Update README.md
Browse files
README.md
CHANGED
|
@@ -1,16 +1,19 @@
|
|
| 1 |
---
|
| 2 |
tags:
|
| 3 |
-
- adapter-transformers
|
| 4 |
- llama
|
|
|
|
|
|
|
| 5 |
datasets:
|
| 6 |
- timdettmers/openassistant-guanaco
|
|
|
|
|
|
|
| 7 |
---
|
| 8 |
|
| 9 |
-
# Adapter
|
| 10 |
|
| 11 |
-
|
| 12 |
|
| 13 |
-
This adapter was created for usage with the
|
| 14 |
|
| 15 |
## Usage
|
| 16 |
|
|
@@ -20,23 +23,85 @@ First, install `adapters`:
|
|
| 20 |
pip install -U adapters
|
| 21 |
```
|
| 22 |
|
| 23 |
-
Now, the adapter can be loaded and activated like this:
|
| 24 |
|
| 25 |
```python
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
model =
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
```
|
| 31 |
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
|
| 40 |
-
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
tags:
|
|
|
|
| 3 |
- llama
|
| 4 |
+
- adapter-transformers
|
| 5 |
+
- llama-2
|
| 6 |
datasets:
|
| 7 |
- timdettmers/openassistant-guanaco
|
| 8 |
+
license: apache-2.0
|
| 9 |
+
pipeline_tag: text-generation
|
| 10 |
---
|
| 11 |
|
| 12 |
+
# OpenAssistant QLoRA Adapter for Llama-2 13B
|
| 13 |
|
| 14 |
+
QLoRA adapter for the Llama-2 13B (`meta-llama/Llama-2-13b-hf`) model trained for instruction tuning on the [timdettmers/openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco/) dataset.
|
| 15 |
|
| 16 |
+
**This adapter was created for usage with the [Adapters](https://github.com/Adapter-Hub/adapters) library.**
|
| 17 |
|
| 18 |
## Usage
|
| 19 |
|
|
|
|
| 23 |
pip install -U adapters
|
| 24 |
```
|
| 25 |
|
| 26 |
+
Now, the model and adapter can be loaded and activated like this:
|
| 27 |
|
| 28 |
```python
|
| 29 |
+
import adapters
|
| 30 |
+
import torch
|
| 31 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 32 |
+
|
| 33 |
+
model_id = "meta-llama/Llama-2-13b-hf"
|
| 34 |
+
adapter_id = "AdapterHub/llama2-13b-qlora-openassistant"
|
| 35 |
|
| 36 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 37 |
+
model_id,
|
| 38 |
+
device_map="auto",
|
| 39 |
+
quantization_config=BitsAndBytesConfig(
|
| 40 |
+
load_in_4bit=True,
|
| 41 |
+
bnb_4bit_quant_type="nf4",
|
| 42 |
+
bnb_4bit_use_double_quant=True,
|
| 43 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 44 |
+
),
|
| 45 |
+
torch_dtype=torch.bfloat16,
|
| 46 |
+
)
|
| 47 |
+
adapters.init(model)
|
| 48 |
+
|
| 49 |
+
adapter_name = model.load_adapter(adapter_id, set_active=True)
|
| 50 |
+
|
| 51 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 52 |
```
|
| 53 |
|
| 54 |
+
### Inference
|
| 55 |
+
|
| 56 |
+
Inference can be done via standard methods built in to the Transformers library.
|
| 57 |
+
We add some helper code to properly prompt the model first:
|
| 58 |
+
|
| 59 |
+
```python
|
| 60 |
+
from transformers import StoppingCriteria
|
| 61 |
+
|
| 62 |
+
# stop if model starts to generate "### Human:"
|
| 63 |
+
class EosListStoppingCriteria(StoppingCriteria):
|
| 64 |
+
def __init__(self, eos_sequence = [12968, 29901]):
|
| 65 |
+
self.eos_sequence = eos_sequence
|
| 66 |
+
|
| 67 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 68 |
+
last_ids = input_ids[:,-len(self.eos_sequence):].tolist()
|
| 69 |
+
return self.eos_sequence in last_ids
|
| 70 |
|
| 71 |
+
def prompt_model(model, text: str):
|
| 72 |
+
batch = tokenizer(f"### Human: {text} ### Assistant:", return_tensors="pt")
|
| 73 |
+
batch = batch.to(model.device)
|
| 74 |
+
|
| 75 |
+
with torch.cuda.amp.autocast():
|
| 76 |
+
output_tokens = model.generate(**batch, stopping_criteria=[EosListStoppingCriteria()])
|
| 77 |
|
| 78 |
+
# skip prompt when decoding
|
| 79 |
+
return tokenizer.decode(output_tokens[0, batch["input_ids"].shape[1]:], skip_special_tokens=True)
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
Now, to prompt the model:
|
| 83 |
+
|
| 84 |
+
```python
|
| 85 |
+
prompt_model(model, "Please explain NLP in simple terms.")
|
| 86 |
+
```
|
| 87 |
+
|
| 88 |
+
### Weight merging
|
| 89 |
+
|
| 90 |
+
To decrease inference latency, the LoRA weights can be merged with the base model:
|
| 91 |
+
```python
|
| 92 |
+
model.merge_adapter(adapter_name)
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
## Architecture & Training
|
| 96 |
|
| 97 |
+
**Training was run with the code in [this notebook](https://github.com/adapter-hub/adapters/blob/main/notebooks/QLoRA_Llama2_Finetuning.ipynb)**.
|
| 98 |
|
| 99 |
+
The LoRA architecture closely follows the configuration described in the [QLoRA paper](https://arxiv.org/pdf/2305.14314.pdf):
|
| 100 |
+
- `r=64`, `alpha=16`
|
| 101 |
+
- LoRA modules added in output, intermediate and all (Q, K, V) self-attention linear layers
|
| 102 |
|
| 103 |
+
The adapter is trained similar to the Guanaco models proposed in the paper:
|
| 104 |
+
- Dataset: [timdettmers/openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco)
|
| 105 |
+
- Quantization: 4-bit QLoRA
|
| 106 |
+
- Batch size: 16, LR: 2e-4, max steps: 1875
|
| 107 |
+
- Sequence length: 512
|