--- library_name: transformers language: - sw base_model: EYEDOL/FROM_C3_4 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: ASR_FROM_C3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13.0 type: mozilla-foundation/common_voice_13_0 config: sw split: None args: 'config: sw, split: test' metrics: - name: Wer type: wer value: 17.669860078154546 --- # ASR_FROM_C3 This model is a fine-tuned version of [EYEDOL/FROM_C3_4](https://huggingface.co/EYEDOL/FROM_C3_4) on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2687 - Wer: 17.6699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0239 | 0.6918 | 2000 | 0.2687 | 17.6699 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2