
|
| 425 |
+
if self.transforms is not None:
|
| 426 |
+
image, target = self.transforms(image, target)
|
| 427 |
+
|
| 428 |
+
return image, target
|
| 429 |
+
|
| 430 |
+
def __len__(self) -> int:
|
| 431 |
+
return len(self.captions)
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
class TrainState(train_state.TrainState):
|
| 435 |
+
dropout_rng: jnp.ndarray
|
| 436 |
+
|
| 437 |
+
def replicate(self):
|
| 438 |
+
return jax_utils.replicate(self).replace(
|
| 439 |
+
dropout_rng=shard_prng_key(self.dropout_rng)
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
def write_train_metric(summary_writer, train_metrics, train_time, step):
|
| 443 |
+
summary_writer.scalar("train_time", train_time, step)
|
| 444 |
+
|
| 445 |
+
train_metrics = get_metrics(train_metrics)
|
| 446 |
+
for key, vals in train_metrics.items():
|
| 447 |
+
tag = f"train_{key}"
|
| 448 |
+
for i, val in enumerate(vals):
|
| 449 |
+
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
def write_eval_metric(summary_writer, eval_metrics, step):
|
| 453 |
+
for metric_name, value in eval_metrics.items():
|
| 454 |
+
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):
|
| 458 |
+
summary_writer.scalar("train_time", train_time, step)
|
| 459 |
+
|
| 460 |
+
train_metrics = get_metrics(train_metrics)
|
| 461 |
+
for key, vals in train_metrics.items():
|
| 462 |
+
tag = f"train_{key}"
|
| 463 |
+
for i, val in enumerate(vals):
|
| 464 |
+
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
| 465 |
+
|
| 466 |
+
for metric_name, value in eval_metrics.items():
|
| 467 |
+
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
| 468 |
+
|
| 469 |
+
|
| 470 |
+
def create_learning_rate_fn(
|
| 471 |
+
train_ds_size: int,
|
| 472 |
+
train_batch_size: int,
|
| 473 |
+
num_train_epochs: int,
|
| 474 |
+
num_warmup_steps: int,
|
| 475 |
+
learning_rate: float,
|
| 476 |
+
linear=False,
|
| 477 |
+
) -> Callable[[int], jnp.array]:
|
| 478 |
+
"""Returns a linear warmup, linear_decay learning rate function."""
|
| 479 |
+
steps_per_epoch = train_ds_size // train_batch_size
|
| 480 |
+
num_train_steps = steps_per_epoch * num_train_epochs
|
| 481 |
+
if linear:
|
| 482 |
+
warmup_fn = optax.linear_schedule(
|
| 483 |
+
init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps
|
| 484 |
+
)
|
| 485 |
+
decay_fn = optax.linear_schedule(
|
| 486 |
+
init_value=learning_rate,
|
| 487 |
+
end_value=0,
|
| 488 |
+
transition_steps=num_train_steps - num_warmup_steps,
|
| 489 |
+
)
|
| 490 |
+
else:
|
| 491 |
+
warmup_fn = optax.linear_schedule(
|
| 492 |
+
init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps
|
| 493 |
+
)
|
| 494 |
+
decay_fn = optax.cosine_decay_schedule(
|
| 495 |
+
init_value=learning_rate,
|
| 496 |
+
decay_steps=num_train_steps - num_warmup_steps,
|
| 497 |
+
alpha=0.0,
|
| 498 |
+
)
|
| 499 |
+
schedule_fn = optax.join_schedules(
|
| 500 |
+
schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]
|
| 501 |
+
)
|
| 502 |
+
return schedule_fn
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
def main():
|
| 506 |
+
parser = HfArgumentParser(
|
| 507 |
+
(ModelArguments, DataTrainingArguments, TrainingArguments)
|
| 508 |
+
)
|
| 509 |
+
parser.add_argument("--log_wandb", action="store_true")
|
| 510 |
+
parser.add_argument("--freeze_backbones", action="store_true")
|
| 511 |
+
parser.add_argument("--exp_name", type=str, default=None)
|
| 512 |
+
parser.add_argument("--run_from_checkpoint", type=str, default=None)
|
| 513 |
+
|
| 514 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
| 515 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
| 516 |
+
# let's parse it to get our arguments.
|
| 517 |
+
model_args, data_args, training_args = parser.parse_json_file(
|
| 518 |
+
json_file=os.path.abspath(sys.argv[1])
|
| 519 |
+
)
|
| 520 |
+
else:
|
| 521 |
+
(
|
| 522 |
+
model_args,
|
| 523 |
+
data_args,
|
| 524 |
+
training_args,
|
| 525 |
+
args,
|
| 526 |
+
) = parser.parse_args_into_dataclasses()
|
| 527 |
+
|
| 528 |
+
if (
|
| 529 |
+
os.path.exists(training_args.output_dir)
|
| 530 |
+
and os.listdir(training_args.output_dir)
|
| 531 |
+
and training_args.do_train
|
| 532 |
+
and not training_args.overwrite_output_dir
|
| 533 |
+
):
|
| 534 |
+
raise ValueError(
|
| 535 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty."
|
| 536 |
+
"Use --overwrite_output_dir to overcome."
|
| 537 |
+
)
|
| 538 |
+
|
| 539 |
+
# Make one log on every process with the configuration for debugging.
|
| 540 |
+
logging.basicConfig(
|
| 541 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 542 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
| 543 |
+
level=logging.INFO,
|
| 544 |
+
)
|
| 545 |
+
# Setup logging, we only want one process per machine to log things on the screen.
|
| 546 |
+
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
| 547 |
+
if jax.process_index() == 0:
|
| 548 |
+
transformers.utils.logging.set_verbosity_info()
|
| 549 |
+
else:
|
| 550 |
+
transformers.utils.logging.set_verbosity_error()
|
| 551 |
+
|
| 552 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
| 553 |
+
logger.info(f"Training/evaluation parameters {training_args}")
|
| 554 |
+
|
| 555 |
+
if model_args.tokenizer_name:
|
| 556 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 557 |
+
model_args.tokenizer_name,
|
| 558 |
+
cache_dir=model_args.cache_dir,
|
| 559 |
+
use_fast=model_args.use_fast_tokenizer
|
| 560 |
+
)
|
| 561 |
+
elif model_args.text_model_name_or_path:
|
| 562 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 563 |
+
model_args.text_model_name_or_path,
|
| 564 |
+
cache_dir=model_args.cache_dir,
|
| 565 |
+
use_fast=model_args.use_fast_tokenizer,
|
| 566 |
+
)
|
| 567 |
+
else:
|
| 568 |
+
raise ValueError(
|
| 569 |
+
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
|
| 570 |
+
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
| 571 |
+
)
|
| 572 |
+
|
| 573 |
+
|
| 574 |
+
if args.run_from_checkpoint is not None:
|
| 575 |
+
with open(f"{args.run_from_checkpoint}/config.json", "r") as fp:
|
| 576 |
+
config_dict = json.load(fp)
|
| 577 |
+
config_dict["vision_config"]["model_type"] = "clip"
|
| 578 |
+
config = HybridCLIPConfig(**config_dict)
|
| 579 |
+
model = FlaxHybridCLIP.from_pretrained(
|
| 580 |
+
args.run_from_checkpoint,
|
| 581 |
+
seed=training_args.seed,
|
| 582 |
+
dtype=getattr(jnp, model_args.dtype),
|
| 583 |
+
config=config,
|
| 584 |
+
freeze_backbones=args.freeze_backbones
|
| 585 |
+
)
|
| 586 |
+
else:
|
| 587 |
+
|
| 588 |
+
model = FlaxHybridCLIP.from_text_vision_pretrained(
|
| 589 |
+
model_args.text_model_name_or_path,
|
| 590 |
+
model_args.vision_model_name_or_path,
|
| 591 |
+
seed=training_args.seed,
|
| 592 |
+
dtype=getattr(jnp, model_args.dtype),
|
| 593 |
+
text_from_pt=False,
|
| 594 |
+
vision_from_pt=model_args.from_pt,
|
| 595 |
+
freeze_backbones=args.freeze_backbones
|
| 596 |
+
)
|
| 597 |
+
config = model.config
|
| 598 |
+
# set seed for torch dataloaders
|
| 599 |
+
set_seed(training_args.seed)
|
| 600 |
+
|
| 601 |
+
# Initialize torchvision transforms and jit them for faster processing
|
| 602 |
+
train_preprocess = Transform(config.vision_config.image_size, augment=True)
|
| 603 |
+
train_preprocess = torch.jit.script(train_preprocess)
|
| 604 |
+
|
| 605 |
+
val_preprocess = Transform(config.vision_config.image_size)
|
| 606 |
+
val_preprocess = torch.jit.script(val_preprocess)
|
| 607 |
+
|
| 608 |
+
# Initialize the image-text dataset
|
| 609 |
+
train_dataset = ImageTextDataset(
|
| 610 |
+
data_args.data_dir,
|
| 611 |
+
data_args.train_file,
|
| 612 |
+
captions_per_image=-1,
|
| 613 |
+
transform=train_preprocess,
|
| 614 |
+
seed=training_args.seed,
|
| 615 |
+
)
|
| 616 |
+
|
| 617 |
+
eval_dataset = ImageTextDataset(
|
| 618 |
+
data_args.data_dir,
|
| 619 |
+
data_args.validation_file,
|
| 620 |
+
captions_per_image=-1,
|
| 621 |
+
transform=val_preprocess,
|
| 622 |
+
seed=training_args.seed,
|
| 623 |
+
)
|
| 624 |
+
|
| 625 |
+
# Store some constant
|
| 626 |
+
num_epochs = int(training_args.num_train_epochs)
|
| 627 |
+
train_batch_size = (
|
| 628 |
+
int(training_args.per_device_train_batch_size) * jax.device_count()
|
| 629 |
+
)
|
| 630 |
+
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
|
| 631 |
+
steps_per_epoch = len(train_dataset) // train_batch_size
|
| 632 |
+
total_train_steps = steps_per_epoch * num_epochs
|
| 633 |
+
|
| 634 |
+
# Use collate function to tokenizer the text and convert the processed images to numpy
|
| 635 |
+
def collate_fn(examples):
|
| 636 |
+
pixel_values = (
|
| 637 |
+
torch.stack([example[0] for example in examples])
|
| 638 |
+
.permute(0, 2, 3, 1)
|
| 639 |
+
.numpy()
|
| 640 |
+
)
|
| 641 |
+
captions = [example[1] for example in examples]
|
| 642 |
+
inputs = tokenizer(
|
| 643 |
+
captions,
|
| 644 |
+
max_length=data_args.max_seq_length,
|
| 645 |
+
padding="max_length",
|
| 646 |
+
truncation=True,
|
| 647 |
+
return_tensors="np",
|
| 648 |
+
)
|
| 649 |
+
|
| 650 |
+
batch = {
|
| 651 |
+
"pixel_values": pixel_values,
|
| 652 |
+
"input_ids": inputs["input_ids"],
|
| 653 |
+
"attention_mask": inputs["attention_mask"],
|
| 654 |
+
}
|
| 655 |
+
|
| 656 |
+
return batch
|
| 657 |
+
|
| 658 |
+
# Create data loaders
|
| 659 |
+
train_loader = torch.utils.data.DataLoader(
|
| 660 |
+
train_dataset,
|
| 661 |
+
batch_size=train_batch_size,
|
| 662 |
+
shuffle=True,
|
| 663 |
+
num_workers=data_args.preprocessing_num_workers,
|
| 664 |
+
#persistent_workers=True,
|
| 665 |
+
drop_last=True,
|
| 666 |
+
collate_fn=collate_fn,
|
| 667 |
+
)
|
| 668 |
+
|
| 669 |
+
eval_loader = torch.utils.data.DataLoader(
|
| 670 |
+
eval_dataset,
|
| 671 |
+
batch_size=eval_batch_size,
|
| 672 |
+
shuffle=False,
|
| 673 |
+
num_workers=data_args.preprocessing_num_workers,
|
| 674 |
+
#persistent_workers=True,
|
| 675 |
+
drop_last=True,
|
| 676 |
+
collate_fn=collate_fn,
|
| 677 |
+
)
|
| 678 |
+
|
| 679 |
+
# Enable tensorboard only on the master node
|
| 680 |
+
if has_tensorboard and jax.process_index() == 0:
|
| 681 |
+
summary_writer = SummaryWriter(
|
| 682 |
+
log_dir=Path(training_args.output_dir).joinpath("logs").as_posix()
|
| 683 |
+
)
|
| 684 |
+
|
| 685 |
+
# Enable wandb
|
| 686 |
+
if jax.process_index() == 0 and args.log_wandb:
|
| 687 |
+
try:
|
| 688 |
+
wandb.init(
|
| 689 |
+
name=args.exp_name,
|
| 690 |
+
entity="galuh",
|
| 691 |
+
project="clip-indonesian",
|
| 692 |
+
sync_tensorboard=True
|
| 693 |
+
)
|
| 694 |
+
wandb.config.update(training_args)
|
| 695 |
+
wandb.config.update(model_args)
|
| 696 |
+
wandb.config.update(data_args)
|
| 697 |
+
except ImportError as e:
|
| 698 |
+
print(e)
|
| 699 |
+
|
| 700 |
+
# Initialize our training
|
| 701 |
+
rng = jax.random.PRNGKey(training_args.seed)
|
| 702 |
+
rng, dropout_rng = jax.random.split(rng)
|
| 703 |
+
|
| 704 |
+
# Create learning rate schedule
|
| 705 |
+
if training_args.warmup_steps:
|
| 706 |
+
warmup_steps = training_args.warmup_steps
|
| 707 |
+
elif training_args.warmup_ratio:
|
| 708 |
+
warmup_steps = int(training_args.warmup_ratio * total_train_steps)
|
| 709 |
+
else:
|
| 710 |
+
raise RuntimeError(
|
| 711 |
+
"You have to specify either the warmup_steps or warmup_ratio CLI parameter"
|
| 712 |
+
)
|
| 713 |
+
|
| 714 |
+
decay_lr_schedule_fn = create_learning_rate_fn(
|
| 715 |
+
len(train_dataset),
|
| 716 |
+
train_batch_size,
|
| 717 |
+
training_args.num_train_epochs,
|
| 718 |
+
warmup_steps,
|
| 719 |
+
training_args.learning_rate,
|
| 720 |
+
linear=False, # set False to activate cosine annealing
|
| 721 |
+
)
|
| 722 |
+
|
| 723 |
+
# create adam optimizer
|
| 724 |
+
# optimizer = optax.adamw(
|
| 725 |
+
# learning_rate=decay_lr_schedule_fn,
|
| 726 |
+
# b1=training_args.adam_beta1,
|
| 727 |
+
# b2=training_args.adam_beta2,
|
| 728 |
+
# eps=training_args.adam_epsilon,
|
| 729 |
+
# weight_decay=training_args.weight_decay,
|
| 730 |
+
# )
|
| 731 |
+
|
| 732 |
+
optimizer = optax.chain(
|
| 733 |
+
optax.adaptive_grad_clip(0.01, eps=0.001),
|
| 734 |
+
optax.scale_by_belief(),
|
| 735 |
+
optax.scale_by_schedule(decay_lr_schedule_fn),
|
| 736 |
+
optax.scale(-1.0),
|
| 737 |
+
)
|
| 738 |
+
|
| 739 |
+
'''optimizer = optax.adafactor(
|
| 740 |
+
learning_rate=decay_lr_schedule_fn,
|
| 741 |
+
)'''
|
| 742 |
+
|
| 743 |
+
# Setup train state
|
| 744 |
+
state = TrainState.create(
|
| 745 |
+
apply_fn=model.__call__,
|
| 746 |
+
params=model.params,
|
| 747 |
+
tx=optimizer,
|
| 748 |
+
dropout_rng=dropout_rng,
|
| 749 |
+
)
|
| 750 |
+
|
| 751 |
+
def cross_entropy(logits, axis):
|
| 752 |
+
logprobs = jax.nn.log_softmax(logits, axis=axis)
|
| 753 |
+
nll = jnp.diag(logprobs)
|
| 754 |
+
ce = -jnp.mean(nll)
|
| 755 |
+
return ce
|
| 756 |
+
|
| 757 |
+
def clip_loss(similarity):
|
| 758 |
+
loss = (
|
| 759 |
+
cross_entropy(similarity, axis=0) + cross_entropy(similarity, axis=1)
|
| 760 |
+
) / 2
|
| 761 |
+
return loss
|
| 762 |
+
|
| 763 |
+
# Define gradient update step fn
|
| 764 |
+
def train_step(state, batch):
|
| 765 |
+
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
|
| 766 |
+
|
| 767 |
+
def compute_loss(params):
|
| 768 |
+
logits = state.apply_fn(
|
| 769 |
+
**batch, params=params, dropout_rng=dropout_rng, train=True
|
| 770 |
+
)[0]
|
| 771 |
+
loss = clip_loss(logits)
|
| 772 |
+
return loss
|
| 773 |
+
|
| 774 |
+
grad_fn = jax.value_and_grad(compute_loss)
|
| 775 |
+
loss, grad = grad_fn(state.params)
|
| 776 |
+
grad = jax.lax.pmean(grad, "batch")
|
| 777 |
+
|
| 778 |
+
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
|
| 779 |
+
|
| 780 |
+
metrics = {
|
| 781 |
+
"loss": loss,
|
| 782 |
+
"learning_rate": decay_lr_schedule_fn(state.step),
|
| 783 |
+
}
|
| 784 |
+
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
| 785 |
+
|
| 786 |
+
return new_state, metrics
|
| 787 |
+
|
| 788 |
+
# Define eval fn
|
| 789 |
+
def eval_step(params, batch):
|
| 790 |
+
logits = model(**batch, params=params, train=False)[0]
|
| 791 |
+
loss = clip_loss(logits)
|
| 792 |
+
|
| 793 |
+
# summarize metrics
|
| 794 |
+
metrics = {"loss": loss}
|
| 795 |
+
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
| 796 |
+
return metrics
|
| 797 |
+
|
| 798 |
+
# Create parallel version of the train and eval step
|
| 799 |
+
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
|
| 800 |
+
p_eval_step = jax.pmap(eval_step, "batch")
|
| 801 |
+
|
| 802 |
+
# Replicate the train state on each device
|
| 803 |
+
state = state.replicate()
|
| 804 |
+
|
| 805 |
+
logger.info("***** Running training *****")
|
| 806 |
+
logger.info(f" TPU = {jax.device_count()}")
|
| 807 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
| 808 |
+
logger.info(f" Num Epochs = {num_epochs}")
|
| 809 |
+
logger.info(
|
| 810 |
+
f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}"
|
| 811 |
+
)
|
| 812 |
+
logger.info(
|
| 813 |
+
f" Total train batch size (w. parallel & distributed) = {train_batch_size}"
|
| 814 |
+
)
|
| 815 |
+
logger.info(f" Total optimization steps = {total_train_steps}")
|
| 816 |
+
logger.info(f" Total warmup steps = {warmup_steps}")
|
| 817 |
+
|
| 818 |
+
train_time = 0
|
| 819 |
+
# Create sampling rng
|
| 820 |
+
rng, input_rng = jax.random.split(rng)
|
| 821 |
+
|
| 822 |
+
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
|
| 823 |
+
for epoch in epochs:
|
| 824 |
+
# ======================== Training ================================
|
| 825 |
+
train_start = time.time()
|
| 826 |
+
|
| 827 |
+
# Create sampling rng
|
| 828 |
+
rng, input_rng = jax.random.split(rng)
|
| 829 |
+
train_metrics = []
|
| 830 |
+
|
| 831 |
+
num_train_samples = len(train_dataset)
|
| 832 |
+
|
| 833 |
+
steps_per_epoch = len(train_dataset) // train_batch_size
|
| 834 |
+
train_step_progress_bar = tqdm(
|
| 835 |
+
total=steps_per_epoch, desc="Training...", position=1, leave=False
|
| 836 |
+
)
|
| 837 |
+
# train
|
| 838 |
+
for step, batch in enumerate(train_loader):
|
| 839 |
+
batch = shard(batch)
|
| 840 |
+
state, train_metric = p_train_step(state, batch)
|
| 841 |
+
train_metrics.append(train_metric)
|
| 842 |
+
|
| 843 |
+
train_step_progress_bar.update(1)
|
| 844 |
+
|
| 845 |
+
cur_step = epoch * (num_train_samples // train_batch_size) + step + 1
|
| 846 |
+
|
| 847 |
+
if cur_step % training_args.logging_steps == 0 and cur_step > 0:
|
| 848 |
+
train_time += time.time() - train_start
|
| 849 |
+
train_metric = unreplicate(train_metric)
|
| 850 |
+
|
| 851 |
+
# Save tensorboard metrics
|
| 852 |
+
if has_tensorboard and jax.process_index() == 0:
|
| 853 |
+
write_train_metric(
|
| 854 |
+
summary_writer, train_metrics, train_time, cur_step
|
| 855 |
+
)
|
| 856 |
+
|
| 857 |
+
# Save wandb metrics
|
| 858 |
+
if args.log_wandb and jax.process_index() == 0:
|
| 859 |
+
#_metrics = {k if k=="learning_rate" else f"train_{k}":mb_item(v.mean()) for k, v in train_metric.items()}
|
| 860 |
+
#_metrics = {k if k=="learning_rate" else f"train_{k}":mb_item(v.mean()) for k, v in train_metric.items()}
|
| 861 |
+
_metrics = {f'train_{k}': jax.device_get(v) for k,v in train_metric.items()}
|
| 862 |
+
wandb.log({"train_step":cur_step, **_metrics}, commit=True)
|
| 863 |
+
|
| 864 |
+
epochs.write(
|
| 865 |
+
f"Log at Step: {cur_step} (Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
|
| 866 |
+
)
|
| 867 |
+
|
| 868 |
+
logging.info("Emptying train metrics")
|
| 869 |
+
|
| 870 |
+
del train_metric
|
| 871 |
+
del train_metrics
|
| 872 |
+
train_metrics = []
|
| 873 |
+
|
| 874 |
+
gc.collect()
|
| 875 |
+
torch.cuda.empty_cache()
|
| 876 |
+
|
| 877 |
+
if cur_step % training_args.eval_steps == 0 and cur_step > 0:
|
| 878 |
+
# ======================== Evaluating ==============================
|
| 879 |
+
num_eval_samples = len(eval_dataset)
|
| 880 |
+
eval_metrics = []
|
| 881 |
+
eval_steps = len(eval_dataset) // eval_batch_size
|
| 882 |
+
eval_step_progress_bar = tqdm(
|
| 883 |
+
total=eval_steps, desc="Evaluating...", position=2, leave=False
|
| 884 |
+
)
|
| 885 |
+
for batch in eval_loader:
|
| 886 |
+
# Model forward
|
| 887 |
+
batch = shard(batch)
|
| 888 |
+
metrics = p_eval_step(state.params, batch)
|
| 889 |
+
eval_metrics.append(metrics)
|
| 890 |
+
|
| 891 |
+
eval_step_progress_bar.update(1)
|
| 892 |
+
|
| 893 |
+
# normalize eval metrics
|
| 894 |
+
eval_metrics = get_metrics(eval_metrics)
|
| 895 |
+
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
|
| 896 |
+
|
| 897 |
+
# Print metrics and update progress bar
|
| 898 |
+
desc = f"Eval at Step: {cur_step} (Loss: {eval_metrics['loss']})"
|
| 899 |
+
epochs.write(desc)
|
| 900 |
+
epochs.desc = desc
|
| 901 |
+
|
| 902 |
+
# Save tfboard eval
|
| 903 |
+
if has_tensorboard and jax.process_index() == 0:
|
| 904 |
+
write_eval_metric(summary_writer, eval_metrics, cur_step)
|
| 905 |
+
|
| 906 |
+
# Save eval wandb
|
| 907 |
+
if args.log_wandb and jax.process_index() == 0:
|
| 908 |
+
#_metrics = {f"eval_{k}":mb_item(v) for k, v in eval_metrics.items()}
|
| 909 |
+
_metrics = {f'eval_{k}': jax.device_get(v) for k,v in eval_metrics.items()}
|
| 910 |
+
wandb.log({"eval_step":cur_step, **_metrics})
|
| 911 |
+
|
| 912 |
+
logging.info("Emptying eval metrics")
|
| 913 |
+
del eval_metrics
|
| 914 |
+
|
| 915 |
+
eval_metrics = []
|
| 916 |
+
|
| 917 |
+
if cur_step % training_args.save_steps == 0 and cur_step > 0:
|
| 918 |
+
# save checkpoint after each epoch and push checkpoint to the hub
|
| 919 |
+
if jax.process_index() == 0:
|
| 920 |
+
# params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
| 921 |
+
# model.save_pretrained(
|
| 922 |
+
# training_args.output_dir,
|
| 923 |
+
# params=params,
|
| 924 |
+
# push_to_hub=training_args.push_to_hub,
|
| 925 |
+
# commit_message=f"Saving weights and logs of step {cur_step}",
|
| 926 |
+
# )
|
| 927 |
+
save_model_checkpoint(
|
| 928 |
+
model,
|
| 929 |
+
training_args.output_dir,
|
| 930 |
+
state,
|
| 931 |
+
logger,
|
| 932 |
+
training_args.push_to_hub_organization,
|
| 933 |
+
with_opt=True,
|
| 934 |
+
push_to_hub=training_args.push_to_hub,
|
| 935 |
+
overwrite=True,
|
| 936 |
+
)
|
| 937 |
+
# if model_args.save_optimizer:
|
| 938 |
+
# # this saves full state including optimizer
|
| 939 |
+
# save_checkpoint(training_args.output_dir, state, state.step, keep=training_args.save_total_limit, overwrite=True)
|
| 940 |
+
if training_args.save_total_limit is not None:
|
| 941 |
+
rotate_checkpoints(
|
| 942 |
+
training_args.output_dir,
|
| 943 |
+
training_args.save_total_limit,
|
| 944 |
+
logger,
|
| 945 |
+
)
|
| 946 |
+
|
| 947 |
+
train_step_progress_bar.close() #check
|
| 948 |
+
|
| 949 |
+
'''# save checkpoint after each epoch and push checkpoint to the hub
|
| 950 |
+
if jax.process_index() == 0:
|
| 951 |
+
params = jax.device_get(unreplicate(state.params))
|
| 952 |
+
model.save_pretrained(
|
| 953 |
+
training_args.output_dir + f"/{epoch+1}/",
|
| 954 |
+
params=params,
|
| 955 |
+
push_to_hub=training_args.push_to_hub,
|
| 956 |
+
commit_message=f"Saving weights and logs of epoch {epoch+1}",
|
| 957 |
+
)'''
|
| 958 |
+
|
| 959 |
+
# save model after training is over
|
| 960 |
+
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
| 961 |
+
model.save_pretrained(
|
| 962 |
+
training_args.output_dir,
|
| 963 |
+
params=params,
|
| 964 |
+
push_to_hub=training_args.push_to_hub,
|
| 965 |
+
commit_message="Add final model",
|
| 966 |
+
)
|
| 967 |
+
|
| 968 |
+
|
| 969 |
+
if __name__ == "__main__":
|
| 970 |
+
main()
|
| 971 |
+
|
hybrid_clip/run_training.sh
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
SCRIPT_DIR=.
|
| 4 |
+
MODEL_DIR=/mnt/disks/data-1/models/training_v4_unfreeze
|
| 5 |
+
|
| 6 |
+
IMAGE_ENCODER="openai/clip-vit-base-patch32"
|
| 7 |
+
TEXT_ENCODER="flax-community/indonesian-roberta-base"
|
| 8 |
+
|
| 9 |
+
python ${SCRIPT_DIR}/run_hybrid_clip.py \
|
| 10 |
+
--output_dir ${MODEL_DIR} \
|
| 11 |
+
--overwrite_output_dir \
|
| 12 |
+
--tokenizer_name=${TEXT_ENCODER} \
|
| 13 |
+
--train_file="../data/train_dataset_v6.json" \
|
| 14 |
+
--validation_file="../data/val_dataset_v6.json" \
|
| 15 |
+
--do_train --do_eval \
|
| 16 |
+
--num_train_epochs="20" --max_seq_length 96 \
|
| 17 |
+
--per_device_train_batch_size="64" \
|
| 18 |
+
--per_device_eval_batch_size="64" \
|
| 19 |
+
--learning_rate="0.00001" --warmup_ratio 0.1 --weight_decay 0.0 \
|
| 20 |
+
--preprocessing_num_workers 16 \
|
| 21 |
+
--exp_name training_v4_unfreeze \
|
| 22 |
+
--text_model_name_or_path=${TEXT_ENCODER} \
|
| 23 |
+
--vision_model_name_or_path=${IMAGE_ENCODER} \
|
| 24 |
+
--eval_steps 500 \
|
| 25 |
+
--logging_steps 100 \
|
| 26 |
+
--save_steps 500 \
|
| 27 |
+
--save_total_limit 5 \
|
| 28 |
+
--log_wandb \
|
| 29 |
+
--run_from_checkpoint="/mnt/disks/data-1/models/training_v4/ckpt-70999" # edit
|
| 30 |
+
#--freeze_backbones
|
| 31 |
+
#--push_to_hub
|
hybrid_clip/run_training_backup.sh
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
SCRIPT_DIR=.
|
| 4 |
+
MODEL_DIR=~/models/training_v3_new
|
| 5 |
+
|
| 6 |
+
IMAGE_ENCODER="openai/clip-vit-base-patch32"
|
| 7 |
+
TEXT_ENCODER="indobenchmark/indobert-base-p2"
|
| 8 |
+
|
| 9 |
+
python ${SCRIPT_DIR}/run_hybrid_clip.py \
|
| 10 |
+
--output_dir ${MODEL_DIR} \
|
| 11 |
+
--overwrite_output_dir \
|
| 12 |
+
--tokenizer_name=${TEXT_ENCODER} \
|
| 13 |
+
--train_file="../data/train_dataset_v3.json" \
|
| 14 |
+
--validation_file="../data/val_dataset_v3.json" \
|
| 15 |
+
--do_train --do_eval \
|
| 16 |
+
--num_train_epochs="10" --max_seq_length 96 \
|
| 17 |
+
--per_device_train_batch_size="64" \
|
| 18 |
+
--per_device_eval_batch_size="64" \
|
| 19 |
+
--learning_rate="0.00005" --warmup_ratio 0.1 --weight_decay 0.0 \
|
| 20 |
+
--preprocessing_num_workers 16 \
|
| 21 |
+
--exp_name training_v3 \
|
| 22 |
+
--text_model_name_or_path=${TEXT_ENCODER} \
|
| 23 |
+
--vision_model_name_or_path=${IMAGE_ENCODER} \
|
| 24 |
+
--eval_steps 2500 \
|
| 25 |
+
--logging_steps 200 \
|
| 26 |
+
--save_steps 2500 \
|
| 27 |
+
--save_total_limit 5 \
|
| 28 |
+
--log_wandb \
|
| 29 |
+
--freeze_backbones
|
| 30 |
+
#--push_to_hub
|
hybrid_clip/run_training_unfreeze.sh
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
SCRIPT_DIR=.
|
| 4 |
+
MODEL_DIR=~/models/training_v3_new_unfreeze
|
| 5 |
+
|
| 6 |
+
IMAGE_ENCODER="openai/clip-vit-base-patch32"
|
| 7 |
+
TEXT_ENCODER="indobenchmark/indobert-base-p2"
|
| 8 |
+
|
| 9 |
+
python ${SCRIPT_DIR}/run_hybrid_clip.py \
|
| 10 |
+
--output_dir ${MODEL_DIR} \
|
| 11 |
+
--overwrite_output_dir \
|
| 12 |
+
--tokenizer_name=${TEXT_ENCODER} \
|
| 13 |
+
--train_file="../data/train_dataset_v3.json" \
|
| 14 |
+
--validation_file="../data/val_dataset_v3.json" \
|
| 15 |
+
--do_train --do_eval \
|
| 16 |
+
--num_train_epochs="10" --max_seq_length 96 \
|
| 17 |
+
--per_device_train_batch_size="64" \
|
| 18 |
+
--per_device_eval_batch_size="64" \
|
| 19 |
+
--learning_rate="0.00005" --warmup_ratio 0.1 --weight_decay 0.0 \
|
| 20 |
+
--preprocessing_num_workers 16 \
|
| 21 |
+
--exp_name training_v3_unfreeze \
|
| 22 |
+
--text_model_name_or_path=${TEXT_ENCODER} \
|
| 23 |
+
--vision_model_name_or_path=${IMAGE_ENCODER} \
|
| 24 |
+
--eval_steps 2500 \
|
| 25 |
+
--logging_steps 200 \
|
| 26 |
+
--save_steps 2500 \
|
| 27 |
+
--save_total_limit 5 \
|
| 28 |
+
--log_wandb \
|
| 29 |
+
--run_from_checkpoint="../../models/training_v3_new/ckpt-42499"
|
| 30 |
+
#--freeze_backbones
|
| 31 |
+
#--push_to_hub
|
hybrid_clip/run_training_unfreeze_2.sh
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
SCRIPT_DIR=.
|
| 4 |
+
MODEL_DIR=~/models/training_v3_new_unfreeze_2
|
| 5 |
+
|
| 6 |
+
IMAGE_ENCODER="openai/clip-vit-base-patch32"
|
| 7 |
+
TEXT_ENCODER="indobenchmark/indobert-base-p2"
|
| 8 |
+
|
| 9 |
+
python ${SCRIPT_DIR}/run_hybrid_clip.py \
|
| 10 |
+
--output_dir ${MODEL_DIR} \
|
| 11 |
+
--overwrite_output_dir \
|
| 12 |
+
--tokenizer_name=${TEXT_ENCODER} \
|
| 13 |
+
--train_file="../data/train_dataset_v3.json" \
|
| 14 |
+
--validation_file="../data/val_dataset_v3.json" \
|
| 15 |
+
--do_train --do_eval \
|
| 16 |
+
--num_train_epochs="10" --max_seq_length 96 \
|
| 17 |
+
--per_device_train_batch_size="64" \
|
| 18 |
+
--per_device_eval_batch_size="64" \
|
| 19 |
+
--learning_rate="0.00005" --warmup_ratio 0.1 --weight_decay 0.0 \
|
| 20 |
+
--preprocessing_num_workers 16 \
|
| 21 |
+
--exp_name training_v3_unfreeze_2 \
|
| 22 |
+
--text_model_name_or_path=${TEXT_ENCODER} \
|
| 23 |
+
--vision_model_name_or_path=${IMAGE_ENCODER} \
|
| 24 |
+
--eval_steps 2500 \
|
| 25 |
+
--logging_steps 200 \
|
| 26 |
+
--save_steps 2500 \
|
| 27 |
+
--save_total_limit 5 \
|
| 28 |
+
--log_wandb \
|
| 29 |
+
--run_from_checkpoint="../../models/training_v3_new_unfreeze/ckpt-12499"
|
| 30 |
+
#--freeze_backbones
|
| 31 |
+
#--push_to_hub
|