Ouro-2.6B / modeling_ouro.py
ridger's picture
Upload folder using huggingface_hub
2bb99c7 verified
from typing import Callable, Optional, Union
import torch
from torch import nn
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.integrations import use_kernel_forward_from_hub
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import (
GenericForQuestionAnswering,
GenericForSequenceClassification,
GenericForTokenClassification,
GradientCheckpointingLayer,
)
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
from transformers.utils.generic import check_model_inputs
from .configuration_ouro import OuroConfig
class OuroMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs: Unpack[TransformersKwargs],
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class OuroAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: OuroConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
current_ut: int = 0,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, current_ut * self.config.num_hidden_layers + self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=self.sliding_window, # main diff with Llama
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
@use_kernel_forward_from_hub("RMSNorm")
class OuroRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
OuroRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class OuroDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: OuroConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = OuroAttention(config=config, layer_idx=layer_idx)
self.mlp = OuroMLP(config)
self.input_layernorm = OuroRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.input_layernorm_2 = OuroRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = OuroRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm_2 = OuroRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.attention_type = config.layer_types[layer_idx]
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.input_layernorm_2(hidden_states)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_attention_layernorm_2(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
@auto_docstring
class OuroPreTrainedModel(PreTrainedModel):
config: OuroConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["OuroDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn = True
_supports_sdpa = True
_supports_flex_attn = True
_can_compile_fullgraph = True
_supports_attention_backend = True
_can_record_outputs = {
"hidden_states": OuroDecoderLayer,
"attentions": OuroAttention,
}
class OuroRotaryEmbedding(nn.Module):
def __init__(self, config: OuroConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
@auto_docstring
class OuroModel(OuroPreTrainedModel):
def __init__(self, config: OuroConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[OuroDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = OuroRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = OuroRotaryEmbedding(config=config)
self.gradient_checkpointing = False
self.has_sliding_layers = "sliding_attention" in self.config.layer_types
self.total_ut_steps = getattr(self.config, "total_ut_steps", 4)
self.early_exit_gate = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@check_model_inputs
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPast:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# It may already have been prepared by e.g. `generate`
if not isinstance(causal_mask_mapping := attention_mask, dict):
# Prepare mask arguments
mask_kwargs = {
"config": self.config,
"input_embeds": inputs_embeds,
"attention_mask": attention_mask,
"cache_position": cache_position,
"past_key_values": past_key_values,
"position_ids": position_ids,
}
# Create the masks
causal_mask_mapping = {
"full_attention": create_causal_mask(**mask_kwargs),
}
# The sliding window alternating layers are not always activated depending on the config
if self.has_sliding_layers:
causal_mask_mapping["sliding_attention"] = create_sliding_window_causal_mask(**mask_kwargs)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
hidden_states_list = []
gate_list = []
for current_ut in range(self.total_ut_steps):
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
hidden_states = decoder_layer(
hidden_states,
attention_mask=causal_mask_mapping[decoder_layer.attention_type],
position_ids=position_ids,
past_key_value=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
current_ut=current_ut,
**kwargs,
)
hidden_states = self.norm(hidden_states)
hidden_states_list.append(hidden_states)
gate_list.append(self.early_exit_gate(hidden_states))
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
), hidden_states_list, gate_list
@auto_docstring
class OuroForCausalLM(OuroPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = OuroModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# 分块大小配置
self.chunk_size = getattr(config, 'chunk_size', 2) # 默认分块大小为2
self.early_exit_step = getattr(config, "early_exit_step", None)
self.early_exit_threshold = getattr(config, "early_exit_threshold", None)
# Initialize weights and apply final processing
self.post_init()
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
use_weighted_exit: Optional[bool] = False, # 控制是否使用加权 early exit
exit_at_step: Optional[int] = None,
exit_threshold: Optional[float] = None,
**kwargs: Unpack[TransformersKwargs],
) -> CausalLMOutputWithPast:
r"""
Args:
use_weighted_exit (`bool`, *optional*, defaults to `False`):
Whether to use weighted early exit. If `True`, the logits from all UT steps will be
averaged according to the exit probability distribution.
exit_at_step (`int`, *optional*):
Specifies which UT step to exit at. If set, the model will directly use the hidden states
from this step to generate logits, ignoring other exit strategies.
exit_threshold (`float`, *optional*):
The cumulative probability threshold for early exit. When the cumulative exit probability
reaches this threshold, the model will exit at that step.
Example:
```python
>>> from transformers import AutoTokenizer, OuroForCausalLM
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
exit_at_step = exit_at_step if exit_at_step is not None else self.early_exit_step
exit_threshold = exit_threshold if exit_threshold is not None else self.early_exit_threshold
outputs, hidden_states_list, gate_list = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
def _select_token_positions(tensor: torch.Tensor) -> torch.Tensor:
if isinstance(slice_indices, slice):
return tensor[:, slice_indices, ...]
if isinstance(slice_indices, torch.Tensor):
return tensor.index_select(1, slice_indices.to(tensor.device))
raise TypeError(f"Unsupported index type for logits_to_keep: {type(slice_indices)}")
stacked_exit_pdf = None
if gate_list:
pdf_list = []
remaining_prob = torch.ones_like(gate_list[0].squeeze(-1))
for idx, gate_tensor in enumerate(gate_list):
lambda_i = torch.sigmoid(gate_tensor.squeeze(-1))
if idx < len(gate_list) - 1:
p_i = lambda_i * remaining_prob
remaining_prob = remaining_prob * (1.0 - lambda_i)
else:
p_i = remaining_prob
pdf_list.append(p_i)
stacked_exit_pdf = torch.stack(pdf_list, dim=2)
expected_logits_cache: Optional[torch.Tensor] = None
def compute_expected_logits() -> Optional[torch.Tensor]:
nonlocal expected_logits_cache
if expected_logits_cache is not None:
return expected_logits_cache
if stacked_exit_pdf is None or not hidden_states_list:
return None
token_exit_pdf = _select_token_positions(stacked_exit_pdf)
expected_logits = None
for step_idx, hidden in enumerate(hidden_states_list):
step_hidden = _select_token_positions(hidden)
step_logits = self.lm_head(step_hidden)
weight = token_exit_pdf[..., step_idx].unsqueeze(-1).to(step_logits.dtype)
expected_logits = step_logits * weight if expected_logits is None else expected_logits + step_logits * weight
expected_logits_cache = expected_logits
return expected_logits_cache
logits: Optional[torch.Tensor] = None
loss: Optional[torch.Tensor] = None
if labels is not None:
logits = compute_expected_logits()
if logits is None:
hidden_states = outputs.last_hidden_state
logits = self.lm_head(_select_token_positions(hidden_states))
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
else:
if stacked_exit_pdf is not None and hidden_states_list:
if exit_at_step is not None and 0 <= exit_at_step < len(hidden_states_list):
selected_hidden = hidden_states_list[exit_at_step]
logits = self.lm_head(_select_token_positions(selected_hidden))
elif exit_threshold is not None:
cumulative_probs = torch.cumsum(stacked_exit_pdf, dim=2)
threshold_value = exit_threshold
if isinstance(threshold_value, torch.Tensor):
threshold_value = threshold_value.to(cumulative_probs.device)
threshold_mask = cumulative_probs >= threshold_value
exit_steps = torch.argmax(threshold_mask.float(), dim=2)
last_step_idx = stacked_exit_pdf.shape[2] - 1
if last_step_idx >= 0:
never_exceeded = ~threshold_mask.any(dim=2)
exit_steps[never_exceeded] = last_step_idx
stacked_hidden = torch.stack(hidden_states_list, dim=2)
gather_index = exit_steps.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, 1, stacked_hidden.size(-1))
final_hidden_states = torch.gather(stacked_hidden, 2, gather_index).squeeze(2)
logits = self.lm_head(_select_token_positions(final_hidden_states))
elif use_weighted_exit:
logits = compute_expected_logits()
if logits is None:
hidden_states = outputs.last_hidden_state
logits = self.lm_head(_select_token_positions(hidden_states))
result = CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
return result
class OuroForSequenceClassification(GenericForSequenceClassification, OuroPreTrainedModel):
pass
class OuroForTokenClassification(GenericForTokenClassification, OuroPreTrainedModel):
pass
class OuroForQuestionAnswering(GenericForQuestionAnswering, OuroPreTrainedModel):
base_model_prefix = "transformer" # For BC, where `transformer` was used instead of `model`
__all__ = [
"OuroPreTrainedModel",
"OuroModel",
"OuroForCausalLM",
"OuroForSequenceClassification",
"OuroForTokenClassification",
"OuroForQuestionAnswering",
]