Upload spa_hf.py with huggingface_hub
Browse files
spa_hf.py
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 4 |
+
from transformers import AutoModel, AutoTokenizer
|
| 5 |
+
|
| 6 |
+
# Import core SPA functionality
|
| 7 |
+
from spa import SPALogitsProcessor, spa_tokenize, preprocess_anchors, create_default_attention_mask
|
| 8 |
+
|
| 9 |
+
class SPAModel(nn.Module, PyTorchModelHubMixin):
|
| 10 |
+
"""
|
| 11 |
+
Selective Prompt Anchoring (SPA) model with Hugging Face Hub integration.
|
| 12 |
+
|
| 13 |
+
This model wraps a base LLM and provides the SPA functionality with
|
| 14 |
+
the ability to be shared and downloaded from the Hugging Face Hub.
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
def __init__(
|
| 18 |
+
self,
|
| 19 |
+
base_model_name="Qwen/Qwen3-0.6B",
|
| 20 |
+
anchoring_strength=2,
|
| 21 |
+
modulated_by_prob=True,
|
| 22 |
+
use_attention_mask=True,
|
| 23 |
+
device_map="auto",
|
| 24 |
+
**kwargs
|
| 25 |
+
):
|
| 26 |
+
super().__init__()
|
| 27 |
+
|
| 28 |
+
# Store configuration parameters
|
| 29 |
+
self.base_model_name = base_model_name
|
| 30 |
+
self.anchoring_strength = anchoring_strength
|
| 31 |
+
self.modulated_by_prob = modulated_by_prob
|
| 32 |
+
self.use_attention_mask = use_attention_mask
|
| 33 |
+
self.device_map = device_map
|
| 34 |
+
|
| 35 |
+
# Load the base model and tokenizer - using AutoModel to handle any model type
|
| 36 |
+
self.model = AutoModel.from_pretrained(base_model_name, device_map=device_map, **kwargs)
|
| 37 |
+
self.tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
| 38 |
+
|
| 39 |
+
# Set default pad token if needed
|
| 40 |
+
if self.tokenizer.pad_token is None:
|
| 41 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 42 |
+
if hasattr(self.model, "config"):
|
| 43 |
+
self.model.config.pad_token_id = self.model.config.eos_token_id
|
| 44 |
+
|
| 45 |
+
# Determine device
|
| 46 |
+
if hasattr(self.model, "device"):
|
| 47 |
+
self.device = self.model.device
|
| 48 |
+
else:
|
| 49 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 50 |
+
|
| 51 |
+
def forward(self, input_ids, attention_mask=None, **kwargs):
|
| 52 |
+
"""Pass through to the base model's forward method"""
|
| 53 |
+
return self.model(input_ids=input_ids, attention_mask=attention_mask, **kwargs)
|
| 54 |
+
|
| 55 |
+
def generate_with_spa(
|
| 56 |
+
self,
|
| 57 |
+
prompt,
|
| 58 |
+
anchors=None,
|
| 59 |
+
anchoring_strength=None,
|
| 60 |
+
modulated_by_prob=None,
|
| 61 |
+
use_attention_mask=None,
|
| 62 |
+
max_new_tokens=100,
|
| 63 |
+
min_new_tokens=1,
|
| 64 |
+
do_sample=True,
|
| 65 |
+
temperature=0.7,
|
| 66 |
+
top_p=0.95,
|
| 67 |
+
top_k=50,
|
| 68 |
+
stream=False,
|
| 69 |
+
**kwargs
|
| 70 |
+
):
|
| 71 |
+
"""
|
| 72 |
+
Generate text using Selective Prompt Anchoring.
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
prompt: Text or messages to generate from
|
| 76 |
+
anchors: List of anchor strings to influence generation
|
| 77 |
+
anchoring_strength: How much to weight the anchored version
|
| 78 |
+
modulated_by_prob: Whether to modulate strength by token probability
|
| 79 |
+
use_attention_mask: Whether to use attention masking for anchor tokens
|
| 80 |
+
max_new_tokens: Maximum number of tokens to generate
|
| 81 |
+
min_new_tokens: Minimum number of tokens to generate
|
| 82 |
+
do_sample: Whether to use sampling for generation
|
| 83 |
+
temperature: Sampling temperature
|
| 84 |
+
top_p: Top-p sampling parameter
|
| 85 |
+
top_k: Top-k sampling parameter
|
| 86 |
+
stream: Whether to stream the output
|
| 87 |
+
|
| 88 |
+
Returns:
|
| 89 |
+
Generated text (or streamer if stream=True)
|
| 90 |
+
"""
|
| 91 |
+
# Use instance defaults if parameters are not provided
|
| 92 |
+
anchoring_strength = anchoring_strength or self.anchoring_strength
|
| 93 |
+
modulated_by_prob = modulated_by_prob if modulated_by_prob is not None else self.modulated_by_prob
|
| 94 |
+
use_attention_mask = use_attention_mask if use_attention_mask is not None else self.use_attention_mask
|
| 95 |
+
|
| 96 |
+
# Default to empty list if anchors not provided
|
| 97 |
+
if anchors is None:
|
| 98 |
+
anchors = []
|
| 99 |
+
|
| 100 |
+
# Preprocess anchors
|
| 101 |
+
anchors = preprocess_anchors(anchors)
|
| 102 |
+
|
| 103 |
+
# Tokenize with SPA
|
| 104 |
+
main_inputs, aux_inputs, mask_token = spa_tokenize(
|
| 105 |
+
prompt_with_anchors=prompt,
|
| 106 |
+
global_anchors=anchors,
|
| 107 |
+
tokenizer=self.tokenizer,
|
| 108 |
+
device=self.device
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
# Create SPA logits processor
|
| 112 |
+
spa_processor = SPALogitsProcessor(
|
| 113 |
+
aux_model=self.model,
|
| 114 |
+
aux_input_ids=aux_inputs,
|
| 115 |
+
strength=anchoring_strength,
|
| 116 |
+
modulated_by_prob=modulated_by_prob,
|
| 117 |
+
use_attention_mask=use_attention_mask,
|
| 118 |
+
mask_token=mask_token,
|
| 119 |
+
tokenizer=self.tokenizer
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# Get attention mask
|
| 123 |
+
attention_mask = create_default_attention_mask(main_inputs, device=self.device)
|
| 124 |
+
|
| 125 |
+
# Set up generation kwargs
|
| 126 |
+
generation_kwargs = {
|
| 127 |
+
"input_ids": main_inputs,
|
| 128 |
+
"attention_mask": attention_mask,
|
| 129 |
+
"logits_processor": [spa_processor],
|
| 130 |
+
"min_new_tokens": min_new_tokens,
|
| 131 |
+
"max_new_tokens": max_new_tokens,
|
| 132 |
+
"do_sample": do_sample,
|
| 133 |
+
"temperature": temperature,
|
| 134 |
+
"top_p": top_p,
|
| 135 |
+
"top_k": top_k,
|
| 136 |
+
**kwargs
|
| 137 |
+
}
|
| 138 |
+
|
| 139 |
+
if stream:
|
| 140 |
+
from transformers import TextIteratorStreamer
|
| 141 |
+
import threading
|
| 142 |
+
|
| 143 |
+
# Set up streamer
|
| 144 |
+
streamer = TextIteratorStreamer(
|
| 145 |
+
self.tokenizer,
|
| 146 |
+
skip_special_tokens=True,
|
| 147 |
+
skip_prompt=True
|
| 148 |
+
)
|
| 149 |
+
generation_kwargs["streamer"] = streamer
|
| 150 |
+
|
| 151 |
+
# Start generation in a separate thread
|
| 152 |
+
generation_thread = threading.Thread(
|
| 153 |
+
target=self.model.generate,
|
| 154 |
+
kwargs=generation_kwargs
|
| 155 |
+
)
|
| 156 |
+
generation_thread.start()
|
| 157 |
+
|
| 158 |
+
# Return streamer for token-by-token output
|
| 159 |
+
return streamer
|
| 160 |
+
else:
|
| 161 |
+
# Normal generation (non-streaming)
|
| 162 |
+
output_sequences = self.model.generate(**generation_kwargs)
|
| 163 |
+
|
| 164 |
+
# Decode the output
|
| 165 |
+
input_length = main_inputs.shape[1]
|
| 166 |
+
new_tokens = output_sequences[0][input_length:]
|
| 167 |
+
generated_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
|
| 168 |
+
|
| 169 |
+
return generated_text
|
| 170 |
+
|
| 171 |
+
# Create a helper function to load models directly from hub
|
| 172 |
+
def load_spa_model(
|
| 173 |
+
model_name="magic-yuantian/selective-prompt-anchoring",
|
| 174 |
+
base_model_name="meta-llama/Llama-3.1-8B-Instruct",
|
| 175 |
+
**kwargs
|
| 176 |
+
):
|
| 177 |
+
"""
|
| 178 |
+
Load a SPAModel from the Hugging Face Hub or create a new one.
|
| 179 |
+
|
| 180 |
+
Args:
|
| 181 |
+
model_name: Name or path of the SPA model in the Hub
|
| 182 |
+
base_model_name: The base model to use (if creating a new model)
|
| 183 |
+
**kwargs: Additional arguments to pass to from_pretrained or __init__
|
| 184 |
+
|
| 185 |
+
Returns:
|
| 186 |
+
A SPAModel instance
|
| 187 |
+
"""
|
| 188 |
+
try:
|
| 189 |
+
# Try to load from hub
|
| 190 |
+
model = SPAModel.from_pretrained(model_name, **kwargs)
|
| 191 |
+
return model
|
| 192 |
+
except Exception as e:
|
| 193 |
+
print(f"Error loading model from hub: {e}")
|
| 194 |
+
print(f"Creating a new SPAModel with base model {base_model_name}")
|
| 195 |
+
# Create a new model
|
| 196 |
+
model = SPAModel(base_model_name=base_model_name, **kwargs)
|
| 197 |
+
return model
|