TempoPFN / src /data /time_features.py
Vladyslav Moroshan
Initial upload of TempoPFN model, code, and weights
c4b87d2
raw
history blame
19 kB
import logging
from typing import Any, Dict, List, Optional
import numpy as np
import pandas as pd
import scipy.fft as fft
import torch
from gluonts.time_feature import time_features_from_frequency_str
from gluonts.time_feature._base import (
day_of_month,
day_of_month_index,
day_of_week,
day_of_week_index,
day_of_year,
hour_of_day,
hour_of_day_index,
minute_of_hour,
minute_of_hour_index,
month_of_year,
month_of_year_index,
second_of_minute,
second_of_minute_index,
week_of_year,
week_of_year_index,
)
from gluonts.time_feature.holiday import (
BLACK_FRIDAY,
CHRISTMAS_DAY,
CHRISTMAS_EVE,
CYBER_MONDAY,
EASTER_MONDAY,
EASTER_SUNDAY,
GOOD_FRIDAY,
INDEPENDENCE_DAY,
LABOR_DAY,
MEMORIAL_DAY,
NEW_YEARS_DAY,
NEW_YEARS_EVE,
THANKSGIVING,
SpecialDateFeatureSet,
exponential_kernel,
squared_exponential_kernel,
)
from gluonts.time_feature.seasonality import get_seasonality
from scipy.signal import find_peaks
from src.data.constants import BASE_END_DATE, BASE_START_DATE
from src.data.frequency import (
Frequency,
validate_frequency_safety,
)
from src.utils.utils import device
# Configure logging
logging.basicConfig(
level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
# Enhanced feature sets for different frequencies
ENHANCED_TIME_FEATURES = {
# High-frequency features (seconds, minutes)
"high_freq": {
"normalized": [
second_of_minute,
minute_of_hour,
hour_of_day,
day_of_week,
day_of_month,
],
"index": [
second_of_minute_index,
minute_of_hour_index,
hour_of_day_index,
day_of_week_index,
],
},
# Medium-frequency features (hourly, daily)
"medium_freq": {
"normalized": [
hour_of_day,
day_of_week,
day_of_month,
day_of_year,
month_of_year,
],
"index": [
hour_of_day_index,
day_of_week_index,
day_of_month_index,
week_of_year_index,
],
},
# Low-frequency features (weekly, monthly)
"low_freq": {
"normalized": [day_of_week, day_of_month, month_of_year, week_of_year],
"index": [day_of_week_index, month_of_year_index, week_of_year_index],
},
}
# Holiday features for different markets/regions
HOLIDAY_FEATURE_SETS = {
"us_business": [
NEW_YEARS_DAY,
MEMORIAL_DAY,
INDEPENDENCE_DAY,
LABOR_DAY,
THANKSGIVING,
CHRISTMAS_EVE,
CHRISTMAS_DAY,
NEW_YEARS_EVE,
],
"us_retail": [
NEW_YEARS_DAY,
EASTER_SUNDAY,
MEMORIAL_DAY,
INDEPENDENCE_DAY,
LABOR_DAY,
THANKSGIVING,
BLACK_FRIDAY,
CYBER_MONDAY,
CHRISTMAS_EVE,
CHRISTMAS_DAY,
NEW_YEARS_EVE,
],
"christian": [
NEW_YEARS_DAY,
GOOD_FRIDAY,
EASTER_SUNDAY,
EASTER_MONDAY,
CHRISTMAS_EVE,
CHRISTMAS_DAY,
NEW_YEARS_EVE,
],
}
class TimeFeatureGenerator:
"""
Enhanced time feature generator that leverages full GluonTS capabilities.
"""
def __init__(
self,
use_enhanced_features: bool = True,
use_holiday_features: bool = True,
holiday_set: str = "us_business",
holiday_kernel: str = "exponential",
holiday_kernel_alpha: float = 1.0,
use_index_features: bool = True,
k_max: int = 15,
include_seasonality_info: bool = True,
use_auto_seasonality: bool = False, # New parameter
max_seasonal_periods: int = 3, # New parameter
):
"""
Initialize enhanced time feature generator.
Parameters
----------
use_enhanced_features : bool
Whether to use frequency-specific enhanced features
use_holiday_features : bool
Whether to include holiday features
holiday_set : str
Which holiday set to use ('us_business', 'us_retail', 'christian')
holiday_kernel : str
Holiday kernel type ('indicator', 'exponential', 'squared_exponential')
holiday_kernel_alpha : float
Kernel parameter for exponential kernels
use_index_features : bool
Whether to include index-based features alongside normalized ones
k_max : int
Maximum number of time features to pad to
include_seasonality_info : bool
Whether to include seasonality information as features
use_auto_seasonality : bool
Whether to use automatic FFT-based seasonality detection
max_seasonal_periods : int
Maximum number of seasonal periods to detect automatically
"""
self.use_enhanced_features = use_enhanced_features
self.use_holiday_features = use_holiday_features
self.holiday_set = holiday_set
self.use_index_features = use_index_features
self.k_max = k_max
self.include_seasonality_info = include_seasonality_info
self.use_auto_seasonality = use_auto_seasonality
self.max_seasonal_periods = max_seasonal_periods
# Initialize holiday feature set
self.holiday_feature_set = None
if use_holiday_features and holiday_set in HOLIDAY_FEATURE_SETS:
kernel_func = self._get_holiday_kernel(holiday_kernel, holiday_kernel_alpha)
self.holiday_feature_set = SpecialDateFeatureSet(
HOLIDAY_FEATURE_SETS[holiday_set], kernel_func
)
def _get_holiday_kernel(self, kernel_type: str, alpha: float):
"""Get holiday kernel function."""
if kernel_type == "exponential":
return exponential_kernel(alpha)
elif kernel_type == "squared_exponential":
return squared_exponential_kernel(alpha)
else:
# Default indicator kernel
return lambda x: float(x == 0)
def _get_feature_category(self, freq_str: str) -> str:
"""Determine feature category based on frequency."""
if freq_str in ["s", "1min", "5min", "10min", "15min"]:
return "high_freq"
elif freq_str in ["h", "D"]:
return "medium_freq"
else:
return "low_freq"
def _compute_enhanced_features(
self, period_index: pd.PeriodIndex, freq_str: str
) -> np.ndarray:
"""Compute enhanced time features based on frequency."""
if not self.use_enhanced_features:
return np.array([]).reshape(len(period_index), 0)
category = self._get_feature_category(freq_str)
feature_config = ENHANCED_TIME_FEATURES[category]
features = []
# Add normalized features
for feat_func in feature_config["normalized"]:
try:
feat_values = feat_func(period_index)
features.append(feat_values)
except Exception:
continue
# Add index features if enabled
if self.use_index_features:
for feat_func in feature_config["index"]:
try:
feat_values = feat_func(period_index)
# Normalize index features to [0, 1] range
if feat_values.max() > 0:
feat_values = feat_values / feat_values.max()
features.append(feat_values)
except Exception:
continue
if features:
return np.stack(features, axis=-1)
else:
return np.array([]).reshape(len(period_index), 0)
def _compute_holiday_features(self, date_range: pd.DatetimeIndex) -> np.ndarray:
"""Compute holiday features."""
if not self.use_holiday_features or self.holiday_feature_set is None:
return np.array([]).reshape(len(date_range), 0)
try:
holiday_features = self.holiday_feature_set(date_range)
return holiday_features.T # Transpose to get [time, features] shape
except Exception:
return np.array([]).reshape(len(date_range), 0)
def _detect_auto_seasonality(self, time_series_values: np.ndarray) -> list:
"""
Detect seasonal periods automatically using FFT analysis.
Parameters
----------
time_series_values : np.ndarray
Time series values for seasonality detection
Returns
-------
list
List of detected seasonal periods
"""
if not self.use_auto_seasonality or len(time_series_values) < 10:
return []
try:
# Remove NaN values
values = time_series_values[~np.isnan(time_series_values)]
if len(values) < 10:
return []
# Simple linear detrending
x = np.arange(len(values))
coeffs = np.polyfit(x, values, 1)
trend = np.polyval(coeffs, x)
detrended = values - trend
# Apply Hann window to reduce spectral leakage
window = np.hanning(len(detrended))
windowed = detrended * window
# Zero padding for better frequency resolution
padded_length = len(windowed) * 2
padded_values = np.zeros(padded_length)
padded_values[: len(windowed)] = windowed
# Compute FFT
fft_values = fft.rfft(padded_values)
fft_magnitudes = np.abs(fft_values)
freqs = np.fft.rfftfreq(padded_length)
# Exclude DC component
fft_magnitudes[0] = 0.0
# Find peaks with threshold (5% of max magnitude)
threshold = 0.05 * np.max(fft_magnitudes)
peak_indices, _ = find_peaks(fft_magnitudes, height=threshold)
if len(peak_indices) == 0:
return []
# Sort by magnitude and take top periods
sorted_indices = peak_indices[
np.argsort(fft_magnitudes[peak_indices])[::-1]
]
top_indices = sorted_indices[: self.max_seasonal_periods]
# Convert frequencies to periods
periods = []
for idx in top_indices:
if freqs[idx] > 0:
period = 1.0 / freqs[idx]
# Scale back to original length and round
period = round(period / 2) # Account for zero padding
if 2 <= period <= len(values) // 2: # Reasonable period range
periods.append(period)
return list(set(periods)) # Remove duplicates
except Exception:
return []
def _compute_seasonality_features(
self,
period_index: pd.PeriodIndex,
freq_str: str,
time_series_values: np.ndarray = None,
) -> np.ndarray:
"""Compute seasonality-aware features."""
if not self.include_seasonality_info:
return np.array([]).reshape(len(period_index), 0)
all_seasonal_features = []
# Original frequency-based seasonality
try:
seasonality = get_seasonality(freq_str)
if seasonality > 1:
positions = np.arange(len(period_index))
sin_feat = np.sin(2 * np.pi * positions / seasonality)
cos_feat = np.cos(2 * np.pi * positions / seasonality)
all_seasonal_features.extend([sin_feat, cos_feat])
except Exception:
pass
# Automatic seasonality detection
if self.use_auto_seasonality and time_series_values is not None:
auto_periods = self._detect_auto_seasonality(time_series_values)
for period in auto_periods:
try:
positions = np.arange(len(period_index))
sin_feat = np.sin(2 * np.pi * positions / period)
cos_feat = np.cos(2 * np.pi * positions / period)
all_seasonal_features.extend([sin_feat, cos_feat])
except Exception:
continue
if all_seasonal_features:
return np.stack(all_seasonal_features, axis=-1)
else:
return np.array([]).reshape(len(period_index), 0)
def compute_features(
self,
period_index: pd.PeriodIndex,
date_range: pd.DatetimeIndex,
freq_str: str,
time_series_values: np.ndarray = None,
) -> np.ndarray:
"""
Compute all time features for given period index.
Parameters
----------
period_index : pd.PeriodIndex
Period index for computing features
date_range : pd.DatetimeIndex
Corresponding datetime index for holiday features
freq_str : str
Frequency string
time_series_values : np.ndarray, optional
Time series values for automatic seasonality detection
Returns
-------
np.ndarray
Time features array of shape [time_steps, num_features]
"""
all_features = []
# Standard GluonTS features
try:
standard_features = time_features_from_frequency_str(freq_str)
if standard_features:
std_feat = np.stack(
[feat(period_index) for feat in standard_features], axis=-1
)
all_features.append(std_feat)
except Exception:
pass
# Enhanced features
enhanced_feat = self._compute_enhanced_features(period_index, freq_str)
if enhanced_feat.shape[1] > 0:
all_features.append(enhanced_feat)
# Holiday features
holiday_feat = self._compute_holiday_features(date_range)
if holiday_feat.shape[1] > 0:
all_features.append(holiday_feat)
# Seasonality features (including auto-detected)
seasonality_feat = self._compute_seasonality_features(
period_index, freq_str, time_series_values
)
if seasonality_feat.shape[1] > 0:
all_features.append(seasonality_feat)
if all_features:
combined_features = np.concatenate(all_features, axis=-1)
else:
combined_features = np.zeros((len(period_index), 1))
return combined_features
def compute_batch_time_features(
start: List[np.datetime64],
history_length: int,
future_length: int,
batch_size: int,
frequency: List[Frequency],
K_max: int = 6,
time_feature_config: Optional[Dict[str, Any]] = None,
):
"""
Compute time features from start timestamps and frequency.
Parameters
----------
start : array-like, shape (batch_size,)
Start timestamps for each batch item.
history_length : int
Length of history sequence.
future_length : int
Length of target sequence.
batch_size : int
Batch size.
frequency : array-like, shape (batch_size,)
Frequency of the time series.
K_max : int, optional
Maximum number of time features to pad to (default: 6).
time_feature_config : dict, optional
Configuration for enhanced time features.
Returns
-------
tuple
(history_time_features, target_time_features) where each is a torch.Tensor
of shape (batch_size, length, K_max).
"""
# Initialize enhanced feature generator
feature_config = time_feature_config or {}
feature_generator = TimeFeatureGenerator(**feature_config)
# Generate timestamps and features
history_features_list = []
future_features_list = []
total_length = history_length + future_length
for i in range(batch_size):
frequency_i = frequency[i]
freq_str = frequency_i.to_pandas_freq(for_date_range=True)
period_freq_str = frequency_i.to_pandas_freq(for_date_range=False)
# Validate start timestamp is within safe bounds
start_ts = pd.Timestamp(start[i])
if not validate_frequency_safety(start_ts, total_length, frequency_i):
logger.debug(
f"Start date {start_ts} not safe for total_length={total_length}, frequency={frequency_i}. "
f"Using BASE_START_DATE instead."
)
start_ts = BASE_START_DATE
# Create history range with bounds checking
history_range = pd.date_range(
start=start_ts, periods=history_length, freq=freq_str
)
# Check if history range goes beyond safe bounds
if history_range[-1] > BASE_END_DATE:
safe_start = BASE_END_DATE - pd.tseries.frequencies.to_offset(freq_str) * (
history_length + future_length
)
if safe_start < BASE_START_DATE:
safe_start = BASE_START_DATE
history_range = pd.date_range(
start=safe_start, periods=history_length, freq=freq_str
)
future_start = history_range[-1] + pd.tseries.frequencies.to_offset(freq_str)
future_range = pd.date_range(
start=future_start, periods=future_length, freq=freq_str
)
# Convert to period indices
history_period_idx = history_range.to_period(period_freq_str)
future_period_idx = future_range.to_period(period_freq_str)
# Compute enhanced features
history_features = feature_generator.compute_features(
history_period_idx, history_range, freq_str
)
future_features = feature_generator.compute_features(
future_period_idx, future_range, freq_str
)
# Pad or truncate to K_max
history_features = _pad_or_truncate_features(history_features, K_max)
future_features = _pad_or_truncate_features(future_features, K_max)
history_features_list.append(history_features)
future_features_list.append(future_features)
# Stack into batch tensors
history_time_features = np.stack(history_features_list, axis=0)
future_time_features = np.stack(future_features_list, axis=0)
return (
torch.from_numpy(history_time_features).float().to(device),
torch.from_numpy(future_time_features).float().to(device),
)
def _pad_or_truncate_features(features: np.ndarray, K_max: int) -> np.ndarray:
"""Pad with zeros or truncate features to K_max dimensions."""
seq_len, num_features = features.shape
if num_features < K_max:
# Pad with zeros
padding = np.zeros((seq_len, K_max - num_features))
features = np.concatenate([features, padding], axis=-1)
elif num_features > K_max:
# Truncate to K_max (keep most important features first)
features = features[:, :K_max]
return features