File size: 16,021 Bytes
c4b87d2 0a58567 c4b87d2 0a58567 c4b87d2 0a58567 c4b87d2 0a58567 c4b87d2 0a58567 c4b87d2 0a58567 c4b87d2 0a58567 c4b87d2 0a58567 c4b87d2 0a58567 c4b87d2 0a58567 c4b87d2 0a58567 c4b87d2 0a58567 c4b87d2 0a58567 c4b87d2 0a58567 c4b87d2 0a58567 c4b87d2 0a58567 c4b87d2 0a58567 c4b87d2 0a58567 c4b87d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import torch
import torch.nn as nn
from fla.modules import GatedMLP
from src.data.containers import BatchTimeSeriesContainer
from src.data.scalers import MinMaxScaler, RobustScaler
from src.data.time_features import compute_batch_time_features
from src.models.blocks import GatedDeltaProductEncoder
from src.utils.utils import device
def create_scaler(scaler_type: str, epsilon: float = 1e-3):
"""Create scaler instance based on type."""
if scaler_type == "custom_robust":
return RobustScaler(epsilon=epsilon)
elif scaler_type == "min_max":
return MinMaxScaler(epsilon=epsilon)
else:
raise ValueError(f"Unknown scaler: {scaler_type}")
def apply_channel_noise(values: torch.Tensor, noise_scale: float = 0.1):
"""Add noise to constant channels to prevent model instability."""
is_constant = torch.all(values == values[:, 0:1, :], dim=1)
noise = torch.randn_like(values) * noise_scale * is_constant.unsqueeze(1)
return values + noise
class TimeSeriesModel(nn.Module):
"""Time series forecasting model combining embedding, encoding, and prediction."""
def __init__(
self,
# Core architecture
embed_size: int = 128,
num_encoder_layers: int = 2,
# Scaling and preprocessing
scaler: str = "custom_robust",
epsilon: float = 1e-3,
scaler_clamp_value: float = None,
handle_constants: bool = False,
# Time features
K_max: int = 6,
time_feature_config: dict = None,
encoding_dropout: float = 0.0,
# Encoder configuration
encoder_config: dict = None,
# Loss configuration
loss_type: str = "huber", # "huber", "quantile"
quantiles: list[float] = None,
**kwargs,
):
super().__init__()
# Core parameters
self.embed_size = embed_size
self.num_encoder_layers = num_encoder_layers
self.epsilon = epsilon
self.scaler_clamp_value = scaler_clamp_value
self.handle_constants = handle_constants
self.encoding_dropout = encoding_dropout
self.K_max = K_max
self.time_feature_config = time_feature_config or {}
self.encoder_config = encoder_config or {}
# Store loss parameters
self.loss_type = loss_type
self.quantiles = quantiles
if self.loss_type == "quantile" and self.quantiles is None:
raise ValueError("Quantiles must be provided for quantile loss.")
if self.quantiles:
self.register_buffer("qt", torch.tensor(self.quantiles, device=device).view(1, 1, 1, -1))
# Validate configuration before initialization
self._validate_configuration()
# Initialize components
self.scaler = create_scaler(scaler, epsilon)
self._init_embedding_layers()
self._init_encoder_layers(self.encoder_config, num_encoder_layers)
self._init_projection_layers()
def _validate_configuration(self):
"""Validate essential model configuration parameters."""
if "num_heads" not in self.encoder_config:
raise ValueError("encoder_config must contain 'num_heads' parameter")
if self.embed_size % self.encoder_config["num_heads"] != 0:
raise ValueError(
f"embed_size ({self.embed_size}) must be divisible by num_heads ({self.encoder_config['num_heads']})"
)
def _init_embedding_layers(self):
"""Initialize value and time feature embedding layers."""
self.expand_values = nn.Linear(1, self.embed_size, bias=True)
self.nan_embedding = nn.Parameter(
torch.randn(1, 1, 1, self.embed_size) / self.embed_size,
requires_grad=True,
)
self.time_feature_projection = nn.Linear(self.K_max, self.embed_size)
def _init_encoder_layers(self, encoder_config: dict, num_encoder_layers: int):
"""Initialize encoder layers."""
self.num_encoder_layers = num_encoder_layers
# Ensure encoder_config has token_embed_dim
encoder_config = encoder_config.copy()
encoder_config["token_embed_dim"] = self.embed_size
self.encoder_layers = nn.ModuleList(
[
GatedDeltaProductEncoder(layer_idx=layer_idx, **encoder_config)
for layer_idx in range(self.num_encoder_layers)
]
)
def _init_projection_layers(self):
if self.loss_type == "quantile":
output_dim = len(self.quantiles)
else:
output_dim = 1
self.final_output_layer = nn.Linear(self.embed_size, output_dim)
self.mlp = GatedMLP(
hidden_size=self.embed_size,
hidden_ratio=4,
hidden_act="swish",
fuse_swiglu=True,
)
# Initialize learnable initial hidden state for the first encoder layer
# This will be expanded to match batch size during forward pass
head_k_dim = self.embed_size // self.encoder_config["num_heads"]
# Get expand_v from encoder_config, default to 1.0 if not present
expand_v = self.encoder_config.get("expand_v", 1.0)
head_v_dim = int(head_k_dim * expand_v)
num_initial_hidden_states = self.num_encoder_layers
self.initial_hidden_state = nn.ParameterList(
[
nn.Parameter(
torch.randn(1, self.encoder_config["num_heads"], head_k_dim, head_v_dim) / head_k_dim,
requires_grad=True,
)
for _ in range(num_initial_hidden_states)
]
)
def _preprocess_data(self, data_container: BatchTimeSeriesContainer):
"""Extract data shapes and handle constants without padding."""
history_values = data_container.history_values
future_values = data_container.future_values
history_mask = data_container.history_mask
batch_size, history_length, num_channels = history_values.shape
future_length = future_values.shape[1] if future_values is not None else 0
# Handle constants
if self.handle_constants:
history_values = apply_channel_noise(history_values)
return {
"history_values": history_values,
"future_values": future_values,
"history_mask": history_mask,
"num_channels": num_channels,
"history_length": history_length,
"future_length": future_length,
"batch_size": batch_size,
}
def _compute_scaling(self, history_values: torch.Tensor, history_mask: torch.Tensor = None):
"""Compute scaling statistics and apply scaling."""
scale_statistics = self.scaler.compute_statistics(history_values, history_mask)
return scale_statistics
def _apply_scaling_and_masking(self, values: torch.Tensor, scale_statistics: dict, mask: torch.Tensor = None):
"""Apply scaling and optional masking to values."""
scaled_values = self.scaler.scale(values, scale_statistics)
if mask is not None:
scaled_values = scaled_values * mask.unsqueeze(-1).float()
if self.scaler_clamp_value is not None:
scaled_values = torch.clamp(scaled_values, -self.scaler_clamp_value, self.scaler_clamp_value)
return scaled_values
def _get_positional_embeddings(
self,
time_features: torch.Tensor,
num_channels: int,
batch_size: int,
drop_enc_allow: bool = False,
):
"""Generate positional embeddings from time features."""
seq_len = time_features.shape[1]
if (torch.rand(1).item() < self.encoding_dropout) and drop_enc_allow:
return torch.zeros(batch_size, seq_len, num_channels, self.embed_size, device=device).to(torch.float32)
pos_embed = self.time_feature_projection(time_features)
return pos_embed.unsqueeze(2).expand(-1, -1, num_channels, -1)
def _compute_embeddings(
self,
scaled_history: torch.Tensor,
history_pos_embed: torch.Tensor,
history_mask: torch.Tensor | None = None,
):
"""Compute value embeddings and combine with positional embeddings."""
nan_mask = torch.isnan(scaled_history)
history_for_embedding = torch.nan_to_num(scaled_history, nan=0.0)
channel_embeddings = self.expand_values(history_for_embedding.unsqueeze(-1))
channel_embeddings[nan_mask] = self.nan_embedding.to(channel_embeddings.dtype)
channel_embeddings = channel_embeddings + history_pos_embed
# Suppress padded time steps completely so padding is a pure batching artifact
# history_mask: [B, S] -> broadcast to [B, S, 1, 1]
if history_mask is not None:
mask_broadcast = history_mask.unsqueeze(-1).unsqueeze(-1).to(channel_embeddings.dtype)
channel_embeddings = channel_embeddings * mask_broadcast
batch_size, seq_len = scaled_history.shape[:2]
all_channels_embedded = channel_embeddings.view(batch_size, seq_len, -1)
return all_channels_embedded
def _generate_predictions(
self,
embedded: torch.Tensor,
target_pos_embed: torch.Tensor,
prediction_length: int,
num_channels: int,
history_mask: torch.Tensor = None,
):
"""
Generate predictions for all channels using vectorized operations.
"""
batch_size, seq_len, _ = embedded.shape
# embedded shape: [B, S, N*E] -> Reshape to [B, S, N, E]
embedded = embedded.view(batch_size, seq_len, num_channels, self.embed_size)
# Vectorize across channels by merging the batch and channel dimensions.
# [B, S, N, E] -> [B*N, S, E]
channel_embedded = (
embedded.permute(0, 2, 1, 3).contiguous().view(batch_size * num_channels, seq_len, self.embed_size)
)
# Reshape target positional embeddings similarly: [B, P, N, E] -> [B*N, P, E]
target_pos_embed = (
target_pos_embed.permute(0, 2, 1, 3)
.contiguous()
.view(batch_size * num_channels, prediction_length, self.embed_size)
)
x = channel_embedded
target_repr = target_pos_embed
x = torch.concatenate([x, target_repr], dim=1)
if self.encoder_config.get("weaving", True):
# initial hidden state is learnable
hidden_state = torch.zeros_like(self.initial_hidden_state[0].repeat(batch_size * num_channels, 1, 1, 1))
for layer_idx, encoder_layer in enumerate(self.encoder_layers):
x, hidden_state = encoder_layer(
x,
hidden_state + self.initial_hidden_state[layer_idx].repeat(batch_size * num_channels, 1, 1, 1),
)
else:
# initial hidden state is separately learnable for each layer
for layer_idx, encoder_layer in enumerate(self.encoder_layers):
initial_hidden_state = self.initial_hidden_state[layer_idx].repeat(batch_size * num_channels, 1, 1, 1)
x, _ = encoder_layer(x, initial_hidden_state)
# Use the last prediction_length positions
prediction_embeddings = x[:, -prediction_length:, :]
predictions = self.final_output_layer(self.mlp(prediction_embeddings))
# Reshape output to handle quantiles
# Original shape: [B*N, P, Q] where Q is num_quantiles or 1
# Reshape the output back to [B, P, N, Q]
output_dim = len(self.quantiles) if self.loss_type == "quantile" else 1
predictions = predictions.view(batch_size, num_channels, prediction_length, output_dim)
predictions = predictions.permute(0, 2, 1, 3) # [B, P, N, Q]
# Squeeze the last dimension if not in quantile mode for backward compatibility
if self.loss_type != "quantile":
predictions = predictions.squeeze(-1) # [B, P, N]
return predictions
def forward(self, data_container: BatchTimeSeriesContainer, drop_enc_allow: bool = False):
"""Main forward pass."""
# Preprocess data
preprocessed = self._preprocess_data(data_container)
# Compute time features dynamically based on actual lengths
history_time_features, target_time_features = compute_batch_time_features(
start=data_container.start,
history_length=preprocessed["history_length"],
future_length=preprocessed["future_length"],
batch_size=preprocessed["batch_size"],
frequency=data_container.frequency,
K_max=self.K_max,
time_feature_config=self.time_feature_config,
)
# Compute scaling
scale_statistics = self._compute_scaling(preprocessed["history_values"], preprocessed["history_mask"])
# Apply scaling
history_scaled = self._apply_scaling_and_masking(
preprocessed["history_values"],
scale_statistics,
preprocessed["history_mask"],
)
# Scale future values if present
future_scaled = None
if preprocessed["future_values"] is not None:
future_scaled = self.scaler.scale(preprocessed["future_values"], scale_statistics)
# Get positional embeddings
history_pos_embed = self._get_positional_embeddings(
history_time_features,
preprocessed["num_channels"],
preprocessed["batch_size"],
drop_enc_allow,
)
target_pos_embed = self._get_positional_embeddings(
target_time_features,
preprocessed["num_channels"],
preprocessed["batch_size"],
drop_enc_allow,
)
# Compute embeddings
history_embed = self._compute_embeddings(history_scaled, history_pos_embed, preprocessed["history_mask"])
# Generate predictions
predictions = self._generate_predictions(
history_embed,
target_pos_embed,
preprocessed["future_length"],
preprocessed["num_channels"],
preprocessed["history_mask"],
)
return {
"result": predictions,
"scale_statistics": scale_statistics,
"future_scaled": future_scaled,
"history_length": preprocessed["history_length"],
"future_length": preprocessed["future_length"],
}
def _quantile_loss(self, y_true: torch.Tensor, y_pred: torch.Tensor):
"""
Compute the quantile loss.
y_true: [B, P, N]
y_pred: [B, P, N, Q]
"""
# Add a dimension to y_true to match y_pred: [B, P, N] -> [B, P, N, 1]
y_true = y_true.unsqueeze(-1)
# Calculate errors
errors = y_true - y_pred
# Calculate quantile loss
# The max operator implements the two cases of the quantile loss formula
loss = torch.max((self.qt - 1) * errors, self.qt * errors)
# Average the loss across all dimensions
return loss.mean()
def compute_loss(self, y_true: torch.Tensor, y_pred: dict):
"""Compute loss between predictions and scaled ground truth."""
predictions = y_pred["result"]
scale_statistics = y_pred["scale_statistics"]
if y_true is None:
return torch.tensor(0.0, device=predictions.device)
future_scaled = self.scaler.scale(y_true, scale_statistics)
if self.loss_type == "huber":
if predictions.shape != future_scaled.shape:
raise ValueError(
f"Shape mismatch for Huber loss: predictions {predictions.shape} "
f"vs future_scaled {future_scaled.shape}"
)
return nn.functional.huber_loss(predictions, future_scaled)
elif self.loss_type == "quantile":
return self._quantile_loss(future_scaled, predictions)
else:
raise ValueError(f"Unknown loss type: {self.loss_type}")
|