Upload Fully-tuned Japanese CLIP model
Browse files- README.md +68 -0
- config.json +10 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer_config.json +63 -0
- vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: ja
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
tags:
|
| 5 |
+
- clip
|
| 6 |
+
- japanese
|
| 7 |
+
- multimodal
|
| 8 |
+
- vision-language
|
| 9 |
+
- stair-captions
|
| 10 |
+
- image-text-matching
|
| 11 |
+
- full-tuning # タグを更新
|
| 12 |
+
datasets:
|
| 13 |
+
- stair-captions
|
| 14 |
+
library_name: transformers
|
| 15 |
+
pipeline_tag: zero-shot-image-classification
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
# Japanese CLIP Model with Full Tuning
|
| 19 |
+
|
| 20 |
+
日本語画像・テキスト対応CLIPモデル(STAIR Captions v1.2で学習、両エンコーダー学習)
|
| 21 |
+
|
| 22 |
+
## モデル概要 / Model Overview
|
| 23 |
+
|
| 24 |
+
このモデルは、STAIR Captions v1.2データセットで画像エンコーダーとテキストエンコーダーの両方をファインチューニングして学習された日本語対応のCLIPモデルです。
|
| 25 |
+
|
| 26 |
+
## 特徴 / Features
|
| 27 |
+
|
| 28 |
+
- **Full Tuning**: 画像エンコーダーとテキストエンコーダーの両方を学習
|
| 29 |
+
- **高品質な日本語理解**: BERT-base-japanese-v3をファインチューニング
|
| 30 |
+
- **温度付きコントラスト損失**: InfoNCE損失による効果的な学習
|
| 31 |
+
|
| 32 |
+
## モデル詳細 / Model Details
|
| 33 |
+
|
| 34 |
+
- **テキストエンコーダー**: tohoku-nlp/bert-base-japanese-v3 (ファインチューニング)
|
| 35 |
+
- **画像エンコーダー**: ResNet50 (ImageNet事前学習済み、ファインチューニング) # 説明を更新
|
| 36 |
+
- **学習手法**: Full Tuning (両エンコーダーの同時学習) # 説明を更新
|
| 37 |
+
- **共通埋め込み次元**: 512
|
| 38 |
+
- **画像サイズ**: 224x224
|
| 39 |
+
- **最大テキスト長**: 128
|
| 40 |
+
- **学習率**: 1e-05
|
| 41 |
+
- **損失関数**: 温度付きコントラスト損失 (InfoNCE)
|
| 42 |
+
|
| 43 |
+
## 使用方法 / How to Use
|
| 44 |
+
|
| 45 |
+
```python
|
| 46 |
+
from transformers import AutoTokenizer, AutoModel
|
| 47 |
+
import torch
|
| 48 |
+
import torch.nn.functional as F
|
| 49 |
+
|
| 50 |
+
# モデルとトークナイザーのロード
|
| 51 |
+
tokenizer = AutoTokenizer.from_pretrained("AoiNoGeso/japanese-clip-stair-v3")
|
| 52 |
+
model = AutoModel.from_pretrained("AoiNoGeso/japanese-clip-stair-v3")
|
| 53 |
+
|
| 54 |
+
# 推論例
|
| 55 |
+
text = "猫が座っている"
|
| 56 |
+
tokens = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 57 |
+
|
| 58 |
+
# テキスト埋め込みを取得
|
| 59 |
+
with torch.no_grad():
|
| 60 |
+
text_embeddings = model.text_encoder(tokens["input_ids"], tokens["attention_mask"])
|
| 61 |
+
|
| 62 |
+
# 学習データ / Training Data
|
| 63 |
+
- データセット: STAIR Captions v1.2
|
| 64 |
+
- 言語: 日本語
|
| 65 |
+
- ドメイン: 一般的な画像キャプション
|
| 66 |
+
|
| 67 |
+
# ライセンス / License
|
| 68 |
+
Apache License 2.0
|
config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"text_model_name": "tohoku-nlp/bert-base-japanese-v3",
|
| 3 |
+
"image_embedding_dim": 2048,
|
| 4 |
+
"text_embedding_dim": 768,
|
| 5 |
+
"projection_dim": 512,
|
| 6 |
+
"temperature": 0.07,
|
| 7 |
+
"max_text_length": 128,
|
| 8 |
+
"image_size": 224,
|
| 9 |
+
"method": "Full Tuning"
|
| 10 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d0874109bc69733024b0e113938f439b705d1e2c675cb22ffb543968af3869cb
|
| 3 |
+
size 545058562
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"4": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_lower_case": false,
|
| 47 |
+
"do_subword_tokenize": true,
|
| 48 |
+
"do_word_tokenize": true,
|
| 49 |
+
"jumanpp_kwargs": null,
|
| 50 |
+
"mask_token": "[MASK]",
|
| 51 |
+
"mecab_kwargs": {
|
| 52 |
+
"mecab_dic": "unidic_lite"
|
| 53 |
+
},
|
| 54 |
+
"model_max_length": 512,
|
| 55 |
+
"never_split": null,
|
| 56 |
+
"pad_token": "[PAD]",
|
| 57 |
+
"sep_token": "[SEP]",
|
| 58 |
+
"subword_tokenizer_type": "wordpiece",
|
| 59 |
+
"sudachi_kwargs": null,
|
| 60 |
+
"tokenizer_class": "BertJapaneseTokenizer",
|
| 61 |
+
"unk_token": "[UNK]",
|
| 62 |
+
"word_tokenizer_type": "mecab"
|
| 63 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|