|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
|
|
import math |
|
|
import warnings |
|
|
from typing import TYPE_CHECKING |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from einops import rearrange, repeat |
|
|
from fla.layers.utils import get_unpad_data, index_first_axis, pad_input |
|
|
from fla.modules import FusedRMSNormGated, RMSNorm, ShortConvolution |
|
|
from fla.ops.delta_rule import fused_recurrent_delta_rule |
|
|
from fla.ops.gated_delta_product import chunk_gated_delta_product |
|
|
from fla.ops.gated_delta_rule import fused_recurrent_gated_delta_rule |
|
|
from torch.nn import functional as F |
|
|
|
|
|
if TYPE_CHECKING: |
|
|
from fla.models.utils import Cache |
|
|
from transformers.processing_utils import Unpack |
|
|
|
|
|
|
|
|
class GatedDeltaProduct(nn.Module): |
|
|
""" |
|
|
Generalized version of GatedDoubleDeltaNet that supports arbitrary number of householder transformations. |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
hidden_size: int = 2048, |
|
|
expand_v: float = 2, |
|
|
head_dim: int = 256, |
|
|
num_heads: int = 6, |
|
|
num_v_heads: int = None, |
|
|
mode: str = "chunk", |
|
|
use_gate: bool = True, |
|
|
use_short_conv: bool = True, |
|
|
conv_size: int = 4, |
|
|
conv_bias: bool = False, |
|
|
layer_idx: int = None, |
|
|
norm_eps: float = 1e-5, |
|
|
use_forget_gate: bool = True, |
|
|
allow_neg_eigval: bool = True, |
|
|
num_householder: int = 2, |
|
|
**kwargs, |
|
|
) -> GatedDeltaProduct: |
|
|
super().__init__() |
|
|
|
|
|
self.mode = mode |
|
|
|
|
|
self.hidden_size = hidden_size |
|
|
self.expand_v = expand_v |
|
|
|
|
|
self.use_forget_gate = use_forget_gate |
|
|
self.allow_neg_eigval = allow_neg_eigval |
|
|
self.num_householder = num_householder |
|
|
self.use_gate = use_gate |
|
|
self.use_short_conv = use_short_conv |
|
|
self.conv_size = conv_size |
|
|
self.conv_bias = conv_bias |
|
|
|
|
|
self.head_dim = head_dim |
|
|
self.num_heads = num_heads |
|
|
self.num_v_heads = num_v_heads if num_v_heads is not None else num_heads |
|
|
|
|
|
self.head_k_dim = head_dim |
|
|
self.head_v_dim = int(self.head_dim * self.expand_v) |
|
|
self.key_dim = int(self.num_heads * self.head_k_dim) |
|
|
self.value_dim = int(self.num_v_heads * self.head_v_dim) |
|
|
self.layer_idx = layer_idx |
|
|
self.init_hidden_state = nn.Parameter(torch.randn(self.num_heads, self.head_dim, self.head_dim)) |
|
|
|
|
|
|
|
|
if not math.isclose(self.num_v_heads * self.head_dim * expand_v, self.value_dim, rel_tol=1e-5): |
|
|
raise ValueError( |
|
|
f"expand_v={expand_v} does not produce an integer value when multiplied by key_dim={self.key_dim}. "( |
|
|
f"Resulting value_dim would be " |
|
|
f"{self.num_v_heads * self.head_dim * expand_v}, " |
|
|
"which is invalid for nn.Linear." |
|
|
) |
|
|
) |
|
|
if self.num_v_heads > self.num_heads and self.num_v_heads % self.num_heads != 0: |
|
|
raise ValueError(f"num_v_heads={self.num_v_heads} must be divisible by num_heads={self.num_heads}.") |
|
|
|
|
|
if not math.isclose(head_dim * expand_v, self.head_v_dim, rel_tol=1e-5): |
|
|
raise ValueError( |
|
|
f"expand_v={expand_v} does not produce an integer value when multiplied by head_dim={head_dim}. " |
|
|
f"Resulting head_v_dim would be {head_dim * expand_v}, which is invalid for FusedRMSNormGated." |
|
|
) |
|
|
assert mode in ["chunk", "fused_recurrent"], f"Not suppoerted mode `{mode}`." |
|
|
|
|
|
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False) |
|
|
self.k_proj = nn.Linear(hidden_size, self.key_dim * num_householder, bias=False) |
|
|
self.v_proj = nn.Linear(hidden_size, self.value_dim * num_householder, bias=False) |
|
|
self.b_proj = nn.Linear(hidden_size, self.num_v_heads * num_householder, bias=False) |
|
|
|
|
|
if self.use_forget_gate: |
|
|
self.a_proj = nn.Linear(hidden_size, self.num_v_heads, bias=False) |
|
|
A = torch.empty(self.num_v_heads, dtype=torch.float32).uniform_(0, 16) |
|
|
self.A_log = nn.Parameter(torch.log(A)) |
|
|
self.A_log._no_weight_decay = True |
|
|
|
|
|
dt_min = 0.001 |
|
|
dt_max = 0.1 |
|
|
dt_init_floor = 1e-4 |
|
|
dt = torch.exp(torch.rand(self.num_v_heads) * (math.log(dt_max) - math.log(dt_min)) + math.log(dt_min)) |
|
|
dt = torch.clamp(dt, min=dt_init_floor) |
|
|
|
|
|
inv_dt = dt + torch.log(-torch.expm1(-dt)) |
|
|
self.dt_bias = nn.Parameter(inv_dt) |
|
|
|
|
|
|
|
|
self.dt_bias._no_weight_decay = True |
|
|
|
|
|
if use_short_conv: |
|
|
self.conv_size = conv_size |
|
|
self.q_conv1d = ShortConvolution( |
|
|
hidden_size=self.key_dim, |
|
|
kernel_size=conv_size, |
|
|
bias=conv_bias, |
|
|
activation="silu", |
|
|
) |
|
|
self.k_conv1d = ShortConvolution( |
|
|
hidden_size=self.key_dim * num_householder, |
|
|
kernel_size=conv_size, |
|
|
bias=conv_bias, |
|
|
activation="silu", |
|
|
) |
|
|
self.v_conv1d = ShortConvolution( |
|
|
hidden_size=self.value_dim * num_householder, |
|
|
kernel_size=conv_size, |
|
|
bias=conv_bias, |
|
|
activation="silu", |
|
|
) |
|
|
else: |
|
|
warnings.warn( |
|
|
"ShortConvolution is crucial to the performance. " |
|
|
"Do not turn it off, i.e., setting `use_short_conv=False` unless you know what you are doing." |
|
|
) |
|
|
if use_gate: |
|
|
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False) |
|
|
self.o_norm = FusedRMSNormGated(self.head_v_dim, eps=norm_eps) |
|
|
else: |
|
|
self.o_norm = RMSNorm(self.head_v_dim, eps=norm_eps) |
|
|
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False) |
|
|
|
|
|
def _initialize_weights(self, module: nn.Module): |
|
|
if getattr(module, "_is_hf_initialized", False): |
|
|
return |
|
|
if isinstance(module, nn.Linear): |
|
|
nn.init.xavier_uniform_(module.weight, gain=2**-2.5) |
|
|
if module.bias is not None: |
|
|
nn.init.zeros_(module.bias) |
|
|
module._is_hf_initialized = True |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: torch.Tensor | None = None, |
|
|
past_key_values: Cache | None = None, |
|
|
initial_state: torch.Tensor | None = None, |
|
|
use_cache: bool | None = False, |
|
|
output_attentions: bool | None = False, |
|
|
**kwargs: Unpack[dict], |
|
|
) -> tuple[torch.Tensor, torch.Tensor | None, Cache | None]: |
|
|
if attention_mask is not None: |
|
|
assert len(attention_mask.shape) == 2, ( |
|
|
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] " |
|
|
"for padding purposes (0 indicating padding). " |
|
|
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed." |
|
|
) |
|
|
|
|
|
batch_size, q_len, _ = hidden_states.shape |
|
|
|
|
|
mode = self.mode |
|
|
|
|
|
if self.training: |
|
|
assert mode == "chunk", "Only chunk mode is supported in training." |
|
|
|
|
|
last_state = None |
|
|
if past_key_values is not None and len(past_key_values) > self.layer_idx: |
|
|
last_state = past_key_values[self.layer_idx] |
|
|
|
|
|
cu_seqlens = kwargs.get("cu_seqlens", None) |
|
|
if attention_mask is not None: |
|
|
indices, cu_seqlens, _ = get_unpad_data(attention_mask[:, -q_len:]) |
|
|
hidden_states = index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices).unsqueeze(0) |
|
|
|
|
|
if self.use_short_conv: |
|
|
conv_state_q, conv_state_k, conv_state_v = None, None, None |
|
|
if last_state is not None: |
|
|
conv_state_q, conv_state_k, conv_state_v = last_state["conv_state"] |
|
|
q, conv_state_q = self.q_conv1d( |
|
|
x=self.q_proj(hidden_states), |
|
|
cache=conv_state_q, |
|
|
output_final_state=use_cache, |
|
|
cu_seqlens=cu_seqlens, |
|
|
) |
|
|
k, conv_state_k = self.k_conv1d( |
|
|
x=self.k_proj(hidden_states), |
|
|
cache=conv_state_k, |
|
|
output_final_state=use_cache, |
|
|
cu_seqlens=cu_seqlens, |
|
|
) |
|
|
v, conv_state_v = self.v_conv1d( |
|
|
x=self.v_proj(hidden_states), |
|
|
cache=conv_state_v, |
|
|
output_final_state=use_cache, |
|
|
cu_seqlens=cu_seqlens, |
|
|
) |
|
|
else: |
|
|
q = F.silu(self.q_proj(hidden_states)) |
|
|
k = F.silu(self.k_proj(hidden_states)) |
|
|
v = F.silu(self.v_proj(hidden_states)) |
|
|
|
|
|
q = rearrange(q, "... (h d) -> ... h d", d=self.head_k_dim) |
|
|
k = rearrange( |
|
|
k, |
|
|
"... l (n h d) -> ... (l n) h d", |
|
|
n=self.num_householder, |
|
|
d=self.head_k_dim, |
|
|
) |
|
|
v = rearrange( |
|
|
v, |
|
|
"... l (n h d) -> ... (l n) h d", |
|
|
n=self.num_householder, |
|
|
d=self.head_v_dim, |
|
|
) |
|
|
|
|
|
if self.num_v_heads > self.num_heads: |
|
|
q, k = map( |
|
|
lambda x: repeat(x, "... h d -> ... (h g) d", g=self.num_v_heads // self.num_heads), |
|
|
(q, k), |
|
|
) |
|
|
|
|
|
beta = self.b_proj(hidden_states).sigmoid() |
|
|
if self.allow_neg_eigval: |
|
|
beta = beta * 2.0 |
|
|
|
|
|
beta = rearrange(beta, "... l (n h) -> ... (l n) h", n=self.num_householder) |
|
|
if self.use_forget_gate: |
|
|
g = -self.A_log.float().exp() * F.softplus(self.a_proj(hidden_states).float() + self.dt_bias) |
|
|
else: |
|
|
g = None |
|
|
|
|
|
recurrent_state = last_state["recurrent_state"] if last_state is not None else None |
|
|
if mode == "chunk": |
|
|
o, recurrent_state = chunk_gated_delta_product( |
|
|
q=q, |
|
|
k=k, |
|
|
v=v, |
|
|
g=g, |
|
|
beta=beta, |
|
|
initial_state=initial_state, |
|
|
output_final_state=output_attentions, |
|
|
cu_seqlens=cu_seqlens, |
|
|
num_householder=self.num_householder, |
|
|
use_qk_l2norm_in_kernel=True, |
|
|
) |
|
|
|
|
|
elif mode == "fused_recurrent": |
|
|
if self.use_forget_gate: |
|
|
g_new = torch.zeros( |
|
|
g.shape[0], |
|
|
g.shape[1], |
|
|
self.num_householder, |
|
|
g.shape[2], |
|
|
device=g.device, |
|
|
dtype=torch.float32, |
|
|
) |
|
|
g_new[:, :, 0] = g |
|
|
g = rearrange(g_new, "... l n h -> ... (l n) h") |
|
|
|
|
|
q_new = q.new_zeros(q.shape[0], q.shape[1], self.num_householder, q.shape[2], q.shape[3]) |
|
|
q_new[:, :, -1] = q |
|
|
q = rearrange(q_new, "... l n h d-> ... (l n) h d") |
|
|
if self.use_forget_gate: |
|
|
o, recurrent_state = fused_recurrent_gated_delta_rule( |
|
|
q=q, |
|
|
k=k, |
|
|
v=v, |
|
|
g=g, |
|
|
beta=beta, |
|
|
initial_state=recurrent_state, |
|
|
output_final_state=use_cache, |
|
|
cu_seqlens=cu_seqlens * self.num_householder if cu_seqlens is not None else None, |
|
|
use_qk_l2norm_in_kernel=True, |
|
|
) |
|
|
else: |
|
|
o, recurrent_state = fused_recurrent_delta_rule( |
|
|
q=q, |
|
|
k=k, |
|
|
v=v, |
|
|
beta=beta, |
|
|
initial_state=recurrent_state, |
|
|
output_final_state=use_cache, |
|
|
cu_seqlens=cu_seqlens * self.num_householder if cu_seqlens is not None else None, |
|
|
use_qk_l2norm_in_kernel=True, |
|
|
) |
|
|
o = rearrange(o, "... (l n) h d -> ... l n h d", n=self.num_householder)[..., -1, :, :].contiguous() |
|
|
|
|
|
if past_key_values is not None: |
|
|
past_key_values.update( |
|
|
recurrent_state=recurrent_state, |
|
|
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None, |
|
|
layer_idx=self.layer_idx, |
|
|
offset=q_len, |
|
|
) |
|
|
|
|
|
if self.use_gate: |
|
|
g = rearrange(self.g_proj(hidden_states), "... (h d) -> ... h d", d=self.head_v_dim) |
|
|
o = self.o_norm(o, g) |
|
|
else: |
|
|
o = self.o_norm(o) |
|
|
o = rearrange(o, "b t h d -> b t (h d)") |
|
|
o = self.o_proj(o) |
|
|
if attention_mask is not None: |
|
|
o = pad_input(o.squeeze(0), indices, batch_size, q_len) |
|
|
return o, recurrent_state, past_key_values |
|
|
|