File size: 6,863 Bytes
c4b87d2 1b89a8e c4b87d2 1b89a8e c4b87d2 24e5642 c4b87d2 1b89a8e c4b87d2 1b89a8e c4b87d2 1b89a8e c4b87d2 1b89a8e c4b87d2 1b89a8e c4b87d2 1b89a8e c4b87d2 1b89a8e c4b87d2 1b89a8e c4b87d2 1b89a8e c4b87d2 1b89a8e c4b87d2 1b89a8e c4b87d2 1b89a8e c4b87d2 1b89a8e c4b87d2 1b89a8e c4b87d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
---
license: apache-2.0
library_name: tempo-pfn
tags:
- TempoPFN
- time-series
- forecasting
- time-series-forecasting
- foundation models
- pretrained models
- zero-shot
- synthetic-data
- rnn
- linear-rnn
leaderboards:
- Salesforce/GIFT-Eval
pipeline_tag: time-series-forecasting
arxiv: 2510.25502
---
# TempoPFN: Synthetic Pre-Training of Linear RNNs for Zero-Shot Time Series Forecasting
[](https://arxiv.org/abs/2510.25502) [](https://huggingface.co/spaces/Salesforce/GIFT-Eval) [](https://github.com/automl/TempoPFN) [](https://github.com/automl/TempoPFN/blob/main/LICENSE)
---
**TempoPFN** introduced in [TempoPFN: Synthetic Pre-Training of Linear RNNs for Zero-Shot Time Series Forecasting](https://arxiv.org/abs/2510.25502), is a univariate time series foundation model pretrained **entirely on synthetic data**. It delivers top-tier zero-shot forecasting accuracy while remaining fully reproducible and free from real-data leakage.
Built on a **Linear RNN (GatedDeltaProduct)** backbone, TempoPFN performs end-to-end forecasting without patching or windowing. Its design enables fully parallelizable training and inference while maintaining stable temporal state-tracking across long sequences. The GatedDeltaProduct architecture is based on [DeltaProduct](https://arxiv.org/html/2502.10297v3), extended with state-weaving for time series forecasting. For detailed information about the architecture and custom modifications, see [`src/models/gated_deltaproduct/README.md`](src/models/gated_deltaproduct/README.md).
This repository includes the **pretrained 38M parameter model** (`models/checkpoint_38M.pth`), all training and inference code, and the **complete synthetic data generation pipeline** used for pretraining.
## โจ Why TempoPFN?
* **High Performance, No Real Data:** Achieves top-tier competitive results on **GIFT-Eval, outperforming all existing synthetic-only approaches** and **surpassing the vast majority of models trained on real-world data**. This ensures full reproducibility and eliminates benchmark leakage.
* **Parallel and Efficient:** The linear recurrence design enables full-sequence parallelization. This gives us the best of both worlds: the linear efficiency of an RNN, but with the training parallelism of a Transformer.
* **Open and Reproducible:** Includes the full synthetic data pipeline, configurations, and scripts to reproduce training from scratch.
* **State-Tracking Stability:** The GatedDeltaProduct recurrence and *state-weaving* mechanism preserve temporal continuity and information flow across long horizons, improving robustness without non-linear recurrence.

## โ๏ธ Installation
> **Note on Model Weights:** This repository uses [Git LFS](https://git-lfs.github.com/) to store the model checkpoint (`.pth` file). You **must** have Git LFS installed to clone the repository correctly.
>
> ```bash
> # Install Git LFS (e.g., on Ubuntu)
> sudo apt-get install git-lfs
> git lfs install
> ```
1. **Clone the repository:**
```bash
git clone https://huggingface.co/AutoML-org/TempoPFN
cd TempoPFN
```
2. **Set up the environment:**
```bash
python -m venv venv && source venv/bin/activate
# 1. Install PyTorch version matching your CUDA version
# Example for CUDA 12.8:
pip install torch --index-url https://download.pytorch.org/whl/cu128
# 2. Clone the Hugging Face repository
git clone https://huggingface.co/AutoML-org/TempoPFN
cd TempoPFN
# 3. Set up the environment
python3.12 -m venv venv & source venv/bin/activate
export PYTHONPATH=$PWD
# 4. Install PyTorch version matching your CUDA version
pip install torch --index-url https://download.pytorch.org/whl/cu128
# 5. Install dependencies
pip install .
pip install .[dev]
# 4. Run the Quick Start Script
python examples/quick_start_tempo_pfn.py
# 5. Alternatively, you can run the Notebook version
jupyter notebook examples/quick_start_tempo_pfn.ipynb
```
### Hardware & Performance Tips
**GPU Required:** Inference requires a CUDA-capable GPU with a matching PyTorch version installed. Tested on NVIDIA A100/H100.
**First Run:** The first inference for a new sequence length will be slow due to Triton kernel compilation. Subsequent runs will be fast.
**Cache Tip:** If using a network filesystem, prevent slowdowns by routing caches to a local directory (like `/tmp`) *before* running:
```bash
LOCAL_CACHE_BASE="${TMPDIR:-/tmp}/tsf-$(date +%s)"
mkdir -p "${LOCAL_CACHE_BASE}/triton" "${LOCAL_CACHE_BASE}/torchinductor"
export TRITON_CACHE_DIR="${LOCAL_CACHE_BASE}/triton"
export TORCHINDUCTOR_CACHE_DIR="${LOCAL_CACHE_BASE}/torchinductor"
python examples/quick_start_tempo_pfn.py
```
## ๐ Training
All training and model parameters are controlled via YAML files in `configs/`.
```bash
# Single-GPU (Debug)
torchrun --standalone --nproc_per_node=1 src/training/trainer_dist.py --config ./configs/train.yaml
# Multi-GPU (e.g., 8 GPUs)
torchrun --standalone --nproc_per_node=8 src/training/trainer_dist.py --config ./configs/train.yaml
```
## ๐พ Synthetic Data Generation
A core contribution of this work is our open-source synthetic data pipeline, located in `src/synthetic_generation/`. It combines diverse generators with a powerful augmentation cascade.
**Generators Used:**
* **Adapted Priors:** ForecastPFN, KernelSynth, GaussianProcess (GP), and CauKer (Structural Causal Models).
* **Novel Priors:** SDE (a flexible regime-switching Ornstein-Uhlenbeck process), Sawtooth, StepFunction, Anomaly, Spikes, SineWave, and Audio-Inspired generators (Stochastic Rhythms, Financial Volatility, Network Topology, Multi-Scale Fractals).
You can easily generate your own data by installing the development dependencies and instantiating a generator wrapper. See `examples/generate_synthetic_data.py` for a minimal script, or inspect the generator code in `src/synthetic_generation/`.
## ๐ค License
This project is licensed under the Apache 2.0 License. See the LICENSE file for details. This permissive license allows for both academic and commercial use.
## ๐ Citation
If you find TempoPFN useful in your research, please consider citing our paper:
```bibtex
@misc{moroshan2025tempopfn,
title={TempoPFN: Synthetic Pre-training of Linear RNNs for Zero-Shot Time Series Forecasting},
author={Vladyslav Moroshan and Julien Siems and Arber Zela and Timur Carstensen and Frank Hutter},
year={2025},
eprint={2510.25502},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
``` |