TempoPFN / src /models /model.py
Vladyslav Moroshan
Apply ruff formatting
0a58567
raw
history blame
16 kB
import torch
import torch.nn as nn
from fla.modules import GatedMLP
from src.data.containers import BatchTimeSeriesContainer
from src.data.scalers import MinMaxScaler, RobustScaler
from src.data.time_features import compute_batch_time_features
from src.models.blocks import GatedDeltaProductEncoder
from src.utils.utils import device
def create_scaler(scaler_type: str, epsilon: float = 1e-3):
"""Create scaler instance based on type."""
if scaler_type == "custom_robust":
return RobustScaler(epsilon=epsilon)
elif scaler_type == "min_max":
return MinMaxScaler(epsilon=epsilon)
else:
raise ValueError(f"Unknown scaler: {scaler_type}")
def apply_channel_noise(values: torch.Tensor, noise_scale: float = 0.1):
"""Add noise to constant channels to prevent model instability."""
is_constant = torch.all(values == values[:, 0:1, :], dim=1)
noise = torch.randn_like(values) * noise_scale * is_constant.unsqueeze(1)
return values + noise
class TimeSeriesModel(nn.Module):
"""Time series forecasting model combining embedding, encoding, and prediction."""
def __init__(
self,
# Core architecture
embed_size: int = 128,
num_encoder_layers: int = 2,
# Scaling and preprocessing
scaler: str = "custom_robust",
epsilon: float = 1e-3,
scaler_clamp_value: float = None,
handle_constants: bool = False,
# Time features
K_max: int = 6,
time_feature_config: dict = None,
encoding_dropout: float = 0.0,
# Encoder configuration
encoder_config: dict = None,
# Loss configuration
loss_type: str = "huber", # "huber", "quantile"
quantiles: list[float] = None,
**kwargs,
):
super().__init__()
# Core parameters
self.embed_size = embed_size
self.num_encoder_layers = num_encoder_layers
self.epsilon = epsilon
self.scaler_clamp_value = scaler_clamp_value
self.handle_constants = handle_constants
self.encoding_dropout = encoding_dropout
self.K_max = K_max
self.time_feature_config = time_feature_config or {}
self.encoder_config = encoder_config or {}
# Store loss parameters
self.loss_type = loss_type
self.quantiles = quantiles
if self.loss_type == "quantile" and self.quantiles is None:
raise ValueError("Quantiles must be provided for quantile loss.")
if self.quantiles:
self.register_buffer("qt", torch.tensor(self.quantiles, device=device).view(1, 1, 1, -1))
# Validate configuration before initialization
self._validate_configuration()
# Initialize components
self.scaler = create_scaler(scaler, epsilon)
self._init_embedding_layers()
self._init_encoder_layers(self.encoder_config, num_encoder_layers)
self._init_projection_layers()
def _validate_configuration(self):
"""Validate essential model configuration parameters."""
if "num_heads" not in self.encoder_config:
raise ValueError("encoder_config must contain 'num_heads' parameter")
if self.embed_size % self.encoder_config["num_heads"] != 0:
raise ValueError(
f"embed_size ({self.embed_size}) must be divisible by num_heads ({self.encoder_config['num_heads']})"
)
def _init_embedding_layers(self):
"""Initialize value and time feature embedding layers."""
self.expand_values = nn.Linear(1, self.embed_size, bias=True)
self.nan_embedding = nn.Parameter(
torch.randn(1, 1, 1, self.embed_size) / self.embed_size,
requires_grad=True,
)
self.time_feature_projection = nn.Linear(self.K_max, self.embed_size)
def _init_encoder_layers(self, encoder_config: dict, num_encoder_layers: int):
"""Initialize encoder layers."""
self.num_encoder_layers = num_encoder_layers
# Ensure encoder_config has token_embed_dim
encoder_config = encoder_config.copy()
encoder_config["token_embed_dim"] = self.embed_size
self.encoder_layers = nn.ModuleList(
[
GatedDeltaProductEncoder(layer_idx=layer_idx, **encoder_config)
for layer_idx in range(self.num_encoder_layers)
]
)
def _init_projection_layers(self):
if self.loss_type == "quantile":
output_dim = len(self.quantiles)
else:
output_dim = 1
self.final_output_layer = nn.Linear(self.embed_size, output_dim)
self.mlp = GatedMLP(
hidden_size=self.embed_size,
hidden_ratio=4,
hidden_act="swish",
fuse_swiglu=True,
)
# Initialize learnable initial hidden state for the first encoder layer
# This will be expanded to match batch size during forward pass
head_k_dim = self.embed_size // self.encoder_config["num_heads"]
# Get expand_v from encoder_config, default to 1.0 if not present
expand_v = self.encoder_config.get("expand_v", 1.0)
head_v_dim = int(head_k_dim * expand_v)
num_initial_hidden_states = self.num_encoder_layers
self.initial_hidden_state = nn.ParameterList(
[
nn.Parameter(
torch.randn(1, self.encoder_config["num_heads"], head_k_dim, head_v_dim) / head_k_dim,
requires_grad=True,
)
for _ in range(num_initial_hidden_states)
]
)
def _preprocess_data(self, data_container: BatchTimeSeriesContainer):
"""Extract data shapes and handle constants without padding."""
history_values = data_container.history_values
future_values = data_container.future_values
history_mask = data_container.history_mask
batch_size, history_length, num_channels = history_values.shape
future_length = future_values.shape[1] if future_values is not None else 0
# Handle constants
if self.handle_constants:
history_values = apply_channel_noise(history_values)
return {
"history_values": history_values,
"future_values": future_values,
"history_mask": history_mask,
"num_channels": num_channels,
"history_length": history_length,
"future_length": future_length,
"batch_size": batch_size,
}
def _compute_scaling(self, history_values: torch.Tensor, history_mask: torch.Tensor = None):
"""Compute scaling statistics and apply scaling."""
scale_statistics = self.scaler.compute_statistics(history_values, history_mask)
return scale_statistics
def _apply_scaling_and_masking(self, values: torch.Tensor, scale_statistics: dict, mask: torch.Tensor = None):
"""Apply scaling and optional masking to values."""
scaled_values = self.scaler.scale(values, scale_statistics)
if mask is not None:
scaled_values = scaled_values * mask.unsqueeze(-1).float()
if self.scaler_clamp_value is not None:
scaled_values = torch.clamp(scaled_values, -self.scaler_clamp_value, self.scaler_clamp_value)
return scaled_values
def _get_positional_embeddings(
self,
time_features: torch.Tensor,
num_channels: int,
batch_size: int,
drop_enc_allow: bool = False,
):
"""Generate positional embeddings from time features."""
seq_len = time_features.shape[1]
if (torch.rand(1).item() < self.encoding_dropout) and drop_enc_allow:
return torch.zeros(batch_size, seq_len, num_channels, self.embed_size, device=device).to(torch.float32)
pos_embed = self.time_feature_projection(time_features)
return pos_embed.unsqueeze(2).expand(-1, -1, num_channels, -1)
def _compute_embeddings(
self,
scaled_history: torch.Tensor,
history_pos_embed: torch.Tensor,
history_mask: torch.Tensor | None = None,
):
"""Compute value embeddings and combine with positional embeddings."""
nan_mask = torch.isnan(scaled_history)
history_for_embedding = torch.nan_to_num(scaled_history, nan=0.0)
channel_embeddings = self.expand_values(history_for_embedding.unsqueeze(-1))
channel_embeddings[nan_mask] = self.nan_embedding.to(channel_embeddings.dtype)
channel_embeddings = channel_embeddings + history_pos_embed
# Suppress padded time steps completely so padding is a pure batching artifact
# history_mask: [B, S] -> broadcast to [B, S, 1, 1]
if history_mask is not None:
mask_broadcast = history_mask.unsqueeze(-1).unsqueeze(-1).to(channel_embeddings.dtype)
channel_embeddings = channel_embeddings * mask_broadcast
batch_size, seq_len = scaled_history.shape[:2]
all_channels_embedded = channel_embeddings.view(batch_size, seq_len, -1)
return all_channels_embedded
def _generate_predictions(
self,
embedded: torch.Tensor,
target_pos_embed: torch.Tensor,
prediction_length: int,
num_channels: int,
history_mask: torch.Tensor = None,
):
"""
Generate predictions for all channels using vectorized operations.
"""
batch_size, seq_len, _ = embedded.shape
# embedded shape: [B, S, N*E] -> Reshape to [B, S, N, E]
embedded = embedded.view(batch_size, seq_len, num_channels, self.embed_size)
# Vectorize across channels by merging the batch and channel dimensions.
# [B, S, N, E] -> [B*N, S, E]
channel_embedded = (
embedded.permute(0, 2, 1, 3).contiguous().view(batch_size * num_channels, seq_len, self.embed_size)
)
# Reshape target positional embeddings similarly: [B, P, N, E] -> [B*N, P, E]
target_pos_embed = (
target_pos_embed.permute(0, 2, 1, 3)
.contiguous()
.view(batch_size * num_channels, prediction_length, self.embed_size)
)
x = channel_embedded
target_repr = target_pos_embed
x = torch.concatenate([x, target_repr], dim=1)
if self.encoder_config.get("weaving", True):
# initial hidden state is learnable
hidden_state = torch.zeros_like(self.initial_hidden_state[0].repeat(batch_size * num_channels, 1, 1, 1))
for layer_idx, encoder_layer in enumerate(self.encoder_layers):
x, hidden_state = encoder_layer(
x,
hidden_state + self.initial_hidden_state[layer_idx].repeat(batch_size * num_channels, 1, 1, 1),
)
else:
# initial hidden state is separately learnable for each layer
for layer_idx, encoder_layer in enumerate(self.encoder_layers):
initial_hidden_state = self.initial_hidden_state[layer_idx].repeat(batch_size * num_channels, 1, 1, 1)
x, _ = encoder_layer(x, initial_hidden_state)
# Use the last prediction_length positions
prediction_embeddings = x[:, -prediction_length:, :]
predictions = self.final_output_layer(self.mlp(prediction_embeddings))
# Reshape output to handle quantiles
# Original shape: [B*N, P, Q] where Q is num_quantiles or 1
# Reshape the output back to [B, P, N, Q]
output_dim = len(self.quantiles) if self.loss_type == "quantile" else 1
predictions = predictions.view(batch_size, num_channels, prediction_length, output_dim)
predictions = predictions.permute(0, 2, 1, 3) # [B, P, N, Q]
# Squeeze the last dimension if not in quantile mode for backward compatibility
if self.loss_type != "quantile":
predictions = predictions.squeeze(-1) # [B, P, N]
return predictions
def forward(self, data_container: BatchTimeSeriesContainer, drop_enc_allow: bool = False):
"""Main forward pass."""
# Preprocess data
preprocessed = self._preprocess_data(data_container)
# Compute time features dynamically based on actual lengths
history_time_features, target_time_features = compute_batch_time_features(
start=data_container.start,
history_length=preprocessed["history_length"],
future_length=preprocessed["future_length"],
batch_size=preprocessed["batch_size"],
frequency=data_container.frequency,
K_max=self.K_max,
time_feature_config=self.time_feature_config,
)
# Compute scaling
scale_statistics = self._compute_scaling(preprocessed["history_values"], preprocessed["history_mask"])
# Apply scaling
history_scaled = self._apply_scaling_and_masking(
preprocessed["history_values"],
scale_statistics,
preprocessed["history_mask"],
)
# Scale future values if present
future_scaled = None
if preprocessed["future_values"] is not None:
future_scaled = self.scaler.scale(preprocessed["future_values"], scale_statistics)
# Get positional embeddings
history_pos_embed = self._get_positional_embeddings(
history_time_features,
preprocessed["num_channels"],
preprocessed["batch_size"],
drop_enc_allow,
)
target_pos_embed = self._get_positional_embeddings(
target_time_features,
preprocessed["num_channels"],
preprocessed["batch_size"],
drop_enc_allow,
)
# Compute embeddings
history_embed = self._compute_embeddings(history_scaled, history_pos_embed, preprocessed["history_mask"])
# Generate predictions
predictions = self._generate_predictions(
history_embed,
target_pos_embed,
preprocessed["future_length"],
preprocessed["num_channels"],
preprocessed["history_mask"],
)
return {
"result": predictions,
"scale_statistics": scale_statistics,
"future_scaled": future_scaled,
"history_length": preprocessed["history_length"],
"future_length": preprocessed["future_length"],
}
def _quantile_loss(self, y_true: torch.Tensor, y_pred: torch.Tensor):
"""
Compute the quantile loss.
y_true: [B, P, N]
y_pred: [B, P, N, Q]
"""
# Add a dimension to y_true to match y_pred: [B, P, N] -> [B, P, N, 1]
y_true = y_true.unsqueeze(-1)
# Calculate errors
errors = y_true - y_pred
# Calculate quantile loss
# The max operator implements the two cases of the quantile loss formula
loss = torch.max((self.qt - 1) * errors, self.qt * errors)
# Average the loss across all dimensions
return loss.mean()
def compute_loss(self, y_true: torch.Tensor, y_pred: dict):
"""Compute loss between predictions and scaled ground truth."""
predictions = y_pred["result"]
scale_statistics = y_pred["scale_statistics"]
if y_true is None:
return torch.tensor(0.0, device=predictions.device)
future_scaled = self.scaler.scale(y_true, scale_statistics)
if self.loss_type == "huber":
if predictions.shape != future_scaled.shape:
raise ValueError(
f"Shape mismatch for Huber loss: predictions {predictions.shape} "
f"vs future_scaled {future_scaled.shape}"
)
return nn.functional.huber_loss(predictions, future_scaled)
elif self.loss_type == "quantile":
return self._quantile_loss(future_scaled, predictions)
else:
raise ValueError(f"Unknown loss type: {self.loss_type}")