--- library_name: transformers base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-2.0-yoruba_naijavoices_1m results: [] license: mit --- # w2v-bert-2.0-yoruba_naijavoices_1m This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4581 - Wer: 1.1091 - Cer: 0.7667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 160 - eval_batch_size: 160 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 320 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1500000.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 3.234 | 100.0 | 100 | 6.7307 | 1.0096 | 1.6670 | | 3.1973 | 200.0 | 200 | 6.6276 | 1.0370 | 1.6333 | | 3.0872 | 300.0 | 300 | 6.4408 | 1.1971 | 1.5514 | | 2.9384 | 400.0 | 400 | 6.1546 | 1.5313 | 1.3571 | | 2.7071 | 500.0 | 500 | 5.6664 | 1.4447 | 0.9348 | | 2.4205 | 600.0 | 600 | 5.0371 | 1.0002 | 0.8403 | | 2.0893 | 700.0 | 700 | 4.2922 | 0.9999 | 0.9857 | | 1.7985 | 800.0 | 800 | 3.6646 | 1.0 | 0.9999 | | 1.6823 | 900.0 | 900 | 3.5062 | 1.0 | 0.9997 | | 1.595 | 1000.0 | 1000 | 3.4488 | 1.0 | 0.9977 | | 1.5454 | 1100.0 | 1100 | 3.4338 | 0.9997 | 0.9915 | | 1.4837 | 1200.0 | 1200 | 3.4315 | 0.9997 | 0.9775 | | 1.4207 | 1300.0 | 1300 | 3.4209 | 0.9997 | 0.9656 | | 1.3568 | 1400.0 | 1400 | 3.4141 | 0.9992 | 0.9433 | | 1.3063 | 1500.0 | 1500 | 3.4006 | 0.9989 | 0.9278 | | 1.2384 | 1600.0 | 1600 | 3.3922 | 0.9983 | 0.8960 | | 1.1702 | 1700.0 | 1700 | 3.3778 | 0.9985 | 0.8699 | | 1.1001 | 1800.0 | 1800 | 3.3645 | 1.0016 | 0.8490 | | 1.0239 | 1900.0 | 1900 | 3.3482 | 1.0068 | 0.8273 | | 0.9399 | 2000.0 | 2000 | 3.3392 | 1.0146 | 0.8053 | | 0.8678 | 2100.0 | 2100 | 3.3164 | 1.0220 | 0.7927 | | 0.7737 | 2200.0 | 2200 | 3.3033 | 1.0366 | 0.7796 | | 0.6932 | 2300.0 | 2300 | 3.2972 | 1.0560 | 0.7657 | | 0.5941 | 2400.0 | 2400 | 3.2959 | 1.0712 | 0.7593 | | 0.5273 | 2500.0 | 2500 | 3.3100 | 1.0842 | 0.7555 | | 0.4467 | 2600.0 | 2600 | 3.3402 | 1.0937 | 0.7558 | | 0.3664 | 2700.0 | 2700 | 3.3720 | 1.0987 | 0.7584 | | 0.2973 | 2800.0 | 2800 | 3.4065 | 1.1081 | 0.7594 | | 0.2244 | 2900.0 | 2900 | 3.4581 | 1.1091 | 0.7667 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.7.1+cu126 - Datasets 4.0.0 - Tokenizers 0.21.2