TempoPFN / src /utils /utils.py
Vladyslav Moroshan
Initial upload of TempoPFN model, code, and weights
c4b87d2
raw
history blame
1.08 kB
import os
import random
from datetime import datetime
import numpy as np
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def seed_everything(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ["PYTHONHASHSEED"] = str(seed)
def generate_descriptive_model_name(config):
return (
f"{config['model_name']}_"
f"BATCH{config['batch_size']}_"
f"ITER{config['num_training_iterations']}_"
f"ACCUM_{config['gradient_accumulation_enabled']}_"
f"ACC_STEPS{config['accumulation_steps']}_"
f"Emb{config['TimeSeriesModel']['embed_size']}_"
f"L{config['TimeSeriesModel']['num_encoder_layers']}_"
f"H{config['TimeSeriesModel']['encoder_config']['num_householder']}_"
f"LR_SCHEDULER_{config['lr_scheduler']}_"
f"PEAK_LR{config['peak_lr']}_"
f"{datetime.now().strftime('_%Y%m%d_%H%M%S')}"
)