Dunateo commited on
Commit
f9bf612
·
verified ·
1 Parent(s): 3a7562f

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +95 -156
README.md CHANGED
@@ -1,199 +1,138 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
35
 
36
- ## Uses
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
39
 
40
- ### Direct Use
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
43
 
44
- [More Information Needed]
 
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
 
 
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
55
 
56
- [More Information Needed]
 
 
 
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
 
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
 
 
73
 
74
- [More Information Needed]
75
 
76
- ## Training Details
77
 
78
- ### Training Data
 
 
 
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
 
 
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - text-classification
6
+ - bert
7
+ - roberta
8
+ - CWE
9
+ - security
10
+ datasets:
11
+ - Dunateo/VulnDesc_CWE_Mapping
12
+ metrics:
13
+ - loss
14
  ---
15
 
16
+ # Kelemia for CWE Classification
17
 
18
+ This model is a fine-tuned version of RoBERTa for classifying Common Weakness Enumeration (CWE) vulnerabilities.
19
 
20
+ ## Model description
21
 
22
+ - **Model type:** RoBERTa
23
+ - **Language(s):** English
24
+ - **License:** MIT
25
+ - **Finetuned from model:** [roberta-base](https://huggingface.co/roberta-base)
26
 
27
+ ## Intended uses & limitations
28
 
29
+ This model is intended for classifying software vulnerabilities according to the CWE standard. It should be used as part of a broader security analysis process and not as a standalone solution for identifying vulnerabilities.
30
 
31
+ ## Training and evaluation data
32
 
33
+ [Dunateo/VulnDesc_CWE_Mapping](https://huggingface.co/datasets/Dunateo/VulnDesc_CWE_Mapping)
34
 
35
+ # Example Usage
 
 
 
 
 
 
36
 
37
+ Here's an example of how to use this model for inference:
38
 
39
+ ```python
40
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
41
+ import torch
42
 
43
+ # Load model and tokenizer
44
+ model_name = "Dunateo/roberta-cwe-classifier-kelemia"
45
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
46
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
47
 
48
+ # Prepare input text
49
+ text = "The application stores sensitive user data in plaintext."
50
 
51
+ # Tokenize and prepare input
52
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
53
 
54
+ # Perform inference
55
+ with torch.no_grad():
56
+ outputs = model(**inputs)
57
 
58
+ # Get prediction
59
+ probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
60
+ predicted_class = torch.argmax(probabilities, dim=-1).item()
61
 
62
+ print(f"Predicted CWE class: {predicted_class}")
63
+ print(f"Confidence: {probabilities[predicted_class].item():.4f}")
64
+ ```
65
 
66
+ ## Label Dictionary
67
 
68
+ This model uses the following mapping for CWE classes:
69
 
70
+ ```json
71
+ {
72
+ "0": "CWE-79",
73
+ "1": "CWE-89",
74
+ ...
75
+ }
76
 
 
77
 
78
+ ```python
79
+ import json
80
+ from transformers import AutoTokenizer
81
 
82
+ tokenizer = AutoTokenizer.from_pretrained("Dunateo/roberta-cwe-classifier-kelemia")
83
+ with open(tokenizer.vocab_files_names['label_dict_file'], 'r') as f:
84
+ label_dict = json.load(f)
85
+ ```
86
 
87
+ # Now you can use label_dict to map prediction indices to CWE classes
88
 
89
+ ## Training procedure
90
 
91
+ ### Training hyperparameters
92
 
93
+ - **Number of epochs:** 3
94
+ - **Learning rate:** Scheduled from 1e-06 to 3.9e-05
95
+ - **Batch size:** 8
96
+ - **Weight decay:** 0.01
97
+ - **Learning rate scheduler:** 5e-5
98
 
99
+ ### Training results
100
 
101
+ - **Training Loss:** 4.201853184822278 (final)
102
+ - **Validation Loss:** 2.821094036102295 (final)
103
+ - **Training Time:** 5893.2502 seconds (approximately 1 hour 38 minutes)
104
+ - **Samples per Second:** 1.059
105
+ - **Steps per Second:** 0.066
106
 
107
+ #### Loss progression
108
 
109
+ | Epoch | Training Loss | Validation Loss |
110
+ |-------|---------------|-----------------|
111
+ | 1.0 | 4.822 | 4.639444828 |
112
+ | 2.0 | 3.6549 | 3.355055332 |
113
+ | 3.0 | 3.0617 | 2.821094036 |
114
 
115
+ ## Evaluation results
116
 
117
+ The model shows consistent improvement over the training period:
118
 
119
+ - **Initial Training Loss:** 5.5987
120
+ - **Final Training Loss:** 3.0617
121
+ - **Initial Validation Loss:** 4.639444828
122
+ - **Final Validation Loss:** 2.821094036
123
 
124
+ ### Performance analysis
125
 
126
+ - The model demonstrates a steady decrease in both training and validation loss, indicating good learning progress.
127
+ - The final validation loss (2.82) being lower than the final training loss (3.06) suggests that the model generalizes well to unseen data.
128
+ - There were two instances of gradient explosion (grad_norm of 603089.0625 and 68246.296875) early in training, but the model recovered and stabilized.
129
 
130
+ ## Ethical considerations
131
 
132
+ This model should be used responsibly as part of a comprehensive security strategy. It should not be relied upon as the sole method for identifying or classifying vulnerabilities. False positives and negatives are possible, and results should be verified by security professionals.
133
 
134
+ ## Additional information
135
 
136
+ For more details on the CWE standard, please visit [Common Weakness Enumeration](https://cwe.mitre.org/).
137
 
138
+ To use this model or for more information, please contact [Your Contact Information].