|
|
from typing import Callable, Optional, Union |
|
|
|
|
|
import torch |
|
|
from torch import nn |
|
|
|
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import Cache, DynamicCache |
|
|
from transformers.generation import GenerationMixin |
|
|
from transformers.integrations import use_kernel_forward_from_hub |
|
|
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask |
|
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
|
from transformers.modeling_layers import ( |
|
|
GenericForQuestionAnswering, |
|
|
GenericForSequenceClassification, |
|
|
GenericForTokenClassification, |
|
|
GradientCheckpointingLayer, |
|
|
) |
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple |
|
|
from transformers.utils.generic import check_model_inputs |
|
|
from .configuration_ouro import OuroConfig |
|
|
|
|
|
|
|
|
class OuroMLP(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, x): |
|
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
return down_proj |
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
|
|
Args: |
|
|
q (`torch.Tensor`): The query tensor. |
|
|
k (`torch.Tensor`): The key tensor. |
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
|
position_ids (`torch.Tensor`, *optional*): |
|
|
Deprecated and unused. |
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
|
Returns: |
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
|
""" |
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
""" |
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
|
""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
def eager_attention_forward( |
|
|
module: nn.Module, |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
scaling: float, |
|
|
dropout: float = 0.0, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
): |
|
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class OuroAttention(nn.Module): |
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
|
|
def __init__(self, config: OuroConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
self.attention_dropout = config.attention_dropout |
|
|
self.is_causal = True |
|
|
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False) |
|
|
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) |
|
|
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) |
|
|
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) |
|
|
self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
past_key_value: Optional[Cache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
current_ut: int = 0, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: |
|
|
input_shape = hidden_states.shape[:-1] |
|
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
|
|
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
|
|
if past_key_value is not None: |
|
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
key_states, value_states = past_key_value.update(key_states, value_states, current_ut * self.config.num_hidden_layers + self.layer_idx, cache_kwargs) |
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
|
|
attn_output, attn_weights = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
sliding_window=self.sliding_window, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
@use_kernel_forward_from_hub("RMSNorm") |
|
|
class OuroRMSNorm(nn.Module): |
|
|
def __init__(self, hidden_size, eps=1e-6): |
|
|
""" |
|
|
OuroRMSNorm is equivalent to T5LayerNorm |
|
|
""" |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.variance_epsilon = eps |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
def extra_repr(self): |
|
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
|
|
|
class OuroDecoderLayer(GradientCheckpointingLayer): |
|
|
def __init__(self, config: OuroConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
|
|
|
self.self_attn = OuroAttention(config=config, layer_idx=layer_idx) |
|
|
|
|
|
self.mlp = OuroMLP(config) |
|
|
self.input_layernorm = OuroRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.input_layernorm_2 = OuroRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm = OuroRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm_2 = OuroRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.attention_type = config.layer_types[layer_idx] |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
use_cache: Optional[bool] = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> tuple[torch.Tensor]: |
|
|
residual = hidden_states |
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, _ = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_value, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = self.input_layernorm_2(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = self.post_attention_layernorm_2(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class OuroPreTrainedModel(PreTrainedModel): |
|
|
config: OuroConfig |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["OuroDecoderLayer"] |
|
|
_skip_keys_device_placement = ["past_key_values"] |
|
|
_supports_flash_attn = True |
|
|
_supports_sdpa = True |
|
|
_supports_flex_attn = True |
|
|
|
|
|
_can_compile_fullgraph = True |
|
|
_supports_attention_backend = True |
|
|
_can_record_outputs = { |
|
|
"hidden_states": OuroDecoderLayer, |
|
|
"attentions": OuroAttention, |
|
|
} |
|
|
|
|
|
|
|
|
class OuroRotaryEmbedding(nn.Module): |
|
|
def __init__(self, config: OuroConfig, device=None): |
|
|
super().__init__() |
|
|
|
|
|
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict): |
|
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
|
else: |
|
|
self.rope_type = "default" |
|
|
self.max_seq_len_cached = config.max_position_embeddings |
|
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
|
|
self.config = config |
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.original_inv_freq = self.inv_freq |
|
|
|
|
|
@torch.no_grad() |
|
|
@dynamic_rope_update |
|
|
def forward(self, x, position_ids): |
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() * self.attention_scaling |
|
|
sin = emb.sin() * self.attention_scaling |
|
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class OuroModel(OuroPreTrainedModel): |
|
|
def __init__(self, config: OuroConfig): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
self.layers = nn.ModuleList( |
|
|
[OuroDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
|
) |
|
|
self.norm = OuroRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.rotary_emb = OuroRotaryEmbedding(config=config) |
|
|
self.gradient_checkpointing = False |
|
|
self.has_sliding_layers = "sliding_attention" in self.config.layer_types |
|
|
self.total_ut_steps = getattr(self.config, "total_ut_steps", 4) |
|
|
self.early_exit_gate = nn.Linear(config.hidden_size, 1) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
@check_model_inputs |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> BaseModelOutputWithPast: |
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if use_cache and past_key_values is None: |
|
|
past_key_values = DynamicCache() |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
|
) |
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
|
|
|
if not isinstance(causal_mask_mapping := attention_mask, dict): |
|
|
|
|
|
mask_kwargs = { |
|
|
"config": self.config, |
|
|
"input_embeds": inputs_embeds, |
|
|
"attention_mask": attention_mask, |
|
|
"cache_position": cache_position, |
|
|
"past_key_values": past_key_values, |
|
|
"position_ids": position_ids, |
|
|
} |
|
|
|
|
|
causal_mask_mapping = { |
|
|
"full_attention": create_causal_mask(**mask_kwargs), |
|
|
} |
|
|
|
|
|
if self.has_sliding_layers: |
|
|
causal_mask_mapping["sliding_attention"] = create_sliding_window_causal_mask(**mask_kwargs) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
hidden_states_list = [] |
|
|
gate_list = [] |
|
|
|
|
|
for current_ut in range(self.total_ut_steps): |
|
|
for decoder_layer in self.layers[: self.config.num_hidden_layers]: |
|
|
hidden_states = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=causal_mask_mapping[decoder_layer.attention_type], |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_values, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
current_ut=current_ut, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
hidden_states_list.append(hidden_states) |
|
|
gate_list.append(self.early_exit_gate(hidden_states)) |
|
|
|
|
|
return BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=past_key_values if use_cache else None, |
|
|
), hidden_states_list, gate_list |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class OuroForCausalLM(OuroPreTrainedModel, GenerationMixin): |
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
_tp_plan = {"lm_head": "colwise_rep"} |
|
|
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])} |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.model = OuroModel(config) |
|
|
self.vocab_size = config.vocab_size |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
|
|
|
self.chunk_size = getattr(config, 'chunk_size', 2) |
|
|
self.early_exit_step = getattr(config, "early_exit_step", None) |
|
|
self.early_exit_threshold = getattr(config, "early_exit_threshold", None) |
|
|
|
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def set_decoder(self, decoder): |
|
|
self.model = decoder |
|
|
|
|
|
def get_decoder(self): |
|
|
return self.model |
|
|
|
|
|
@can_return_tuple |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
|
use_weighted_exit: Optional[bool] = False, |
|
|
exit_at_step: Optional[int] = None, |
|
|
exit_threshold: Optional[float] = None, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> CausalLMOutputWithPast: |
|
|
r""" |
|
|
Args: |
|
|
use_weighted_exit (`bool`, *optional*, defaults to `False`): |
|
|
Whether to use weighted early exit. If `True`, the logits from all UT steps will be |
|
|
averaged according to the exit probability distribution. |
|
|
exit_at_step (`int`, *optional*): |
|
|
Specifies which UT step to exit at. If set, the model will directly use the hidden states |
|
|
from this step to generate logits, ignoring other exit strategies. |
|
|
exit_threshold (`float`, *optional*): |
|
|
The cumulative probability threshold for early exit. When the cumulative exit probability |
|
|
reaches this threshold, the model will exit at that step. |
|
|
|
|
|
Example: |
|
|
|
|
|
```python |
|
|
>>> from transformers import AutoTokenizer, OuroForCausalLM |
|
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
|
|
>>> # Generate |
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
|
```""" |
|
|
exit_at_step = exit_at_step if exit_at_step is not None else self.early_exit_step |
|
|
exit_threshold = exit_threshold if exit_threshold is not None else self.early_exit_threshold |
|
|
|
|
|
outputs, hidden_states_list, gate_list = self.model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
|
|
|
|
def _select_token_positions(tensor: torch.Tensor) -> torch.Tensor: |
|
|
if isinstance(slice_indices, slice): |
|
|
return tensor[:, slice_indices, ...] |
|
|
if isinstance(slice_indices, torch.Tensor): |
|
|
return tensor.index_select(1, slice_indices.to(tensor.device)) |
|
|
raise TypeError(f"Unsupported index type for logits_to_keep: {type(slice_indices)}") |
|
|
|
|
|
stacked_exit_pdf = None |
|
|
if gate_list: |
|
|
pdf_list = [] |
|
|
remaining_prob = torch.ones_like(gate_list[0].squeeze(-1)) |
|
|
for idx, gate_tensor in enumerate(gate_list): |
|
|
lambda_i = torch.sigmoid(gate_tensor.squeeze(-1)) |
|
|
if idx < len(gate_list) - 1: |
|
|
p_i = lambda_i * remaining_prob |
|
|
remaining_prob = remaining_prob * (1.0 - lambda_i) |
|
|
else: |
|
|
p_i = remaining_prob |
|
|
pdf_list.append(p_i) |
|
|
stacked_exit_pdf = torch.stack(pdf_list, dim=2) |
|
|
|
|
|
expected_logits_cache: Optional[torch.Tensor] = None |
|
|
|
|
|
def compute_expected_logits() -> Optional[torch.Tensor]: |
|
|
nonlocal expected_logits_cache |
|
|
if expected_logits_cache is not None: |
|
|
return expected_logits_cache |
|
|
if stacked_exit_pdf is None or not hidden_states_list: |
|
|
return None |
|
|
token_exit_pdf = _select_token_positions(stacked_exit_pdf) |
|
|
expected_logits = None |
|
|
for step_idx, hidden in enumerate(hidden_states_list): |
|
|
step_hidden = _select_token_positions(hidden) |
|
|
step_logits = self.lm_head(step_hidden) |
|
|
weight = token_exit_pdf[..., step_idx].unsqueeze(-1).to(step_logits.dtype) |
|
|
expected_logits = step_logits * weight if expected_logits is None else expected_logits + step_logits * weight |
|
|
expected_logits_cache = expected_logits |
|
|
return expected_logits_cache |
|
|
|
|
|
logits: Optional[torch.Tensor] = None |
|
|
loss: Optional[torch.Tensor] = None |
|
|
|
|
|
if labels is not None: |
|
|
logits = compute_expected_logits() |
|
|
if logits is None: |
|
|
hidden_states = outputs.last_hidden_state |
|
|
logits = self.lm_head(_select_token_positions(hidden_states)) |
|
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) |
|
|
else: |
|
|
if stacked_exit_pdf is not None and hidden_states_list: |
|
|
if exit_at_step is not None and 0 <= exit_at_step < len(hidden_states_list): |
|
|
selected_hidden = hidden_states_list[exit_at_step] |
|
|
logits = self.lm_head(_select_token_positions(selected_hidden)) |
|
|
elif exit_threshold is not None: |
|
|
cumulative_probs = torch.cumsum(stacked_exit_pdf, dim=2) |
|
|
threshold_value = exit_threshold |
|
|
if isinstance(threshold_value, torch.Tensor): |
|
|
threshold_value = threshold_value.to(cumulative_probs.device) |
|
|
threshold_mask = cumulative_probs >= threshold_value |
|
|
exit_steps = torch.argmax(threshold_mask.float(), dim=2) |
|
|
last_step_idx = stacked_exit_pdf.shape[2] - 1 |
|
|
if last_step_idx >= 0: |
|
|
never_exceeded = ~threshold_mask.any(dim=2) |
|
|
exit_steps[never_exceeded] = last_step_idx |
|
|
stacked_hidden = torch.stack(hidden_states_list, dim=2) |
|
|
gather_index = exit_steps.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, 1, stacked_hidden.size(-1)) |
|
|
final_hidden_states = torch.gather(stacked_hidden, 2, gather_index).squeeze(2) |
|
|
logits = self.lm_head(_select_token_positions(final_hidden_states)) |
|
|
elif use_weighted_exit: |
|
|
logits = compute_expected_logits() |
|
|
|
|
|
if logits is None: |
|
|
hidden_states = outputs.last_hidden_state |
|
|
logits = self.lm_head(_select_token_positions(hidden_states)) |
|
|
|
|
|
result = CausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|
|
|
return result |
|
|
|
|
|
|
|
|
class OuroForSequenceClassification(GenericForSequenceClassification, OuroPreTrainedModel): |
|
|
pass |
|
|
|
|
|
|
|
|
class OuroForTokenClassification(GenericForTokenClassification, OuroPreTrainedModel): |
|
|
pass |
|
|
|
|
|
|
|
|
class OuroForQuestionAnswering(GenericForQuestionAnswering, OuroPreTrainedModel): |
|
|
base_model_prefix = "transformer" |
|
|
|
|
|
|
|
|
__all__ = [ |
|
|
"OuroPreTrainedModel", |
|
|
"OuroModel", |
|
|
"OuroForCausalLM", |
|
|
"OuroForSequenceClassification", |
|
|
"OuroForTokenClassification", |
|
|
"OuroForQuestionAnswering", |
|
|
] |