Upload encoder_decoder_tokenizer.py
Browse files- encoder_decoder_tokenizer.py +470 -0
encoder_decoder_tokenizer.py
ADDED
|
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Encoder-Decoder Tokenizer Implementations
|
| 3 |
+
|
| 4 |
+
Provides tokenizer implementations for encoder-decoder models.
|
| 5 |
+
"""
|
| 6 |
+
import os
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from overrides import overrides
|
| 11 |
+
from typing import Dict, Any, Tuple, Union, List, Optional, overload
|
| 12 |
+
from datasets import Dataset, DatasetDict
|
| 13 |
+
from transformers.tokenization_utils_base import (
|
| 14 |
+
AddedToken, # type: ignore
|
| 15 |
+
BatchEncoding,
|
| 16 |
+
EncodedInput,
|
| 17 |
+
EncodedInputPair,
|
| 18 |
+
PreTokenizedInput,
|
| 19 |
+
PreTokenizedInputPair,
|
| 20 |
+
TextInput,
|
| 21 |
+
TextInputPair,
|
| 22 |
+
TruncationStrategy,
|
| 23 |
+
)
|
| 24 |
+
from transformers.utils import logging
|
| 25 |
+
from transformers import AutoTokenizer
|
| 26 |
+
from transformers.utils.generic import PaddingStrategy, TensorType
|
| 27 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
| 28 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 29 |
+
from transformers import EncoderDecoderModel
|
| 30 |
+
|
| 31 |
+
logger = logging.get_logger(__name__)
|
| 32 |
+
|
| 33 |
+
SPIECE_UNDERLINE = "▁"
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class EncoderDecoderTokenizer(PreTrainedTokenizer):
|
| 37 |
+
def __init__(self, encoder_tokenizer_path, decoder_tokenizer_path, **kwargs):
|
| 38 |
+
self.encoder: PreTrainedTokenizer = AutoTokenizer.from_pretrained(encoder_tokenizer_path)
|
| 39 |
+
self.decoder: PreTrainedTokenizer = AutoTokenizer.from_pretrained(decoder_tokenizer_path)
|
| 40 |
+
self.current_tokenizer = self.encoder
|
| 41 |
+
self._decode_use_source_tokenizer = False
|
| 42 |
+
|
| 43 |
+
if self.decoder.eos_token is None:
|
| 44 |
+
self.decoder.eos_token = self.decoder.sep_token
|
| 45 |
+
|
| 46 |
+
if self.encoder.eos_token is None:
|
| 47 |
+
self.encoder.eos_token = self.encoder.sep_token
|
| 48 |
+
|
| 49 |
+
if self.encoder.pad_token is None:
|
| 50 |
+
self.encoder.pad_token = self.encoder.eos_token
|
| 51 |
+
if self.decoder.pad_token is None:
|
| 52 |
+
self.decoder.pad_token = self.decoder.eos_token
|
| 53 |
+
|
| 54 |
+
if self.encoder.bos_token is None:
|
| 55 |
+
self.encoder.bos_token = self.encoder.cls_token
|
| 56 |
+
if self.decoder.bos_token is None:
|
| 57 |
+
self.decoder.bos_token = self.decoder.cls_token
|
| 58 |
+
|
| 59 |
+
self._pad_token = self.encoder.pad_token
|
| 60 |
+
self._unk_token = self.encoder.unk_token
|
| 61 |
+
self._bos_token = self.encoder.bos_token
|
| 62 |
+
self._eos_token = self.encoder.eos_token
|
| 63 |
+
self._sep_token = self.encoder.sep_token
|
| 64 |
+
self._cls_token = self.encoder.cls_token
|
| 65 |
+
self._mask_token = self.encoder.mask_token
|
| 66 |
+
self.decoder_pad_token = self.decoder.pad_token
|
| 67 |
+
self.decoder_unk_token = self.decoder.unk_token
|
| 68 |
+
self.decoder_bos_token = self.decoder.bos_token
|
| 69 |
+
self.decoder_eos_token = self.decoder.eos_token
|
| 70 |
+
self.decoder_sep_token = self.decoder.sep_token
|
| 71 |
+
self.decoder_cls_token = self.decoder.cls_token
|
| 72 |
+
self.decoder_mas_token = self.decoder.mask_token
|
| 73 |
+
|
| 74 |
+
self.decoder_pad_token_id = self.decoder.pad_token_id
|
| 75 |
+
self.decoder_unk_token_id = self.decoder.unk_token_id
|
| 76 |
+
self.decoder_bos_token_id = self.decoder.bos_token_id
|
| 77 |
+
self.decoder_eos_token_id = self.decoder.eos_token_id
|
| 78 |
+
self.decoder_sep_token_id = self.decoder.sep_token_id
|
| 79 |
+
self.decoder_cls_token_id = self.decoder.cls_token_id
|
| 80 |
+
self.decoder_mas_token_id = self.decoder.mask_token_id
|
| 81 |
+
self._additional_special_tokens = []
|
| 82 |
+
|
| 83 |
+
@property
|
| 84 |
+
def is_fast(self) -> bool:
|
| 85 |
+
return self.current_tokenizer.is_fast
|
| 86 |
+
|
| 87 |
+
@property
|
| 88 |
+
def vocab_size(self) -> int:
|
| 89 |
+
"""
|
| 90 |
+
`int`: Size of the base vocabulary (without the added tokens).
|
| 91 |
+
"""
|
| 92 |
+
return self.current_tokenizer.vocab_size
|
| 93 |
+
|
| 94 |
+
@property
|
| 95 |
+
def added_tokens_encoder(self) -> Dict[str, int]:
|
| 96 |
+
"""
|
| 97 |
+
Returns the sorted mapping from string to index. The added tokens encoder is cached for performance
|
| 98 |
+
optimisation in `self._added_tokens_encoder` for the slow tokenizers.
|
| 99 |
+
"""
|
| 100 |
+
return self.current_tokenizer.added_tokens_encoder
|
| 101 |
+
|
| 102 |
+
@property
|
| 103 |
+
def added_tokens_decoder(self) -> Dict[int, AddedToken]:
|
| 104 |
+
"""
|
| 105 |
+
Returns the added tokens in the vocabulary as a dictionary of index to AddedToken.
|
| 106 |
+
|
| 107 |
+
Returns:
|
| 108 |
+
`Dict[str, int]`: The added tokens.
|
| 109 |
+
"""
|
| 110 |
+
return self.current_tokenizer.added_tokens_decoder
|
| 111 |
+
|
| 112 |
+
@added_tokens_decoder.setter
|
| 113 |
+
def added_tokens_decoder(self, value: Dict[int, Union[AddedToken, str]]) -> None:
|
| 114 |
+
self.current_tokenizer.added_tokens_decoder = value
|
| 115 |
+
|
| 116 |
+
def get_added_vocab(self) -> Dict[str, int]:
|
| 117 |
+
"""
|
| 118 |
+
Returns the added tokens in the vocabulary as a dictionary of token to index. Results might be different from
|
| 119 |
+
the fast call because for now we always add the tokens even if they are already in the vocabulary. This is
|
| 120 |
+
something we should change.
|
| 121 |
+
|
| 122 |
+
Returns:
|
| 123 |
+
`Dict[str, int]`: The added tokens.
|
| 124 |
+
"""
|
| 125 |
+
return self._added_tokens_encoder
|
| 126 |
+
|
| 127 |
+
def __len__(self):
|
| 128 |
+
"""
|
| 129 |
+
Size of the full vocabulary with the added tokens. Counts the `keys` and not the `values` because otherwise if
|
| 130 |
+
there is a hole in the vocab, we will add tokenizers at a wrong index.
|
| 131 |
+
"""
|
| 132 |
+
return len(set(self.get_vocab().keys()))
|
| 133 |
+
|
| 134 |
+
def num_special_tokens_to_add(self, pair: bool = False) -> int:
|
| 135 |
+
"""
|
| 136 |
+
Returns the number of added tokens when encoding a sequence with special tokens.
|
| 137 |
+
|
| 138 |
+
<Tip>
|
| 139 |
+
|
| 140 |
+
This encodes a dummy input and checks the number of added tokens, and is therefore not efficient. Do not put
|
| 141 |
+
this inside your training loop.
|
| 142 |
+
|
| 143 |
+
</Tip>
|
| 144 |
+
|
| 145 |
+
Args:
|
| 146 |
+
pair (`bool`, *optional*, defaults to `False`):
|
| 147 |
+
Whether the number of added tokens should be computed in the case of a sequence pair or a single
|
| 148 |
+
sequence.
|
| 149 |
+
|
| 150 |
+
Returns:
|
| 151 |
+
`int`: Number of special tokens added to sequences.
|
| 152 |
+
"""
|
| 153 |
+
return self.current_tokenizer.num_special_tokens_to_add(pair)
|
| 154 |
+
|
| 155 |
+
def tokenize(self, text: TextInput, **kwargs):
|
| 156 |
+
"""
|
| 157 |
+
Converts a string in a sequence of tokens, using the tokenizer.
|
| 158 |
+
|
| 159 |
+
Split in words for word-based vocabulary or sub-words for sub-word-based vocabularies
|
| 160 |
+
(BPE/SentencePieces/WordPieces). Takes care of added tokens.
|
| 161 |
+
|
| 162 |
+
Args:
|
| 163 |
+
text (`str`):
|
| 164 |
+
The sequence to be encoded.
|
| 165 |
+
**kwargs (additional keyword arguments):
|
| 166 |
+
Passed along to the model-specific `prepare_for_tokenization` preprocessing method.
|
| 167 |
+
|
| 168 |
+
Returns:
|
| 169 |
+
`List[str]`: The list of tokens.
|
| 170 |
+
"""
|
| 171 |
+
return self.decoder.tokenize(text, **kwargs)
|
| 172 |
+
|
| 173 |
+
def _tokenize(self, text, **kwargs):
|
| 174 |
+
"""
|
| 175 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
| 176 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
| 177 |
+
|
| 178 |
+
Do NOT take care of added tokens.
|
| 179 |
+
"""
|
| 180 |
+
raise self.decoder._tokenize(text, **kwargs)
|
| 181 |
+
|
| 182 |
+
def convert_tokens_to_ids(self, tokens: Union[str, List[str]]) -> Union[int, List[int]]:
|
| 183 |
+
"""
|
| 184 |
+
Converts a token string (or a sequence of tokens) in a single integer id (or a sequence of ids), using the
|
| 185 |
+
vocabulary.
|
| 186 |
+
|
| 187 |
+
Args:
|
| 188 |
+
tokens (`str` or `List[str]`): One or several token(s) to convert to token id(s).
|
| 189 |
+
|
| 190 |
+
Returns:
|
| 191 |
+
`int` or `List[int]`: The token id or list of token ids.
|
| 192 |
+
"""
|
| 193 |
+
return self.current_tokenizer.convert_tokens_to_ids(tokens)
|
| 194 |
+
|
| 195 |
+
def _convert_token_to_id_with_added_voc(self, token):
|
| 196 |
+
return self.current_tokenizer._convert_token_to_id_with_added_voc(token)
|
| 197 |
+
|
| 198 |
+
def _convert_token_to_id(self, token):
|
| 199 |
+
return self.current_tokenizer._convert_token_to_id(token)
|
| 200 |
+
|
| 201 |
+
def encode(self, *args, **kwargs):
|
| 202 |
+
return self.current_tokenizer.encode(*args, **kwargs)
|
| 203 |
+
|
| 204 |
+
def _batch_encode_plus(
|
| 205 |
+
self,
|
| 206 |
+
batch_text_or_text_pairs: Union[
|
| 207 |
+
List[TextInput],
|
| 208 |
+
List[TextInputPair],
|
| 209 |
+
List[PreTokenizedInput],
|
| 210 |
+
List[PreTokenizedInputPair],
|
| 211 |
+
List[EncodedInput],
|
| 212 |
+
List[EncodedInputPair],
|
| 213 |
+
],
|
| 214 |
+
add_special_tokens: bool = True,
|
| 215 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
| 216 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
| 217 |
+
max_length: Optional[int] = None,
|
| 218 |
+
stride: int = 0,
|
| 219 |
+
is_split_into_words: bool = False,
|
| 220 |
+
pad_to_multiple_of: Optional[int] = None,
|
| 221 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 222 |
+
return_token_type_ids: Optional[bool] = None,
|
| 223 |
+
return_attention_mask: Optional[bool] = None,
|
| 224 |
+
return_overflowing_tokens: bool = False,
|
| 225 |
+
return_special_tokens_mask: bool = False,
|
| 226 |
+
return_offsets_mapping: bool = False,
|
| 227 |
+
return_length: bool = False,
|
| 228 |
+
verbose: bool = True,
|
| 229 |
+
**kwargs,
|
| 230 |
+
) -> BatchEncoding:
|
| 231 |
+
return self.current_tokenizer._batch_encode_plus(batch_text_or_text_pairs=batch_text_or_text_pairs,
|
| 232 |
+
add_special_tokens=add_special_tokens,
|
| 233 |
+
padding_strategy=padding_strategy,
|
| 234 |
+
truncation_strategy=truncation_strategy,
|
| 235 |
+
max_length=max_length,
|
| 236 |
+
stride=stride,
|
| 237 |
+
is_split_into_words=is_split_into_words,
|
| 238 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
| 239 |
+
return_tensors=return_tensors,
|
| 240 |
+
return_token_type_ids=return_token_type_ids,
|
| 241 |
+
return_attention_mask=return_attention_mask,
|
| 242 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
| 243 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
| 244 |
+
return_offsets_mapping=return_offsets_mapping,
|
| 245 |
+
return_length=return_length,
|
| 246 |
+
verbose=verbose,
|
| 247 |
+
**kwargs,
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
def prepare_for_tokenization(
|
| 251 |
+
self, text: str, is_split_into_words: bool = False, **kwargs
|
| 252 |
+
) -> Tuple[str, Dict[str, Any]]:
|
| 253 |
+
"""
|
| 254 |
+
Performs any necessary transformations before tokenization.
|
| 255 |
+
|
| 256 |
+
This method should pop the arguments from kwargs and return the remaining `kwargs` as well. We test the
|
| 257 |
+
`kwargs` at the end of the encoding process to be sure all the arguments have been used.
|
| 258 |
+
|
| 259 |
+
Args:
|
| 260 |
+
text (`str`):
|
| 261 |
+
The text to prepare.
|
| 262 |
+
is_split_into_words (`bool`, *optional*, defaults to `False`):
|
| 263 |
+
Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the
|
| 264 |
+
tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
|
| 265 |
+
which it will tokenize. This is useful for NER or token classification.
|
| 266 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
| 267 |
+
Keyword arguments to use for the tokenization.
|
| 268 |
+
|
| 269 |
+
Returns:
|
| 270 |
+
`Tuple[str, Dict[str, Any]]`: The prepared text and the unused kwargs.
|
| 271 |
+
"""
|
| 272 |
+
return self.current_tokenizer.prepare_for_tokenization(text, is_split_into_words, **kwargs)
|
| 273 |
+
|
| 274 |
+
def get_special_tokens_mask(
|
| 275 |
+
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
|
| 276 |
+
) -> List[int]:
|
| 277 |
+
"""
|
| 278 |
+
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 279 |
+
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
|
| 280 |
+
|
| 281 |
+
Args:
|
| 282 |
+
token_ids_0 (`List[int]`):
|
| 283 |
+
List of ids of the first sequence.
|
| 284 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 285 |
+
List of ids of the second sequence.
|
| 286 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 287 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
| 288 |
+
|
| 289 |
+
Returns:
|
| 290 |
+
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 291 |
+
"""
|
| 292 |
+
|
| 293 |
+
return self.current_tokenizer.get_special_tokens_mask(token_ids_0, token_ids_1, already_has_special_tokens)
|
| 294 |
+
|
| 295 |
+
@overload
|
| 296 |
+
def convert_ids_to_tokens(self, ids: int, skip_special_tokens: bool = False) -> str:
|
| 297 |
+
return self.current_tokenizer.convert_ids_to_tokens(ids, skip_special_tokens)
|
| 298 |
+
|
| 299 |
+
@overload
|
| 300 |
+
def convert_ids_to_tokens(self, ids: List[int], skip_special_tokens: bool = False) -> List[str]:
|
| 301 |
+
return self.current_tokenizer.convert_ids_to_tokens(ids, skip_special_tokens)
|
| 302 |
+
|
| 303 |
+
def convert_ids_to_tokens(
|
| 304 |
+
self, ids: Union[int, List[int]], skip_special_tokens: bool = False
|
| 305 |
+
) -> Union[str, List[str]]:
|
| 306 |
+
"""
|
| 307 |
+
Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and
|
| 308 |
+
added tokens.
|
| 309 |
+
|
| 310 |
+
Args:
|
| 311 |
+
ids (`int` or `List[int]`):
|
| 312 |
+
The token id (or token ids) to convert to tokens.
|
| 313 |
+
skip_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 314 |
+
Whether or not to remove special tokens in the decoding.
|
| 315 |
+
|
| 316 |
+
Returns:
|
| 317 |
+
`str` or `List[str]`: The decoded token(s).
|
| 318 |
+
"""
|
| 319 |
+
return self.current_tokenizer.convert_ids_to_tokens(ids, skip_special_tokens)
|
| 320 |
+
|
| 321 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
| 322 |
+
return self.current_tokenizer.convert_tokens_to_string(tokens)
|
| 323 |
+
|
| 324 |
+
def decode(
|
| 325 |
+
self,
|
| 326 |
+
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor"],
|
| 327 |
+
skip_special_tokens: bool = False,
|
| 328 |
+
clean_up_tokenization_spaces: Optional[bool] = None,
|
| 329 |
+
**kwargs,
|
| 330 |
+
) -> str:
|
| 331 |
+
return self.decoder.decode(token_ids, skip_special_tokens, clean_up_tokenization_spaces, **kwargs)
|
| 332 |
+
|
| 333 |
+
@overrides
|
| 334 |
+
def __call__(self, text, text_target=None, *args, **kwargs):
|
| 335 |
+
if isinstance(text, str):
|
| 336 |
+
text = text + self.eos_token
|
| 337 |
+
else:
|
| 338 |
+
text = [i + self.eos_token for i in text]
|
| 339 |
+
results = self.encoder(text, *args, **kwargs)
|
| 340 |
+
if text_target:
|
| 341 |
+
tmp = self.decoder(text_target, *args, **kwargs)
|
| 342 |
+
results['labels'] = tmp['input_ids']
|
| 343 |
+
results['labels'][results['labels'] == self.decoder.pad_token_id] = -100
|
| 344 |
+
results['decoder_attention_mask'] = tmp['attention_mask']
|
| 345 |
+
return results
|
| 346 |
+
|
| 347 |
+
def _decode(
|
| 348 |
+
self,
|
| 349 |
+
token_ids: List[int],
|
| 350 |
+
skip_special_tokens: bool = False,
|
| 351 |
+
clean_up_tokenization_spaces: Optional[bool] = None,
|
| 352 |
+
spaces_between_special_tokens: bool = True,
|
| 353 |
+
**kwargs,
|
| 354 |
+
) -> str:
|
| 355 |
+
return self.decoder._decode(token_ids,
|
| 356 |
+
skip_special_tokens,
|
| 357 |
+
clean_up_tokenization_spaces,
|
| 358 |
+
spaces_between_special_tokens)
|
| 359 |
+
|
| 360 |
+
def save_pretrained(
|
| 361 |
+
self,
|
| 362 |
+
save_directory: Union[str, os.PathLike],
|
| 363 |
+
legacy_format: Optional[bool] = None,
|
| 364 |
+
filename_prefix: Optional[str] = None,
|
| 365 |
+
push_to_hub: bool = False,
|
| 366 |
+
**kwargs,
|
| 367 |
+
) -> None:
|
| 368 |
+
encoder_path = Path(save_directory) / Path("encoder")
|
| 369 |
+
decoder_path = Path(save_directory) / Path("decoder")
|
| 370 |
+
self.encoder.save_pretrained(encoder_path, legacy_format, filename_prefix, push_to_hub, **kwargs)
|
| 371 |
+
self.decoder.save_pretrained(decoder_path, legacy_format, filename_prefix, push_to_hub, **kwargs)
|
| 372 |
+
|
| 373 |
+
@classmethod
|
| 374 |
+
def from_pretrained(
|
| 375 |
+
cls,
|
| 376 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
| 377 |
+
*init_inputs,
|
| 378 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
| 379 |
+
force_download: bool = False,
|
| 380 |
+
local_files_only: bool = False,
|
| 381 |
+
token: Optional[Union[str, bool]] = None,
|
| 382 |
+
revision: str = "main",
|
| 383 |
+
**kwargs,
|
| 384 |
+
):
|
| 385 |
+
encoder_path = Path(pretrained_model_name_or_path) / Path("encoder")
|
| 386 |
+
decoder_path = Path(pretrained_model_name_or_path) / Path("decoder")
|
| 387 |
+
|
| 388 |
+
return EncoderDecoderTokenizer(encoder_path, decoder_path)
|
| 389 |
+
|
| 390 |
+
def _switch_to_target_mode(self):
|
| 391 |
+
self.current_encoder = self.decoder
|
| 392 |
+
|
| 393 |
+
def _switch_to_input_mode(self):
|
| 394 |
+
self.current_tokenizer = self.encoder
|
| 395 |
+
|
| 396 |
+
@property
|
| 397 |
+
def pad_token_id(self) -> Any:
|
| 398 |
+
"""Return pad token ID from current tokenizer."""
|
| 399 |
+
return self.current_tokenizer.pad_token_id
|
| 400 |
+
|
| 401 |
+
@property
|
| 402 |
+
def unk_token_id(self) -> Any:
|
| 403 |
+
"""Return unk token ID from current tokenizer."""
|
| 404 |
+
return self.current_tokenizer.unk_token_id
|
| 405 |
+
|
| 406 |
+
@property
|
| 407 |
+
def bos_token_id(self) -> Any:
|
| 408 |
+
"""Return bos token ID from current tokenizer."""
|
| 409 |
+
return self.current_tokenizer.bos_token_id
|
| 410 |
+
|
| 411 |
+
@property
|
| 412 |
+
def eos_token_id(self) -> Any:
|
| 413 |
+
"""Return eos token ID from current tokenizer."""
|
| 414 |
+
return self.current_tokenizer.eos_token_id
|
| 415 |
+
|
| 416 |
+
@property
|
| 417 |
+
def sep_token_id(self) -> Any:
|
| 418 |
+
"""Return sep token ID from current tokenizer."""
|
| 419 |
+
return self.current_tokenizer.sep_token_id
|
| 420 |
+
|
| 421 |
+
@property
|
| 422 |
+
def cls_token_id(self) -> Any:
|
| 423 |
+
"""Return cls token ID from current tokenizer."""
|
| 424 |
+
return self.current_tokenizer.cls_token_id
|
| 425 |
+
|
| 426 |
+
@property
|
| 427 |
+
def mask_token_id(self) -> Any:
|
| 428 |
+
"""Return mask token ID from current tokenizer."""
|
| 429 |
+
return self.current_tokenizer.mask_token_id
|
| 430 |
+
|
| 431 |
+
def get_vocab(self) -> Dict[str, int]:
|
| 432 |
+
"""
|
| 433 |
+
Returns the vocabulary as a dictionary of token to indices.
|
| 434 |
+
"""
|
| 435 |
+
return self.current_tokenizer.get_vocab()
|
| 436 |
+
|
| 437 |
+
@property
|
| 438 |
+
def pad_token(self) -> Any:
|
| 439 |
+
"""Return pad token from current tokenizer."""
|
| 440 |
+
return self.current_tokenizer.pad_token
|
| 441 |
+
|
| 442 |
+
@property
|
| 443 |
+
def unk_token(self) -> Any:
|
| 444 |
+
"""Return unk token from current tokenizer."""
|
| 445 |
+
return self.current_tokenizer.unk_token
|
| 446 |
+
|
| 447 |
+
@property
|
| 448 |
+
def bos_token(self) -> Any:
|
| 449 |
+
"""Return bos token from current tokenizer."""
|
| 450 |
+
return self.current_tokenizer.bos_token
|
| 451 |
+
|
| 452 |
+
@property
|
| 453 |
+
def eos_token(self) -> Any:
|
| 454 |
+
"""Return eos token from current tokenizer."""
|
| 455 |
+
return self.current_tokenizer.eos_token
|
| 456 |
+
|
| 457 |
+
@property
|
| 458 |
+
def sep_token(self) -> Any:
|
| 459 |
+
"""Return sep token from current tokenizer."""
|
| 460 |
+
return self.current_tokenizer.sep_token
|
| 461 |
+
|
| 462 |
+
@property
|
| 463 |
+
def cls_token(self) -> Any:
|
| 464 |
+
"""Return cls token from current tokenizer."""
|
| 465 |
+
return self.current_tokenizer.cls_token
|
| 466 |
+
|
| 467 |
+
@property
|
| 468 |
+
def mask_token(self) -> Any:
|
| 469 |
+
"""Return mask token from current tokenizer."""
|
| 470 |
+
return self.current_tokenizer.mask_token
|