dtm-hoinv commited on
Commit
0242306
·
verified ·
1 Parent(s): e54d997

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,403 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:8301
8
+ - loss:BatchAllTripletLoss
9
+ widget:
10
+ - source_sentence: 科目:タイル。名称:デッキ床タイル。
11
+ sentences:
12
+ - 科目:ユニット及びその他。名称:プール廻りクッション。
13
+ - 科目:ユニット及びその他。名称:P-#ピクトサインB。
14
+ - 科目:ユニット及びその他。名称:秘書室カウンター。
15
+ - source_sentence: 科目:ユニット及びその他。名称:SKフック。
16
+ sentences:
17
+ - 科目:ユニット及びその他。名称:多目的ホール入口サイン。
18
+ - 科目:ユニット及びその他。名称:免震層メッシュフェンス片開き扉。
19
+ - 科目:ユニット及びその他。名称:#フロアマップ(壁付)。
20
+ - source_sentence: 科目:ユニット及びその他。名称:カーテンレール。
21
+ sentences:
22
+ - 科目:コンクリート。名称:多目的ホール機械式移動座席基礎コンクリート。
23
+ - 科目:ユニット及びその他。名称:立下り腰壁ウッドデッキ。
24
+ - 科目:ユニット及びその他。名称:便所SKフック。
25
+ - source_sentence: 科目:ユニット及びその他。名称:守衛室・議会事務局カウンター上ガラス台。
26
+ sentences:
27
+ - 科目:ユニット及びその他。名称:屋上校庭壁ゴムチップ。
28
+ - 科目:ユニット及びその他。名称:#F救急外来受付カウンター。
29
+ - 科目:ユニット及びその他。名称:議会事務局カウンター。
30
+ - source_sentence: 科目:ユニット及びその他。名称:#Fスタッフステーションカウンター。
31
+ sentences:
32
+ - 科目:ユニット及びその他。名称:La-#触知案内図サイン。
33
+ - 科目:ユニット及びその他。名称:デジタルサイネージ。
34
+ - 科目:ユニット及びその他。名称:誘導サイン(自立)。
35
+ pipeline_tag: sentence-similarity
36
+ library_name: sentence-transformers
37
+ ---
38
+
39
+ # SentenceTransformer
40
+
41
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
42
+
43
+ ## Model Details
44
+
45
+ ### Model Description
46
+ - **Model Type:** Sentence Transformer
47
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
48
+ - **Maximum Sequence Length:** 512 tokens
49
+ - **Output Dimensionality:** 768 dimensions
50
+ - **Similarity Function:** Cosine Similarity
51
+ <!-- - **Training Dataset:** Unknown -->
52
+ <!-- - **Language:** Unknown -->
53
+ <!-- - **License:** Unknown -->
54
+
55
+ ### Model Sources
56
+
57
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
58
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
59
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
60
+
61
+ ### Full Model Architecture
62
+
63
+ ```
64
+ SentenceTransformer(
65
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
66
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
67
+ )
68
+ ```
69
+
70
+ ## Usage
71
+
72
+ ### Direct Usage (Sentence Transformers)
73
+
74
+ First install the Sentence Transformers library:
75
+
76
+ ```bash
77
+ pip install -U sentence-transformers
78
+ ```
79
+
80
+ Then you can load this model and run inference.
81
+ ```python
82
+ from sentence_transformers import SentenceTransformer
83
+
84
+ # Download from the 🤗 Hub
85
+ model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-for-standard-name-v0_9_8")
86
+ # Run inference
87
+ sentences = [
88
+ '科目:ユニット及びその他。名称:#Fスタッフステーションカウンター。',
89
+ '科目:ユニット及びその他。名称:誘導サイン(自立)。',
90
+ '科目:ユニット及びその他。名称:デジタルサイネージ。',
91
+ ]
92
+ embeddings = model.encode(sentences)
93
+ print(embeddings.shape)
94
+ # [3, 768]
95
+
96
+ # Get the similarity scores for the embeddings
97
+ similarities = model.similarity(embeddings, embeddings)
98
+ print(similarities.shape)
99
+ # [3, 3]
100
+ ```
101
+
102
+ <!--
103
+ ### Direct Usage (Transformers)
104
+
105
+ <details><summary>Click to see the direct usage in Transformers</summary>
106
+
107
+ </details>
108
+ -->
109
+
110
+ <!--
111
+ ### Downstream Usage (Sentence Transformers)
112
+
113
+ You can finetune this model on your own dataset.
114
+
115
+ <details><summary>Click to expand</summary>
116
+
117
+ </details>
118
+ -->
119
+
120
+ <!--
121
+ ### Out-of-Scope Use
122
+
123
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
124
+ -->
125
+
126
+ <!--
127
+ ## Bias, Risks and Limitations
128
+
129
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
130
+ -->
131
+
132
+ <!--
133
+ ### Recommendations
134
+
135
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
136
+ -->
137
+
138
+ ## Training Details
139
+
140
+ ### Training Dataset
141
+
142
+ #### Unnamed Dataset
143
+
144
+ * Size: 8,301 training samples
145
+ * Columns: <code>sentence</code> and <code>label</code>
146
+ * Approximate statistics based on the first 1000 samples:
147
+ | | sentence | label |
148
+ |:--------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
149
+ | type | string | int |
150
+ | details | <ul><li>min: 11 tokens</li><li>mean: 17.76 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>0: ~0.10%</li><li>1: ~0.20%</li><li>2: ~0.10%</li><li>3: ~0.10%</li><li>4: ~0.20%</li><li>5: ~0.10%</li><li>6: ~0.10%</li><li>7: ~0.10%</li><li>8: ~0.20%</li><li>9: ~0.10%</li><li>10: ~0.10%</li><li>11: ~0.40%</li><li>12: ~0.10%</li><li>13: ~0.10%</li><li>14: ~0.10%</li><li>15: ~0.10%</li><li>16: ~0.10%</li><li>17: ~0.10%</li><li>18: ~0.50%</li><li>19: ~0.20%</li><li>20: ~0.20%</li><li>21: ~0.10%</li><li>22: ~0.10%</li><li>23: ~0.10%</li><li>24: ~0.30%</li><li>25: ~0.10%</li><li>26: ~0.20%</li><li>27: ~0.20%</li><li>28: ~0.20%</li><li>29: ~0.20%</li><li>30: ~0.10%</li><li>31: ~0.10%</li><li>32: ~0.20%</li><li>33: ~0.20%</li><li>34: ~0.10%</li><li>35: ~0.20%</li><li>36: ~0.20%</li><li>37: ~0.20%</li><li>38: ~0.20%</li><li>39: ~0.20%</li><li>40: ~0.40%</li><li>41: ~0.20%</li><li>42: ~0.20%</li><li>43: ~0.20%</li><li>44: ~0.60%</li><li>45: ~0.70%</li><li>46: ~0.20%</li><li>47: ~0.20%</li><li>48: ~0.10%</li><li>49: ~0.20%</li><li>50: ~0.10%</li><li>51: ~0.20%</li><li>52: ~0.10%</li><li>53: ~0.10%</li><li>54: ~0.20%</li><li>55: ~0.20%</li><li>56: ~0.30%</li><li>57: ~0.80%</li><li>58: ~0.30%</li><li>59: ~0.10%</li><li>60: ~0.70%</li><li>61: ~0.30%</li><li>62: ~0.20%</li><li>63: ~0.20%</li><li>64: ~0.50%</li><li>65: ~0.10%</li><li>66: ~0.20%</li><li>67: ~0.20%</li><li>68: ~0.20%</li><li>69: ~0.30%</li><li>70: ~0.30%</li><li>71: ~0.20%</li><li>72: ~0.20%</li><li>73: ~0.20%</li><li>74: ~0.20%</li><li>75: ~0.20%</li><li>76: ~0.10%</li><li>77: ~0.20%</li><li>78: ~0.30%</li><li>79: ~0.20%</li><li>80: ~0.20%</li><li>81: ~0.10%</li><li>82: ~0.20%</li><li>83: ~0.50%</li><li>84: ~0.30%</li><li>85: ~0.60%</li><li>86: ~0.20%</li><li>87: ~0.30%</li><li>88: ~0.20%</li><li>89: ~0.20%</li><li>90: ~0.20%</li><li>91: ~0.20%</li><li>92: ~1.00%</li><li>93: ~1.70%</li><li>94: ~3.70%</li><li>95: ~0.50%</li><li>96: ~0.20%</li><li>97: ~0.20%</li><li>98: ~0.80%</li><li>99: ~0.20%</li><li>100: ~0.20%</li><li>101: ~0.20%</li><li>102: ~0.20%</li><li>103: ~0.30%</li><li>104: ~1.20%</li><li>105: ~0.20%</li><li>106: ~0.20%</li><li>107: ~0.40%</li><li>108: ~0.30%</li><li>109: ~0.20%</li><li>110: ~0.20%</li><li>111: ~0.20%</li><li>112: ~0.30%</li><li>113: ~0.20%</li><li>114: ~0.20%</li><li>115: ~0.10%</li><li>116: ~0.30%</li><li>117: ~0.40%</li><li>118: ~0.20%</li><li>119: ~0.20%</li><li>120: ~0.20%</li><li>121: ~0.20%</li><li>122: ~0.30%</li><li>123: ~0.20%</li><li>124: ~0.20%</li><li>125: ~0.20%</li><li>126: ~0.10%</li><li>127: ~0.20%</li><li>128: ~0.10%</li><li>129: ~0.30%</li><li>130: ~0.20%</li><li>131: ~0.20%</li><li>132: ~0.10%</li><li>133: ~0.50%</li><li>134: ~0.20%</li><li>135: ~0.20%</li><li>136: ~0.20%</li><li>137: ~0.20%</li><li>138: ~0.20%</li><li>139: ~0.10%</li><li>140: ~0.10%</li><li>141: ~0.40%</li><li>142: ~0.70%</li><li>143: ~0.20%</li><li>144: ~3.10%</li><li>145: ~0.20%</li><li>146: ~2.30%</li><li>147: ~0.30%</li><li>148: ~0.30%</li><li>149: ~0.50%</li><li>150: ~0.50%</li><li>151: ~0.50%</li><li>152: ~0.20%</li><li>153: ~0.20%</li><li>154: ~0.20%</li><li>155: ~0.20%</li><li>156: ~0.30%</li><li>157: ~0.30%</li><li>158: ~0.30%</li><li>159: ~0.20%</li><li>160: ~0.30%</li><li>161: ~0.20%</li><li>162: ~0.20%</li><li>163: ~0.10%</li><li>164: ~0.20%</li><li>165: ~0.20%</li><li>166: ~0.30%</li><li>167: ~0.20%</li><li>168: ~0.20%</li><li>169: ~0.20%</li><li>170: ~0.20%</li><li>171: ~0.20%</li><li>172: ~0.20%</li><li>173: ~0.20%</li><li>174: ~0.30%</li><li>175: ~0.30%</li><li>176: ~0.20%</li><li>177: ~0.20%</li><li>178: ~0.20%</li><li>179: ~0.20%</li><li>180: ~0.30%</li><li>181: ~0.60%</li><li>182: ~0.20%</li><li>183: ~0.20%</li><li>184: ~0.20%</li><li>185: ~0.20%</li><li>186: ~0.20%</li><li>187: ~0.70%</li><li>188: ~0.20%</li><li>189: ~0.20%</li><li>190: ~0.30%</li><li>191: ~0.20%</li><li>192: ~1.30%</li><li>193: ~0.20%</li><li>194: ~0.30%</li><li>195: ~0.30%</li><li>196: ~0.20%</li><li>197: ~0.30%</li><li>198: ~0.10%</li><li>199: ~1.10%</li><li>200: ~0.20%</li><li>201: ~0.20%</li><li>202: ~0.20%</li><li>203: ~0.10%</li><li>204: ~0.10%</li><li>205: ~0.20%</li><li>206: ~0.20%</li><li>207: ~0.10%</li><li>208: ~1.10%</li><li>209: ~0.40%</li><li>210: ~0.10%</li><li>211: ~0.20%</li><li>212: ~0.20%</li><li>213: ~0.10%</li><li>214: ~1.00%</li><li>215: ~0.20%</li><li>216: ~0.30%</li><li>217: ~0.10%</li><li>218: ~1.80%</li><li>219: ~0.30%</li><li>220: ~0.50%</li><li>221: ~0.20%</li><li>222: ~0.20%</li><li>223: ~0.10%</li><li>224: ~0.20%</li><li>225: ~0.10%</li><li>226: ~0.20%</li><li>227: ~0.20%</li><li>228: ~0.10%</li><li>229: ~0.30%</li><li>230: ~4.00%</li><li>231: ~0.20%</li><li>232: ~0.20%</li><li>233: ~0.10%</li><li>234: ~0.60%</li><li>235: ~0.20%</li><li>236: ~0.30%</li><li>237: ~0.70%</li><li>238: ~0.20%</li><li>239: ~0.30%</li><li>240: ~0.30%</li><li>241: ~0.40%</li><li>242: ~0.30%</li><li>243: ~0.10%</li><li>244: ~0.20%</li><li>245: ~0.30%</li><li>246: ~0.20%</li><li>247: ~0.10%</li><li>248: ~0.10%</li><li>249: ~0.30%</li><li>250: ~0.30%</li><li>251: ~0.30%</li><li>252: ~0.60%</li><li>253: ~0.20%</li><li>254: ~0.20%</li><li>255: ~0.20%</li><li>256: ~0.30%</li><li>257: ~0.20%</li><li>258: ~2.20%</li><li>259: ~0.30%</li><li>260: ~0.20%</li><li>261: ~0.20%</li><li>262: ~0.30%</li><li>263: ~0.10%</li><li>264: ~0.10%</li><li>265: ~0.50%</li><li>266: ~0.10%</li><li>267: ~0.10%</li><li>268: ~0.10%</li><li>269: ~0.10%</li><li>270: ~0.20%</li><li>271: ~0.90%</li><li>272: ~0.20%</li><li>273: ~0.20%</li><li>274: ~0.10%</li><li>275: ~0.40%</li><li>276: ~0.20%</li><li>277: ~0.20%</li><li>278: ~0.10%</li><li>279: ~0.10%</li><li>280: ~0.20%</li><li>281: ~0.10%</li><li>282: ~0.20%</li><li>283: ~2.90%</li><li>284: ~0.20%</li><li>285: ~0.20%</li><li>286: ~0.30%</li><li>287: ~0.20%</li><li>288: ~0.20%</li><li>289: ~0.80%</li><li>290: ~0.20%</li><li>291: ~0.20%</li><li>292: ~3.90%</li><li>293: ~0.30%</li><li>294: ~0.10%</li><li>295: ~0.20%</li><li>296: ~0.70%</li><li>297: ~0.40%</li><li>298: ~0.20%</li><li>299: ~0.20%</li></ul> |
151
+ * Samples:
152
+ | sentence | label |
153
+ |:-----------------------------------------|:---------------|
154
+ | <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
155
+ | <code>科目:コンクリート。名称:コンクリートポンプ圧送。</code> | <code>1</code> |
156
+ | <code>科目:コンクリート。名称:ポンプ圧送。</code> | <code>1</code> |
157
+ * Loss: [<code>BatchAllTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchalltripletloss)
158
+
159
+ ### Training Hyperparameters
160
+ #### Non-Default Hyperparameters
161
+
162
+ - `per_device_train_batch_size`: 512
163
+ - `per_device_eval_batch_size`: 512
164
+ - `learning_rate`: 1e-05
165
+ - `weight_decay`: 0.01
166
+ - `num_train_epochs`: 200
167
+ - `warmup_ratio`: 0.1
168
+ - `fp16`: True
169
+ - `batch_sampler`: group_by_label
170
+
171
+ #### All Hyperparameters
172
+ <details><summary>Click to expand</summary>
173
+
174
+ - `overwrite_output_dir`: False
175
+ - `do_predict`: False
176
+ - `eval_strategy`: no
177
+ - `prediction_loss_only`: True
178
+ - `per_device_train_batch_size`: 512
179
+ - `per_device_eval_batch_size`: 512
180
+ - `per_gpu_train_batch_size`: None
181
+ - `per_gpu_eval_batch_size`: None
182
+ - `gradient_accumulation_steps`: 1
183
+ - `eval_accumulation_steps`: None
184
+ - `torch_empty_cache_steps`: None
185
+ - `learning_rate`: 1e-05
186
+ - `weight_decay`: 0.01
187
+ - `adam_beta1`: 0.9
188
+ - `adam_beta2`: 0.999
189
+ - `adam_epsilon`: 1e-08
190
+ - `max_grad_norm`: 1.0
191
+ - `num_train_epochs`: 200
192
+ - `max_steps`: -1
193
+ - `lr_scheduler_type`: linear
194
+ - `lr_scheduler_kwargs`: {}
195
+ - `warmup_ratio`: 0.1
196
+ - `warmup_steps`: 0
197
+ - `log_level`: passive
198
+ - `log_level_replica`: warning
199
+ - `log_on_each_node`: True
200
+ - `logging_nan_inf_filter`: True
201
+ - `save_safetensors`: True
202
+ - `save_on_each_node`: False
203
+ - `save_only_model`: False
204
+ - `restore_callback_states_from_checkpoint`: False
205
+ - `no_cuda`: False
206
+ - `use_cpu`: False
207
+ - `use_mps_device`: False
208
+ - `seed`: 42
209
+ - `data_seed`: None
210
+ - `jit_mode_eval`: False
211
+ - `use_ipex`: False
212
+ - `bf16`: False
213
+ - `fp16`: True
214
+ - `fp16_opt_level`: O1
215
+ - `half_precision_backend`: auto
216
+ - `bf16_full_eval`: False
217
+ - `fp16_full_eval`: False
218
+ - `tf32`: None
219
+ - `local_rank`: 0
220
+ - `ddp_backend`: None
221
+ - `tpu_num_cores`: None
222
+ - `tpu_metrics_debug`: False
223
+ - `debug`: []
224
+ - `dataloader_drop_last`: False
225
+ - `dataloader_num_workers`: 0
226
+ - `dataloader_prefetch_factor`: None
227
+ - `past_index`: -1
228
+ - `disable_tqdm`: False
229
+ - `remove_unused_columns`: True
230
+ - `label_names`: None
231
+ - `load_best_model_at_end`: False
232
+ - `ignore_data_skip`: False
233
+ - `fsdp`: []
234
+ - `fsdp_min_num_params`: 0
235
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
236
+ - `fsdp_transformer_layer_cls_to_wrap`: None
237
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
238
+ - `deepspeed`: None
239
+ - `label_smoothing_factor`: 0.0
240
+ - `optim`: adamw_torch
241
+ - `optim_args`: None
242
+ - `adafactor`: False
243
+ - `group_by_length`: False
244
+ - `length_column_name`: length
245
+ - `ddp_find_unused_parameters`: None
246
+ - `ddp_bucket_cap_mb`: None
247
+ - `ddp_broadcast_buffers`: False
248
+ - `dataloader_pin_memory`: True
249
+ - `dataloader_persistent_workers`: False
250
+ - `skip_memory_metrics`: True
251
+ - `use_legacy_prediction_loop`: False
252
+ - `push_to_hub`: False
253
+ - `resume_from_checkpoint`: None
254
+ - `hub_model_id`: None
255
+ - `hub_strategy`: every_save
256
+ - `hub_private_repo`: None
257
+ - `hub_always_push`: False
258
+ - `gradient_checkpointing`: False
259
+ - `gradient_checkpointing_kwargs`: None
260
+ - `include_inputs_for_metrics`: False
261
+ - `include_for_metrics`: []
262
+ - `eval_do_concat_batches`: True
263
+ - `fp16_backend`: auto
264
+ - `push_to_hub_model_id`: None
265
+ - `push_to_hub_organization`: None
266
+ - `mp_parameters`:
267
+ - `auto_find_batch_size`: False
268
+ - `full_determinism`: False
269
+ - `torchdynamo`: None
270
+ - `ray_scope`: last
271
+ - `ddp_timeout`: 1800
272
+ - `torch_compile`: False
273
+ - `torch_compile_backend`: None
274
+ - `torch_compile_mode`: None
275
+ - `dispatch_batches`: None
276
+ - `split_batches`: None
277
+ - `include_tokens_per_second`: False
278
+ - `include_num_input_tokens_seen`: False
279
+ - `neftune_noise_alpha`: None
280
+ - `optim_target_modules`: None
281
+ - `batch_eval_metrics`: False
282
+ - `eval_on_start`: False
283
+ - `use_liger_kernel`: False
284
+ - `eval_use_gather_object`: False
285
+ - `average_tokens_across_devices`: False
286
+ - `prompts`: None
287
+ - `batch_sampler`: group_by_label
288
+ - `multi_dataset_batch_sampler`: proportional
289
+
290
+ </details>
291
+
292
+ ### Training Logs
293
+ | Epoch | Step | Training Loss |
294
+ |:--------:|:----:|:-------------:|
295
+ | 3.6471 | 50 | 0.5866 |
296
+ | 7.5294 | 100 | 0.4693 |
297
+ | 11.4118 | 150 | 0.4486 |
298
+ | 15.2941 | 200 | 0.2783 |
299
+ | 19.1765 | 250 | 0.2732 |
300
+ | 23.0588 | 300 | 0.3268 |
301
+ | 26.7059 | 350 | 0.3403 |
302
+ | 30.5882 | 400 | 0.1967 |
303
+ | 34.4706 | 450 | 0.2025 |
304
+ | 38.3529 | 500 | 0.2108 |
305
+ | 42.2353 | 550 | 0.1458 |
306
+ | 46.1176 | 600 | 0.1914 |
307
+ | 49.7647 | 650 | 0.1065 |
308
+ | 53.6471 | 700 | 0.0607 |
309
+ | 57.5294 | 750 | 0.128 |
310
+ | 61.4118 | 800 | 0.0579 |
311
+ | 65.2941 | 850 | 0.1695 |
312
+ | 69.1765 | 900 | 0.1121 |
313
+ | 73.0588 | 950 | 0.1096 |
314
+ | 76.7059 | 1000 | 0.1213 |
315
+ | 80.5882 | 1050 | 0.0485 |
316
+ | 84.4706 | 1100 | 0.0759 |
317
+ | 88.3529 | 1150 | 0.0673 |
318
+ | 92.2353 | 1200 | 0.111 |
319
+ | 96.1176 | 1250 | 0.0159 |
320
+ | 99.7647 | 1300 | 0.1044 |
321
+ | 103.6471 | 1350 | 0.0928 |
322
+ | 107.5294 | 1400 | 0.0712 |
323
+ | 111.4118 | 1450 | 0.096 |
324
+ | 115.2941 | 1500 | 0.0648 |
325
+ | 119.1765 | 1550 | 0.0534 |
326
+ | 123.0588 | 1600 | 0.0071 |
327
+ | 126.7059 | 1650 | 0.0688 |
328
+ | 130.5882 | 1700 | 0.105 |
329
+ | 134.4706 | 1750 | 0.0344 |
330
+ | 138.3529 | 1800 | 0.0543 |
331
+ | 142.2353 | 1850 | 0.0072 |
332
+ | 146.1176 | 1900 | 0.0218 |
333
+ | 149.7647 | 1950 | 0.0203 |
334
+ | 153.6471 | 2000 | 0.0837 |
335
+ | 157.5294 | 2050 | 0.0423 |
336
+ | 161.4118 | 2100 | 0.0457 |
337
+ | 165.2941 | 2150 | 0.0591 |
338
+ | 169.1765 | 2200 | 0.0168 |
339
+ | 173.0588 | 2250 | 0.0234 |
340
+ | 176.7059 | 2300 | 0.0452 |
341
+ | 180.5882 | 2350 | 0.031 |
342
+ | 184.4706 | 2400 | 0.0241 |
343
+ | 188.3529 | 2450 | 0.0001 |
344
+ | 192.2353 | 2500 | 0.0427 |
345
+ | 196.1176 | 2550 | 0.0381 |
346
+ | 199.7647 | 2600 | 0.0203 |
347
+
348
+
349
+ ### Framework Versions
350
+ - Python: 3.11.11
351
+ - Sentence Transformers: 3.4.1
352
+ - Transformers: 4.49.0
353
+ - PyTorch: 2.6.0+cu124
354
+ - Accelerate: 1.5.2
355
+ - Datasets: 3.4.1
356
+ - Tokenizers: 0.21.1
357
+
358
+ ## Citation
359
+
360
+ ### BibTeX
361
+
362
+ #### Sentence Transformers
363
+ ```bibtex
364
+ @inproceedings{reimers-2019-sentence-bert,
365
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
366
+ author = "Reimers, Nils and Gurevych, Iryna",
367
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
368
+ month = "11",
369
+ year = "2019",
370
+ publisher = "Association for Computational Linguistics",
371
+ url = "https://arxiv.org/abs/1908.10084",
372
+ }
373
+ ```
374
+
375
+ #### BatchAllTripletLoss
376
+ ```bibtex
377
+ @misc{hermans2017defense,
378
+ title={In Defense of the Triplet Loss for Person Re-Identification},
379
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
380
+ year={2017},
381
+ eprint={1703.07737},
382
+ archivePrefix={arXiv},
383
+ primaryClass={cs.CV}
384
+ }
385
+ ```
386
+
387
+ <!--
388
+ ## Glossary
389
+
390
+ *Clearly define terms in order to be accessible across audiences.*
391
+ -->
392
+
393
+ <!--
394
+ ## Model Card Authors
395
+
396
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
397
+ -->
398
+
399
+ <!--
400
+ ## Model Card Contact
401
+
402
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
403
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/content/gdrive/MyDrive/Colab Folder/NSS/models/cl-nagoya-sup-simcse-ja-for-standard-name-v_0_9_8#6",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.49.0",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 32768
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fdbbfb7063818af6051edcd263cdc4f5c2b8e21465a1ddf23b512c96fe0006b
3
+ size 444851048
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "do_subword_tokenize": true,
48
+ "do_word_tokenize": true,
49
+ "extra_special_tokens": {},
50
+ "jumanpp_kwargs": null,
51
+ "mask_token": "[MASK]",
52
+ "mecab_kwargs": {
53
+ "mecab_dic": "unidic_lite"
54
+ },
55
+ "model_max_length": 512,
56
+ "never_split": null,
57
+ "pad_token": "[PAD]",
58
+ "sep_token": "[SEP]",
59
+ "subword_tokenizer_type": "wordpiece",
60
+ "sudachi_kwargs": null,
61
+ "tokenizer_class": "BertJapaneseTokenizer",
62
+ "unk_token": "[UNK]",
63
+ "word_tokenizer_type": "mecab"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff