File size: 53,450 Bytes
c4b87d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 |
import logging
import math
from collections import Counter
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import numpy as np
import torch
import torch.nn as nn
from joblib import Parallel, delayed
from torch.quasirandom import SobolEngine
import torch.nn.functional as F
from src.gift_eval.data import Dataset
logger = logging.getLogger(__name__)
def find_consecutive_nan_lengths(series: np.ndarray) -> list[int]:
"""Finds the lengths of all consecutive NaN blocks in a 1D array."""
if series.ndim > 1:
# For multivariate series, flatten to treat it as one long sequence
series = series.flatten()
is_nan = np.isnan(series)
padded_is_nan = np.concatenate(([False], is_nan, [False]))
diffs = np.diff(padded_is_nan.astype(int))
start_indices = np.where(diffs == 1)[0]
end_indices = np.where(diffs == -1)[0]
return (end_indices - start_indices).tolist()
def analyze_datasets_for_augmentation(gift_eval_path_str: str) -> dict:
"""
Analyzes all datasets to derive statistics needed for NaN augmentation.
This version collects the full distribution of NaN ratios.
"""
logger.info(
"--- Starting Dataset Analysis for Augmentation (Full Distribution) ---"
)
path = Path(gift_eval_path_str)
if not path.exists():
raise FileNotFoundError(
f"Provided raw data path for augmentation analysis does not exist: {gift_eval_path_str}"
)
dataset_names = []
for dataset_dir in path.iterdir():
if dataset_dir.name.startswith(".") or not dataset_dir.is_dir():
continue
freq_dirs = [d for d in dataset_dir.iterdir() if d.is_dir()]
if freq_dirs:
for freq_dir in freq_dirs:
dataset_names.append(f"{dataset_dir.name}/{freq_dir.name}")
else:
dataset_names.append(dataset_dir.name)
total_series_count = 0
series_with_nans_count = 0
nan_ratio_distribution = []
all_consecutive_nan_lengths = Counter()
for ds_name in sorted(dataset_names):
try:
ds = Dataset(name=ds_name, term="short", to_univariate=False)
for series_data in ds.training_dataset:
total_series_count += 1
target = np.atleast_1d(series_data["target"])
num_nans = np.isnan(target).sum()
if num_nans > 0:
series_with_nans_count += 1
nan_ratio = num_nans / target.size
nan_ratio_distribution.append(float(nan_ratio))
nan_lengths = find_consecutive_nan_lengths(target)
all_consecutive_nan_lengths.update(nan_lengths)
except Exception as e:
logger.warning(
f"Could not process {ds_name} for augmentation analysis: {e}"
)
if total_series_count == 0:
raise ValueError(
"No series were found during augmentation analysis. Check dataset path."
)
p_series_has_nan = (
series_with_nans_count / total_series_count if total_series_count > 0 else 0
)
logger.info("--- Augmentation Analysis Complete ---")
# Print summary statistics
logger.info(f"Total series analyzed: {total_series_count}")
logger.info(f"Series with NaNs: {series_with_nans_count} ({p_series_has_nan:.4f})")
logger.info(f"NaN ratio distribution: {Counter(nan_ratio_distribution)}")
logger.info(f"Consecutive NaN lengths distribution: {all_consecutive_nan_lengths}")
logger.info("--- End of Dataset Analysis for Augmentation ---")
return {
"p_series_has_nan": p_series_has_nan,
"nan_ratio_distribution": nan_ratio_distribution,
"nan_length_distribution": all_consecutive_nan_lengths,
}
class NanAugmenter:
"""
Applies realistic NaN augmentation by generating and caching NaN patterns on-demand
during the first transform call for a given data shape.
"""
def __init__(
self,
p_series_has_nan: float,
nan_ratio_distribution: List[float],
nan_length_distribution: Counter,
num_patterns: int = 100000,
n_jobs: int = -1,
nan_patterns_path: Optional[str] = None,
):
"""
Initializes the augmenter. NaN patterns are not generated at this stage.
Args:
p_series_has_nan (float): Probability that a series in a batch will be augmented.
nan_ratio_distribution (List[float]): A list of NaN ratios observed in the dataset.
nan_length_distribution (Counter): A Counter of consecutive NaN block lengths.
num_patterns (int): The number of unique NaN patterns to generate per data shape.
n_jobs (int): The number of CPU cores to use for parallel pattern generation (-1 for all cores).
"""
self.p_series_has_nan = p_series_has_nan
self.nan_ratio_distribution = nan_ratio_distribution
self.num_patterns = num_patterns
self.n_jobs = n_jobs
self.max_length = 2048
self.nan_patterns_path = nan_patterns_path
# Cache to store patterns: Dict[shape_tuple -> pattern_tensor]
self.pattern_cache: Dict[Tuple[int, ...], torch.BoolTensor] = {}
if not nan_length_distribution or sum(nan_length_distribution.values()) == 0:
self._has_block_distribution = False
logger.warning("NaN length distribution is empty. Augmentation disabled.")
else:
self._has_block_distribution = True
total_blocks = sum(nan_length_distribution.values())
self.dist_lengths = list(int(i) for i in nan_length_distribution.keys())
self.dist_probs = [
count / total_blocks for count in nan_length_distribution.values()
]
if not self.nan_ratio_distribution:
logger.warning("NaN ratio distribution is empty. Augmentation disabled.")
# Try to load existing patterns from disk
self._load_existing_patterns()
def _load_existing_patterns(self):
"""Load existing NaN patterns from disk if they exist."""
# Determine where to look for patterns
explicit_path: Optional[Path] = (
Path(self.nan_patterns_path).resolve()
if self.nan_patterns_path is not None
else None
)
candidate_files: List[Path] = []
if explicit_path is not None:
# If the explicit path exists, use it directly
if explicit_path.is_file():
candidate_files.append(explicit_path)
# Also search the directory of the explicit path for matching files
explicit_dir = explicit_path.parent
explicit_dir.mkdir(exist_ok=True, parents=True)
candidate_files.extend(
list(explicit_dir.glob(f"nan_patterns_{self.max_length}_*.pt"))
)
else:
# Default to the ./data directory
data_dir = Path("data")
data_dir.mkdir(exist_ok=True)
candidate_files.extend(
list(data_dir.glob(f"nan_patterns_{self.max_length}_*.pt"))
)
# De-duplicate candidate files while preserving order
seen: set[str] = set()
unique_candidates: List[Path] = []
for f in candidate_files:
key = str(f.resolve())
if key not in seen:
seen.add(key)
unique_candidates.append(f)
for pattern_file in unique_candidates:
try:
# Extract num_channels from filename
filename = pattern_file.stem
parts = filename.split("_")
if len(parts) >= 4:
num_channels = int(parts[-1])
# Load patterns
patterns = torch.load(pattern_file, map_location="cpu")
cache_key = (self.max_length, num_channels)
self.pattern_cache[cache_key] = patterns
logger.info(
f"Loaded {patterns.shape[0]} patterns for shape {cache_key} from {pattern_file}"
)
except (ValueError, RuntimeError, FileNotFoundError) as e:
logger.warning(f"Failed to load patterns from {pattern_file}: {e}")
def _get_pattern_file_path(self, num_channels: int) -> Path:
"""Resolve the target file path for storing/loading patterns for a given channel count."""
# If user provided a file path, use its directory as the base directory
if self.nan_patterns_path is not None:
base_dir = Path(self.nan_patterns_path).resolve().parent
base_dir.mkdir(exist_ok=True, parents=True)
else:
base_dir = Path("data").resolve()
base_dir.mkdir(exist_ok=True, parents=True)
return base_dir / f"nan_patterns_{self.max_length}_{num_channels}.pt"
def _generate_nan_mask(self, series_shape: Tuple[int, ...]) -> np.ndarray:
"""Generates a single boolean NaN mask for a given series shape."""
series_size = int(np.prod(series_shape))
sampled_ratio = np.random.choice(self.nan_ratio_distribution)
n_nans_to_add = int(round(series_size * sampled_ratio))
if n_nans_to_add == 0:
return np.zeros(series_shape, dtype=bool)
mask_flat = np.zeros(series_size, dtype=bool)
nans_added = 0
max_attempts = n_nans_to_add * 2
attempts = 0
while nans_added < n_nans_to_add and attempts < max_attempts:
attempts += 1
block_length = np.random.choice(self.dist_lengths, p=self.dist_probs)
if nans_added + block_length > n_nans_to_add:
block_length = n_nans_to_add - nans_added
if block_length <= 0:
break
nan_counts_in_window = np.convolve(
mask_flat, np.ones(block_length), mode="valid"
)
valid_starts = np.where(nan_counts_in_window == 0)[0]
if valid_starts.size == 0:
continue
start_pos = np.random.choice(valid_starts)
mask_flat[start_pos : start_pos + block_length] = True
nans_added += block_length
return mask_flat.reshape(series_shape)
def _pregenerate_patterns(self, series_shape: Tuple[int, ...]) -> torch.BoolTensor:
"""Uses joblib to parallelize the generation of NaN masks for a given shape."""
if not self._has_block_distribution or not self.nan_ratio_distribution:
return torch.empty(0, *series_shape, dtype=torch.bool)
logger.info(
f"Generating {self.num_patterns} NaN patterns for shape {series_shape}..."
)
with Parallel(n_jobs=self.n_jobs, backend="loky") as parallel:
masks_list = parallel(
delayed(self._generate_nan_mask)(series_shape)
for _ in range(self.num_patterns)
)
logger.info(f"Pattern generation complete for shape {series_shape}.")
return torch.from_numpy(np.stack(masks_list)).bool()
def transform(self, time_series_batch: torch.Tensor) -> torch.Tensor:
"""
Applies NaN patterns to a batch, generating them on-demand if the shape is new.
"""
if self.p_series_has_nan == 0:
return time_series_batch
history_length, num_channels = time_series_batch.shape[1:]
assert history_length <= self.max_length, (
f"History length {history_length} exceeds maximum allowed {self.max_length}."
)
# 1. Check cache and generate patterns if the shape is new
if (
self.max_length,
num_channels,
) not in self.pattern_cache:
# Try loading from a resolved file path if available
target_file = self._get_pattern_file_path(num_channels)
if target_file.exists():
try:
patterns = torch.load(target_file, map_location="cpu")
self.pattern_cache[(self.max_length, num_channels)] = patterns
logger.info(
f"Loaded NaN patterns from {target_file} for shape {(self.max_length, num_channels)}"
)
except (RuntimeError, FileNotFoundError):
# Fall back to generating if loading fails
patterns = self._pregenerate_patterns(
(self.max_length, num_channels)
)
torch.save(patterns, target_file)
self.pattern_cache[(self.max_length, num_channels)] = patterns
logger.info(
f"Generated and saved {patterns.shape[0]} NaN patterns to {target_file}"
)
else:
patterns = self._pregenerate_patterns((self.max_length, num_channels))
torch.save(patterns, target_file)
self.pattern_cache[(self.max_length, num_channels)] = patterns
logger.info(
f"Generated and saved {patterns.shape[0]} NaN patterns to {target_file}"
)
patterns = self.pattern_cache[(self.max_length, num_channels)][
:, :history_length, :
]
# Early exit if patterns are empty (e.g., generation failed or was disabled)
if patterns.numel() == 0:
return time_series_batch
batch_size = time_series_batch.shape[0]
device = time_series_batch.device
# 2. Vectorized decision on which series to augment
augment_mask = torch.rand(batch_size, device=device) < self.p_series_has_nan
indices_to_augment = torch.where(augment_mask)[0]
num_to_augment = indices_to_augment.numel()
if num_to_augment == 0:
return time_series_batch
# 3. Randomly sample patterns for each series being augmented
pattern_indices = torch.randint(
0, patterns.shape[0], (num_to_augment,), device=device
)
# 4. Select patterns and apply them in a single vectorized operation
selected_patterns = patterns[pattern_indices].to(device)
time_series_batch[indices_to_augment] = time_series_batch[
indices_to_augment
].masked_fill(selected_patterns, float("nan"))
return time_series_batch
class CensorAugmenter:
"""
Applies censor augmentation by clipping values from above, below, or both.
"""
def __init__(self):
"""Initializes the CensorAugmenter."""
pass
def transform(self, time_series_batch: torch.Tensor) -> torch.Tensor:
"""
Applies a vectorized censor augmentation to a batch of time series.
"""
batch_size, seq_len, num_channels = time_series_batch.shape
assert num_channels == 1
time_series_batch = time_series_batch.squeeze(-1)
with torch.no_grad():
batch_size, seq_len = time_series_batch.shape
device = time_series_batch.device
# Step 1: Choose an op mode for each series
op_mode = torch.randint(0, 3, (batch_size, 1), device=device)
# Step 2: Calculate potential thresholds for all series
q1 = torch.rand(batch_size, device=device)
q2 = torch.rand(batch_size, device=device)
q_low = torch.minimum(q1, q2)
q_high = torch.maximum(q1, q2)
sorted_series = torch.sort(time_series_batch, dim=1).values
indices_low = (q_low * (seq_len - 1)).long()
indices_high = (q_high * (seq_len - 1)).long()
c_low = torch.gather(sorted_series, 1, indices_low.unsqueeze(1))
c_high = torch.gather(sorted_series, 1, indices_high.unsqueeze(1))
# Step 3: Compute results for all possible clipping operations
clip_above = torch.minimum(time_series_batch, c_high)
clip_below = torch.maximum(time_series_batch, c_low)
# Step 4: Select the final result based on the op_mode
result = torch.where(
op_mode == 1,
clip_above,
torch.where(op_mode == 2, clip_below, time_series_batch),
)
augmented_batch = torch.where(
op_mode == 0,
time_series_batch,
result,
)
return augmented_batch.unsqueeze(-1)
class QuantizationAugmenter:
"""
Applies non-equidistant quantization using a Sobol sequence to generate
uniformly distributed levels. This implementation is fully vectorized.
"""
def __init__(
self,
p_quantize: float,
level_range: Tuple[int, int],
seed: Optional[int] = None,
):
"""
Initializes the augmenter.
Args:
p_quantize (float): Probability of applying quantization to a series.
level_range (Tuple[int, int]): Inclusive range [min, max] to sample the
number of quantization levels from.
seed (Optional[int]): Seed for the Sobol sequence generator for reproducibility.
"""
assert 0.0 <= p_quantize <= 1.0, "Probability must be between 0 and 1."
assert level_range[0] >= 2, "Minimum number of levels must be at least 2."
assert level_range[0] <= level_range[1], (
"Min levels cannot be greater than max."
)
self.p_quantize = p_quantize
self.level_range = level_range
# Initialize a SobolEngine. The dimension is the max number of random
# levels we might need to generate for a single series.
max_intermediate_levels = self.level_range[1] - 2
if max_intermediate_levels > 0:
# SobolEngine must be created on CPU
self.sobol_engine = SobolEngine(
dimension=max_intermediate_levels, scramble=True, seed=seed
)
else:
self.sobol_engine = None
def transform(self, time_series_batch: torch.Tensor) -> torch.Tensor:
"""
Applies augmentation in a fully vectorized way on the batch's device.
Handles input shape (batch, length, 1).
"""
# Handle input shape (batch, length, 1)
if time_series_batch.dim() == 3 and time_series_batch.shape[2] == 1:
is_3d = True
time_series_squeezed = time_series_batch.squeeze(-1)
else:
is_3d = False
time_series_squeezed = time_series_batch
if self.p_quantize == 0 or self.sobol_engine is None:
return time_series_batch
n_series, _ = time_series_squeezed.shape
device = time_series_squeezed.device
# 1. Decide which series to augment
augment_mask = torch.rand(n_series, device=device) < self.p_quantize
n_augment = torch.sum(augment_mask)
if n_augment == 0:
return time_series_batch
series_to_augment = time_series_squeezed[augment_mask]
# 2. Determine a variable n_levels for EACH series
min_l, max_l = self.level_range
n_levels_per_series = torch.randint(
min_l, max_l + 1, size=(n_augment,), device=device
)
max_levels_in_batch = n_levels_per_series.max().item()
# 3. Find min/max for each series
min_vals = torch.amin(series_to_augment, dim=1, keepdim=True)
max_vals = torch.amax(series_to_augment, dim=1, keepdim=True)
value_range = max_vals - min_vals
is_flat = value_range == 0
# 4. Generate quasi-random levels using the Sobol sequence
num_intermediate_levels = max_levels_in_batch - 2
if num_intermediate_levels > 0:
# Draw points from the Sobol engine (on CPU) and move to target device
sobol_points = self.sobol_engine.draw(n_augment).to(device)
# We only need the first `num_intermediate_levels` dimensions
quasi_rand_points = sobol_points[:, :num_intermediate_levels]
else:
# Handle case where max_levels_in_batch is 2 (no intermediate points needed)
quasi_rand_points = torch.empty(n_augment, 0, device=device)
scaled_quasi_rand_levels = min_vals + value_range * quasi_rand_points
level_values = torch.cat([min_vals, max_vals, scaled_quasi_rand_levels], dim=1)
level_values, _ = torch.sort(level_values, dim=1)
# 5. Find the closest level using a mask to ignore padded values
series_expanded = series_to_augment.unsqueeze(2)
levels_expanded = level_values.unsqueeze(1)
diff = torch.abs(series_expanded - levels_expanded)
arange_mask = torch.arange(max_levels_in_batch, device=device).unsqueeze(0)
valid_levels_mask = arange_mask < n_levels_per_series.unsqueeze(1)
masked_diff = torch.where(valid_levels_mask.unsqueeze(1), diff, float("inf"))
closest_level_indices = torch.argmin(masked_diff, dim=2)
# 6. Gather the results from the original level values
quantized_subset = torch.gather(level_values, 1, closest_level_indices)
# 7. For flat series, revert to their original values
final_subset = torch.where(is_flat, series_to_augment, quantized_subset)
# 8. Place augmented data back into a copy of the original batch
augmented_batch_squeezed = time_series_squeezed.clone()
augmented_batch_squeezed[augment_mask] = final_subset
# Restore original shape before returning
if is_3d:
return augmented_batch_squeezed.unsqueeze(-1)
else:
return augmented_batch_squeezed
class MixUpAugmenter:
"""
Applies mixup augmentation by creating a weighted average of multiple time series.
This version includes an option for time-dependent mixup using Simplex Path
Interpolation, creating a smooth transition between different mixing weights.
"""
def __init__(
self,
max_n_series_to_combine: int = 10,
p_combine: float = 0.4,
p_time_dependent: float = 0.5,
randomize_k_per_series: bool = True,
dirichlet_alpha_range: Tuple[float, float] = (0.1, 5.0),
):
"""
Initializes the augmenter.
Args:
max_n_series_to_combine (int): The maximum number of series to combine.
The actual number k will be sampled from [2, max].
p_combine (float): The probability of replacing a series with a combination.
p_time_dependent (float): The probability of using the time-dependent
simplex path method for a given mixup operation. Defaults to 0.5.
randomize_k_per_series (bool): If True, each augmented series will be a
combination of a different number of series (k).
If False, one k is chosen for the whole batch.
dirichlet_alpha_range (Tuple[float, float]): The [min, max] range to sample the
Dirichlet 'alpha' from. A smaller alpha (e.g., 0.2) creates mixes
dominated by one series. A larger alpha (e.g., 5.0) creates
more uniform weights.
"""
assert max_n_series_to_combine >= 2, "Must combine at least 2 series."
assert 0.0 <= p_combine <= 1.0, "p_combine must be between 0 and 1."
assert 0.0 <= p_time_dependent <= 1.0, (
"p_time_dependent must be between 0 and 1."
)
assert (
dirichlet_alpha_range[0] > 0
and dirichlet_alpha_range[0] <= dirichlet_alpha_range[1]
)
self.max_k = max_n_series_to_combine
self.p_combine = p_combine
self.p_time_dependent = p_time_dependent
self.randomize_k = randomize_k_per_series
self.alpha_range = dirichlet_alpha_range
def _sample_alpha(self) -> float:
log_alpha_min = math.log10(self.alpha_range[0])
log_alpha_max = math.log10(self.alpha_range[1])
log_alpha = log_alpha_min + np.random.rand() * (log_alpha_max - log_alpha_min)
return float(10**log_alpha)
def _sample_k(self) -> int:
return int(torch.randint(2, self.max_k + 1, (1,)).item())
def _static_mix(
self,
source_series: torch.Tensor,
alpha: float,
return_weights: bool = False,
):
"""Mixes k source series using a single, static set of Dirichlet weights."""
k = int(source_series.shape[0])
device = source_series.device
concentration = torch.full((k,), float(alpha), device=device)
weights = torch.distributions.Dirichlet(concentration).sample()
weights_view = weights.view(k, 1, 1)
mixed_series = (source_series * weights_view).sum(dim=0, keepdim=True)
if return_weights:
return mixed_series, weights
return mixed_series
def _simplex_path_mix(
self,
source_series: torch.Tensor,
alpha: float,
return_weights: bool = False,
):
"""Mixes k series using time-varying weights interpolated along a simplex path."""
k, length, _ = source_series.shape
device = source_series.device
# 1. Sample two endpoint weight vectors from the Dirichlet distribution
concentration = torch.full((k,), float(alpha), device=device)
dirichlet_dist = torch.distributions.Dirichlet(concentration)
w_start = dirichlet_dist.sample()
w_end = dirichlet_dist.sample()
# 2. Create a linear ramp from 0 to 1
alpha_ramp = torch.linspace(0, 1, length, device=device)
# 3. Interpolate between the endpoint weights over time
# Reshape for broadcasting: w vectors become [k, 1], ramp becomes [1, length]
time_varying_weights = w_start.unsqueeze(1) * (
1 - alpha_ramp.unsqueeze(0)
) + w_end.unsqueeze(1) * alpha_ramp.unsqueeze(0)
# The result `time_varying_weights` has shape [k, length]
# 4. Apply the time-varying weights
weights_view = time_varying_weights.unsqueeze(-1) # Shape: [k, length, 1]
mixed_series = (source_series * weights_view).sum(dim=0, keepdim=True)
if return_weights:
return mixed_series, time_varying_weights
return mixed_series
def transform(
self, time_series_batch: torch.Tensor, return_debug_info: bool = False
):
"""
Applies the mixup augmentation, randomly choosing between static and
time-dependent mixing methods.
"""
with torch.no_grad():
if self.p_combine == 0:
return (
(time_series_batch, {}) if return_debug_info else time_series_batch
)
batch_size, _, _ = time_series_batch.shape
device = time_series_batch.device
if batch_size <= self.max_k:
return (
(time_series_batch, {}) if return_debug_info else time_series_batch
)
# 1. Decide which series to replace
augment_mask = torch.rand(batch_size, device=device) < self.p_combine
indices_to_replace = torch.where(augment_mask)[0]
n_augment = indices_to_replace.numel()
if n_augment == 0:
return (
(time_series_batch, {}) if return_debug_info else time_series_batch
)
# 2. Determine k for each series to augment
if self.randomize_k:
k_values = torch.randint(2, self.max_k + 1, (n_augment,), device=device)
else:
k = self._sample_k()
k_values = torch.full((n_augment,), k, device=device)
# 3. Augment series one by one
new_series_list = []
all_batch_indices = torch.arange(batch_size, device=device)
debug_info = {}
for i, target_idx in enumerate(indices_to_replace):
current_k = k_values[i].item()
# Sample source indices
candidate_mask = all_batch_indices != target_idx
candidates = all_batch_indices[candidate_mask]
perm = torch.randperm(candidates.shape[0], device=device)
source_indices = candidates[perm[:current_k]]
source_series = time_series_batch[source_indices]
alpha = self._sample_alpha()
mix_type = "static"
# Randomly choose between static and time-dependent mixup
if torch.rand(1).item() < self.p_time_dependent:
mixed_series, weights = self._simplex_path_mix(
source_series, alpha=alpha, return_weights=True
)
mix_type = "simplex"
else:
mixed_series, weights = self._static_mix(
source_series, alpha=alpha, return_weights=True
)
new_series_list.append(mixed_series)
if return_debug_info:
debug_info[target_idx.item()] = {
"source_indices": source_indices.cpu().numpy(),
"weights": weights.cpu().numpy(),
"alpha": alpha,
"k": current_k,
"mix_type": mix_type,
}
# 4. Place augmented series back into a clone of the original batch
augmented_batch = time_series_batch.clone()
if new_series_list:
new_series_tensor = torch.cat(new_series_list, dim=0)
augmented_batch[indices_to_replace] = new_series_tensor
if return_debug_info:
return augmented_batch.detach(), debug_info
return augmented_batch.detach()
class TimeFlipAugmenter:
"""
Applies time-reversal augmentation to a random subset of time series in a batch.
"""
def __init__(self, p_flip: float = 0.5):
"""
Initializes the TimeFlipAugmenter.
Args:
p_flip (float): The probability of flipping a single time series in the batch.
Defaults to 0.5.
"""
assert 0.0 <= p_flip <= 1.0, "Probability must be between 0 and 1."
self.p_flip = p_flip
def transform(self, time_series_batch: torch.Tensor) -> torch.Tensor:
"""
Applies time-reversal augmentation to a batch of time series.
Args:
time_series_batch (torch.Tensor): The input batch of time series with
shape (batch_size, seq_len, num_channels).
Returns:
torch.Tensor: The batch with some series potentially flipped.
"""
with torch.no_grad():
if self.p_flip == 0:
return time_series_batch
batch_size = time_series_batch.shape[0]
device = time_series_batch.device
# 1. Decide which series in the batch to flip
flip_mask = torch.rand(batch_size, device=device) < self.p_flip
indices_to_flip = torch.where(flip_mask)[0]
if indices_to_flip.numel() == 0:
return time_series_batch
# 2. Select the series to be flipped
series_to_flip = time_series_batch[indices_to_flip]
# 3. Flip them along the time dimension (dim=1)
flipped_series = torch.flip(series_to_flip, dims=[1])
# 4. Create a copy of the batch and place the flipped series into it
augmented_batch = time_series_batch.clone()
augmented_batch[indices_to_flip] = flipped_series
return augmented_batch
class YFlipAugmenter:
"""
Applies y-reversal augmentation to a random subset of time series in a batch.
"""
def __init__(self, p_flip: float = 0.5):
"""
Initializes the TimeFlipAugmenter.
Args:
p_flip (float): The probability of flipping a single time series in the batch.
Defaults to 0.5.
"""
assert 0.0 <= p_flip <= 1.0, "Probability must be between 0 and 1."
self.p_flip = p_flip
def transform(self, time_series_batch: torch.Tensor) -> torch.Tensor:
"""
Applies time-reversal augmentation to a batch of time series.
Args:
time_series_batch (torch.Tensor): The input batch of time series with
shape (batch_size, seq_len, num_channels).
Returns:
torch.Tensor: The batch with some series potentially flipped.
"""
with torch.no_grad():
if self.p_flip == 0:
return time_series_batch
batch_size = time_series_batch.shape[0]
device = time_series_batch.device
# 1. Decide which series in the batch to flip
flip_mask = torch.rand(batch_size, device=device) < self.p_flip
indices_to_flip = torch.where(flip_mask)[0]
if indices_to_flip.numel() == 0:
return time_series_batch
# 2. Select the series to be flipped
series_to_flip = time_series_batch[indices_to_flip]
# 3. Flip them along the time dimension (dim=1)
flipped_series = -series_to_flip
# 4. Create a copy of the batch and place the flipped series into it
augmented_batch = time_series_batch.clone()
augmented_batch[indices_to_flip] = flipped_series
return augmented_batch
class DifferentialAugmenter:
"""
Applies calculus-inspired augmentations. This version includes up to the
fourth derivative and uses nn.Conv1d with built-in 'reflect' padding for
cleaner and more efficient convolutions.
The Gaussian kernel size and sigma for the initial smoothing are randomly
sampled at every transform() call from user-defined ranges.
"""
def __init__(
self,
p_transform: float,
gaussian_kernel_size_range: Tuple[int, int] = (5, 51),
gaussian_sigma_range: Tuple[float, float] = (2.0, 20.0),
):
"""
Initializes the augmenter.
Args:
p_transform (float): The probability of applying an augmentation to any given
time series in a batch.
gaussian_kernel_size_range (Tuple[int, int]): The [min, max] inclusive range
for the Gaussian kernel size.
Sizes will be forced to be odd.
gaussian_sigma_range (Tuple[float, float]): The [min, max] inclusive range
for the Gaussian sigma.
"""
self.p_transform = p_transform
self.kernel_size_range = gaussian_kernel_size_range
self.sigma_range = gaussian_sigma_range
# Validate ranges
if not (
self.kernel_size_range[0] <= self.kernel_size_range[1]
and self.kernel_size_range[0] >= 3
):
raise ValueError(
"Invalid kernel size range. Ensure min <= max and min >= 3."
)
if not (self.sigma_range[0] <= self.sigma_range[1] and self.sigma_range[0] > 0):
raise ValueError("Invalid sigma range. Ensure min <= max and min > 0.")
# Cache for fixed-kernel convolution layers (Sobel, Laplace, etc.)
self.conv_cache: Dict[Tuple[int, torch.device], Dict[str, nn.Module]] = {}
def _create_fixed_kernel_layers(
self, num_channels: int, device: torch.device
) -> dict:
"""
Creates and configures nn.Conv1d layers for fixed-kernel derivative operations.
These layers are cached to improve performance.
"""
sobel_conv = nn.Conv1d(
in_channels=num_channels,
out_channels=num_channels,
kernel_size=3,
padding="same",
padding_mode="reflect",
groups=num_channels,
bias=False,
device=device,
)
laplace_conv = nn.Conv1d(
in_channels=num_channels,
out_channels=num_channels,
kernel_size=3,
padding="same",
padding_mode="reflect",
groups=num_channels,
bias=False,
device=device,
)
d3_conv = nn.Conv1d(
in_channels=num_channels,
out_channels=num_channels,
kernel_size=5,
padding="same",
padding_mode="reflect",
groups=num_channels,
bias=False,
device=device,
)
d4_conv = nn.Conv1d(
in_channels=num_channels,
out_channels=num_channels,
kernel_size=5,
padding="same",
padding_mode="reflect",
groups=num_channels,
bias=False,
device=device,
)
sobel_kernel = (
torch.tensor([-1, 0, 1], device=device, dtype=torch.float32)
.view(1, 1, -1)
.repeat(num_channels, 1, 1)
)
laplace_kernel = (
torch.tensor([1, -2, 1], device=device, dtype=torch.float32)
.view(1, 1, -1)
.repeat(num_channels, 1, 1)
)
d3_kernel = (
torch.tensor([-1, 2, 0, -2, 1], device=device, dtype=torch.float32)
.view(1, 1, -1)
.repeat(num_channels, 1, 1)
)
d4_kernel = (
torch.tensor([1, -4, 6, -4, 1], device=device, dtype=torch.float32)
.view(1, 1, -1)
.repeat(num_channels, 1, 1)
)
sobel_conv.weight.data = sobel_kernel
laplace_conv.weight.data = laplace_kernel
d3_conv.weight.data = d3_kernel
d4_conv.weight.data = d4_kernel
for layer in [sobel_conv, laplace_conv, d3_conv, d4_conv]:
layer.weight.requires_grad = False
return {
"sobel": sobel_conv,
"laplace": laplace_conv,
"d3": d3_conv,
"d4": d4_conv,
}
def _create_gaussian_layer(
self, kernel_size: int, sigma: float, num_channels: int, device: torch.device
) -> nn.Module:
"""Creates a single Gaussian convolution layer with the given dynamic parameters."""
gauss_conv = nn.Conv1d(
in_channels=num_channels,
out_channels=num_channels,
kernel_size=kernel_size,
padding="same",
padding_mode="reflect",
groups=num_channels,
bias=False,
device=device,
)
ax = torch.arange(
-(kernel_size // 2),
kernel_size // 2 + 1,
device=device,
dtype=torch.float32,
)
gauss_kernel = torch.exp(-0.5 * (ax / sigma) ** 2)
gauss_kernel /= gauss_kernel.sum()
gauss_kernel = gauss_kernel.view(1, 1, -1).repeat(num_channels, 1, 1)
gauss_conv.weight.data = gauss_kernel
gauss_conv.weight.requires_grad = False
return gauss_conv
def _rescale_signal(
self, processed_signal: torch.Tensor, original_signal: torch.Tensor
) -> torch.Tensor:
"""Rescales the processed signal to match the min/max range of the original."""
original_min = torch.amin(original_signal, dim=2, keepdim=True)
original_max = torch.amax(original_signal, dim=2, keepdim=True)
processed_min = torch.amin(processed_signal, dim=2, keepdim=True)
processed_max = torch.amax(processed_signal, dim=2, keepdim=True)
original_range = original_max - original_min
processed_range = processed_max - processed_min
epsilon = 1e-8
rescaled_signal = (
(processed_signal - processed_min) / (processed_range + epsilon)
) * original_range + original_min
return torch.where(original_range < epsilon, original_signal, rescaled_signal)
def transform(self, time_series_batch: torch.Tensor) -> torch.Tensor:
"""Applies a random augmentation to a subset of the batch."""
with torch.no_grad():
if self.p_transform == 0:
return time_series_batch
batch_size, seq_len, num_channels = time_series_batch.shape
device = time_series_batch.device
augment_mask = torch.rand(batch_size, device=device) < self.p_transform
indices_to_augment = torch.where(augment_mask)[0]
num_to_augment = indices_to_augment.numel()
if num_to_augment == 0:
return time_series_batch
# --- 🎲 Randomly sample Gaussian parameters for this call ---
min_k, max_k = self.kernel_size_range
kernel_size = torch.randint(min_k, max_k + 1, (1,)).item()
kernel_size = kernel_size // 2 * 2 + 1 # Ensure kernel size is odd
min_s, max_s = self.sigma_range
sigma = (min_s + (max_s - min_s) * torch.rand(1)).item()
# --- Get/Create Convolution Layers ---
gauss_conv = self._create_gaussian_layer(
kernel_size, sigma, num_channels, device
)
cache_key = (num_channels, device)
if cache_key not in self.conv_cache:
self.conv_cache[cache_key] = self._create_fixed_kernel_layers(
num_channels, device
)
fixed_layers = self.conv_cache[cache_key]
# --- Apply Augmentations ---
subset_to_augment = time_series_batch[indices_to_augment]
subset_permuted = subset_to_augment.permute(0, 2, 1)
op_choices = torch.randint(0, 6, (num_to_augment,), device=device)
smoothed_subset = gauss_conv(subset_permuted)
sobel_on_smoothed = fixed_layers["sobel"](smoothed_subset)
laplace_on_smoothed = fixed_layers["laplace"](smoothed_subset)
d3_on_smoothed = fixed_layers["d3"](smoothed_subset)
d4_on_smoothed = fixed_layers["d4"](smoothed_subset)
gauss_result = self._rescale_signal(smoothed_subset, subset_permuted)
sobel_result = self._rescale_signal(sobel_on_smoothed, subset_permuted)
laplace_result = self._rescale_signal(laplace_on_smoothed, subset_permuted)
d3_result = self._rescale_signal(d3_on_smoothed, subset_permuted)
d4_result = self._rescale_signal(d4_on_smoothed, subset_permuted)
use_right_integral = torch.rand(num_to_augment, 1, 1, device=device) > 0.5
flipped_subset = torch.flip(subset_permuted, dims=[2])
right_integral = torch.flip(torch.cumsum(flipped_subset, dim=2), dims=[2])
left_integral = torch.cumsum(subset_permuted, dim=2)
integral_result = torch.where(
use_right_integral, right_integral, left_integral
)
integral_result_normalized = self._rescale_signal(
integral_result, subset_permuted
)
# --- Assemble the results based on op_choices ---
op_choices_view = op_choices.view(-1, 1, 1)
augmented_subset = torch.where(
op_choices_view == 0, gauss_result, subset_permuted
)
augmented_subset = torch.where(
op_choices_view == 1, sobel_result, augmented_subset
)
augmented_subset = torch.where(
op_choices_view == 2, laplace_result, augmented_subset
)
augmented_subset = torch.where(
op_choices_view == 3, integral_result_normalized, augmented_subset
)
augmented_subset = torch.where(
op_choices_view == 4, d3_result, augmented_subset
)
augmented_subset = torch.where(
op_choices_view == 5, d4_result, augmented_subset
)
augmented_subset_final = augmented_subset.permute(0, 2, 1)
augmented_batch = time_series_batch.clone()
augmented_batch[indices_to_augment] = augmented_subset_final
return augmented_batch
class RandomConvAugmenter:
"""
Applies a stack of 1-to-N random 1D convolutions to a time series batch.
This augmenter is inspired by the principles of ROCKET and RandConv,
randomizing nearly every aspect of the convolution process to create a
highly diverse set of transformations. This version includes multiple
kernel generation strategies, random padding modes, and optional non-linearities.
"""
def __init__(
self,
p_transform: float = 0.5,
kernel_size_range: Tuple[int, int] = (3, 31),
dilation_range: Tuple[int, int] = (1, 8),
layer_range: Tuple[int, int] = (1, 3),
sigma_range: Tuple[float, float] = (0.5, 5.0),
bias_range: Tuple[float, float] = (-0.5, 0.5),
):
"""
Initializes the augmenter.
Args:
p_transform (float): Probability of applying the augmentation to a series.
kernel_size_range (Tuple[int, int]): [min, max] range for kernel sizes.
Must be odd numbers.
dilation_range (Tuple[int, int]): [min, max] range for dilation factors.
layer_range (Tuple[int, int]): [min, max] range for the number of
stacked convolution layers.
sigma_range (Tuple[float, float]): [min, max] range for the sigma of
Gaussian kernels.
bias_range (Tuple[float, float]): [min, max] range for the bias term.
"""
assert kernel_size_range[0] % 2 == 1 and kernel_size_range[1] % 2 == 1, (
"Kernel sizes must be odd."
)
self.p_transform = p_transform
self.kernel_size_range = kernel_size_range
self.dilation_range = dilation_range
self.layer_range = layer_range
self.sigma_range = sigma_range
self.bias_range = bias_range
self.padding_modes = ["reflect", "replicate", "circular"]
def _rescale_signal(
self, processed_signal: torch.Tensor, original_signal: torch.Tensor
) -> torch.Tensor:
"""Rescales the processed signal to match the min/max range of the original."""
original_min = torch.amin(original_signal, dim=-1, keepdim=True)
original_max = torch.amax(original_signal, dim=-1, keepdim=True)
processed_min = torch.amin(processed_signal, dim=-1, keepdim=True)
processed_max = torch.amax(processed_signal, dim=-1, keepdim=True)
original_range = original_max - original_min
processed_range = processed_max - processed_min
epsilon = 1e-8
is_flat = processed_range < epsilon
rescaled_signal = (
(processed_signal - processed_min) / (processed_range + epsilon)
) * original_range + original_min
original_mean = torch.mean(original_signal, dim=-1, keepdim=True)
flat_rescaled = original_mean.expand_as(original_signal)
return torch.where(is_flat, flat_rescaled, rescaled_signal)
def _apply_random_conv_stack(self, series: torch.Tensor) -> torch.Tensor:
"""
Applies a randomly configured stack of convolutions to a single time series.
Args:
series (torch.Tensor): A single time series of shape (1, num_channels, seq_len).
Returns:
torch.Tensor: The augmented time series.
"""
num_channels = series.shape[1]
device = series.device
num_layers = torch.randint(
self.layer_range[0], self.layer_range[1] + 1, (1,)
).item()
processed_series = series
for i in range(num_layers):
# 1. Sample kernel size
k_min, k_max = self.kernel_size_range
kernel_size = torch.randint(k_min // 2, k_max // 2 + 1, (1,)).item() * 2 + 1
# 2. Sample dilation
d_min, d_max = self.dilation_range
dilation = torch.randint(d_min, d_max + 1, (1,)).item()
# 3. Sample bias
b_min, b_max = self.bias_range
bias_val = (b_min + (b_max - b_min) * torch.rand(1)).item()
# 4. Sample padding mode
padding_mode = np.random.choice(self.padding_modes)
conv_layer = nn.Conv1d(
in_channels=num_channels,
out_channels=num_channels,
kernel_size=kernel_size,
dilation=dilation,
padding="same", # Let PyTorch handle padding calculation
padding_mode=padding_mode,
groups=num_channels,
bias=True,
device=device,
)
# 5. Sample kernel weights from a wider variety of types
weight_type = torch.randint(0, 4, (1,)).item()
if weight_type == 0: # Gaussian kernel
s_min, s_max = self.sigma_range
sigma = (s_min + (s_max - s_min) * torch.rand(1)).item()
ax = torch.arange(
-(kernel_size // 2),
kernel_size // 2 + 1,
device=device,
dtype=torch.float32,
)
kernel = torch.exp(-0.5 * (ax / sigma) ** 2)
elif weight_type == 1: # Standard normal kernel
kernel = torch.randn(kernel_size, device=device)
elif weight_type == 2: # Polynomial kernel
coeffs = torch.randn(3, device=device) # a, b, c for ax^2+bx+c
x_vals = torch.linspace(-1, 1, kernel_size, device=device)
kernel = coeffs[0] * x_vals**2 + coeffs[1] * x_vals + coeffs[2]
else: # Noisy Sobel kernel
# Ensure kernel is large enough for a Sobel filter
actual_kernel_size = 3 if kernel_size < 3 else kernel_size
sobel_base = torch.tensor(
[-1, 0, 1], dtype=torch.float32, device=device
)
noise = torch.randn(3, device=device) * 0.1
noisy_sobel = sobel_base + noise
# Pad if the random kernel size is larger than 3
pad_total = actual_kernel_size - 3
pad_left = pad_total // 2
pad_right = pad_total - pad_left
kernel = F.pad(noisy_sobel, (pad_left, pad_right), "constant", 0)
# 6. Probabilistic normalization
if torch.rand(1).item() < 0.8: # 80% chance to normalize
kernel /= torch.sum(torch.abs(kernel)) + 1e-8
kernel = kernel.view(1, 1, -1).repeat(num_channels, 1, 1)
conv_layer.weight.data = kernel
conv_layer.bias.data.fill_(bias_val)
conv_layer.weight.requires_grad = False
conv_layer.bias.requires_grad = False
# Apply convolution
processed_series = conv_layer(processed_series)
# 7. Optional non-linearity (not on the last layer)
if i < num_layers - 1:
activation_type = torch.randint(0, 3, (1,)).item()
if activation_type == 1:
processed_series = F.relu(processed_series)
elif activation_type == 2:
processed_series = torch.tanh(processed_series)
# if 0, do nothing (linear)
return processed_series
def transform(self, time_series_batch: torch.Tensor) -> torch.Tensor:
"""Applies a random augmentation to a subset of the batch."""
with torch.no_grad():
if self.p_transform == 0:
return time_series_batch
batch_size, seq_len, num_channels = time_series_batch.shape
device = time_series_batch.device
augment_mask = torch.rand(batch_size, device=device) < self.p_transform
indices_to_augment = torch.where(augment_mask)[0]
num_to_augment = indices_to_augment.numel()
if num_to_augment == 0:
return time_series_batch
subset_to_augment = time_series_batch[indices_to_augment]
subset_permuted = subset_to_augment.permute(0, 2, 1)
augmented_subset_list = []
for i in range(num_to_augment):
original_series = subset_permuted[i : i + 1]
augmented_series = self._apply_random_conv_stack(original_series)
rescaled_series = self._rescale_signal(
augmented_series.squeeze(0), original_series.squeeze(0)
)
augmented_subset_list.append(rescaled_series.unsqueeze(0))
if augmented_subset_list:
augmented_subset = torch.cat(augmented_subset_list, dim=0)
augmented_subset_final = augmented_subset.permute(0, 2, 1)
augmented_batch = time_series_batch.clone()
augmented_batch[indices_to_augment] = augmented_subset_final
return augmented_batch
else:
return time_series_batch
|