Upload 5.run_clm-post.py
Browse files- 5.run_clm-post.py +385 -0
5.run_clm-post.py
ADDED
|
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding=utf-8
|
| 3 |
+
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
"""
|
| 17 |
+
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.
|
| 18 |
+
|
| 19 |
+
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
|
| 20 |
+
https://huggingface.co/models?filter=causal-lm
|
| 21 |
+
"""
|
| 22 |
+
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
|
| 23 |
+
|
| 24 |
+
import logging
|
| 25 |
+
import math
|
| 26 |
+
import os
|
| 27 |
+
import sys
|
| 28 |
+
from dataclasses import dataclass, field
|
| 29 |
+
from typing import Optional
|
| 30 |
+
|
| 31 |
+
import datasets
|
| 32 |
+
from datasets import load_dataset
|
| 33 |
+
from datasets import load_from_disk
|
| 34 |
+
|
| 35 |
+
import transformers
|
| 36 |
+
from transformers import (
|
| 37 |
+
CONFIG_MAPPING,
|
| 38 |
+
MODEL_FOR_CAUSAL_LM_MAPPING,
|
| 39 |
+
AutoConfig,
|
| 40 |
+
AutoModelForCausalLM,
|
| 41 |
+
AutoTokenizer,
|
| 42 |
+
HfArgumentParser,
|
| 43 |
+
Trainer,
|
| 44 |
+
TrainingArguments,
|
| 45 |
+
default_data_collator,
|
| 46 |
+
set_seed,
|
| 47 |
+
)
|
| 48 |
+
from transformers.testing_utils import CaptureLogger
|
| 49 |
+
from transformers.trainer_utils import get_last_checkpoint
|
| 50 |
+
from transformers.utils import check_min_version
|
| 51 |
+
from transformers.utils.versions import require_version
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
| 55 |
+
check_min_version("4.13.0.dev0")
|
| 56 |
+
|
| 57 |
+
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
| 58 |
+
|
| 59 |
+
logger = logging.getLogger(__name__)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
|
| 63 |
+
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
@dataclass
|
| 67 |
+
class ModelArguments:
|
| 68 |
+
"""
|
| 69 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
|
| 70 |
+
"""
|
| 71 |
+
|
| 72 |
+
model_name_or_path: Optional[str] = field(
|
| 73 |
+
default=None,
|
| 74 |
+
metadata={
|
| 75 |
+
"help": "The model checkpoint for weights initialization."
|
| 76 |
+
"Don't set if you want to train a model from scratch."
|
| 77 |
+
},
|
| 78 |
+
)
|
| 79 |
+
model_type: Optional[str] = field(
|
| 80 |
+
default=None,
|
| 81 |
+
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
|
| 82 |
+
)
|
| 83 |
+
config_overrides: Optional[str] = field(
|
| 84 |
+
default=None,
|
| 85 |
+
metadata={
|
| 86 |
+
"help": "Override some existing default config settings when a model is trained from scratch. Example: "
|
| 87 |
+
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
|
| 88 |
+
},
|
| 89 |
+
)
|
| 90 |
+
config_name: Optional[str] = field(
|
| 91 |
+
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
| 92 |
+
)
|
| 93 |
+
tokenizer_name: Optional[str] = field(
|
| 94 |
+
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
| 95 |
+
)
|
| 96 |
+
cache_dir: Optional[str] = field(
|
| 97 |
+
default=None,
|
| 98 |
+
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
| 99 |
+
)
|
| 100 |
+
use_fast_tokenizer: bool = field(
|
| 101 |
+
default=True,
|
| 102 |
+
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
| 103 |
+
)
|
| 104 |
+
model_revision: str = field(
|
| 105 |
+
default="main",
|
| 106 |
+
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
| 107 |
+
)
|
| 108 |
+
use_auth_token: bool = field(
|
| 109 |
+
default=False,
|
| 110 |
+
metadata={
|
| 111 |
+
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
|
| 112 |
+
"with private models)."
|
| 113 |
+
},
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
def __post_init__(self):
|
| 117 |
+
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
|
| 118 |
+
raise ValueError(
|
| 119 |
+
"--config_overrides can't be used in combination with --config_name or --model_name_or_path"
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
@dataclass
|
| 124 |
+
class DataTrainingArguments:
|
| 125 |
+
"""
|
| 126 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
| 127 |
+
"""
|
| 128 |
+
|
| 129 |
+
dataset_name: Optional[str] = field(
|
| 130 |
+
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
| 131 |
+
)
|
| 132 |
+
dataset_config_name: Optional[str] = field(
|
| 133 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
| 134 |
+
)
|
| 135 |
+
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
|
| 136 |
+
validation_file: Optional[str] = field(
|
| 137 |
+
default=None,
|
| 138 |
+
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
|
| 139 |
+
)
|
| 140 |
+
max_train_samples: Optional[int] = field(
|
| 141 |
+
default=None,
|
| 142 |
+
metadata={
|
| 143 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
| 144 |
+
"value if set."
|
| 145 |
+
},
|
| 146 |
+
)
|
| 147 |
+
max_eval_samples: Optional[int] = field(
|
| 148 |
+
default=None,
|
| 149 |
+
metadata={
|
| 150 |
+
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
| 151 |
+
"value if set."
|
| 152 |
+
},
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
block_size: Optional[int] = field(
|
| 156 |
+
default=None,
|
| 157 |
+
metadata={
|
| 158 |
+
"help": "Optional input sequence length after tokenization. "
|
| 159 |
+
"The training dataset will be truncated in block of this size for training. "
|
| 160 |
+
"Default to the model max input length for single sentence inputs (take into account special tokens)."
|
| 161 |
+
},
|
| 162 |
+
)
|
| 163 |
+
overwrite_cache: bool = field(
|
| 164 |
+
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
| 165 |
+
)
|
| 166 |
+
validation_split_percentage: Optional[int] = field(
|
| 167 |
+
default=5,
|
| 168 |
+
metadata={
|
| 169 |
+
"help": "The percentage of the train set used as validation set in case there's no validation split"
|
| 170 |
+
},
|
| 171 |
+
)
|
| 172 |
+
preprocessing_num_workers: Optional[int] = field(
|
| 173 |
+
default=None,
|
| 174 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
| 175 |
+
)
|
| 176 |
+
keep_linebreaks: bool = field(
|
| 177 |
+
default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
#def __post_init__(self):
|
| 181 |
+
# if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
| 182 |
+
# raise ValueError("Need either a dataset name or a training/validation file.")
|
| 183 |
+
# else:
|
| 184 |
+
# if self.train_file is not None:
|
| 185 |
+
# extension = self.train_file.split(".")[-1]
|
| 186 |
+
# assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
|
| 187 |
+
# if self.validation_file is not None:
|
| 188 |
+
# extension = self.validation_file.split(".")[-1]
|
| 189 |
+
# assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def main():
|
| 193 |
+
# See all possible arguments in src/transformers/training_args.py
|
| 194 |
+
# or by passing the --help flag to this script.
|
| 195 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
| 196 |
+
|
| 197 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
| 198 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
| 199 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
| 200 |
+
# let's parse it to get our arguments.
|
| 201 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
| 202 |
+
else:
|
| 203 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
| 204 |
+
|
| 205 |
+
# Setup logging
|
| 206 |
+
logging.basicConfig(
|
| 207 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 208 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
| 209 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
log_level = training_args.get_process_log_level()
|
| 213 |
+
logger.setLevel(log_level)
|
| 214 |
+
datasets.utils.logging.set_verbosity(log_level)
|
| 215 |
+
transformers.utils.logging.set_verbosity(log_level)
|
| 216 |
+
transformers.utils.logging.enable_default_handler()
|
| 217 |
+
transformers.utils.logging.enable_explicit_format()
|
| 218 |
+
|
| 219 |
+
# Log on each process the small summary:
|
| 220 |
+
logger.warning(
|
| 221 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
| 222 |
+
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
| 223 |
+
)
|
| 224 |
+
logger.info(f"Training/evaluation parameters {training_args}")
|
| 225 |
+
|
| 226 |
+
# Detecting last checkpoint.
|
| 227 |
+
last_checkpoint = None
|
| 228 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
| 229 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
| 230 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
| 231 |
+
raise ValueError(
|
| 232 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
| 233 |
+
"Use --overwrite_output_dir to overcome."
|
| 234 |
+
)
|
| 235 |
+
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
| 236 |
+
logger.info(
|
| 237 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
| 238 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
# Set seed before initializing model.
|
| 242 |
+
set_seed(training_args.seed)
|
| 243 |
+
|
| 244 |
+
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
|
| 245 |
+
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
| 246 |
+
# (the dataset will be downloaded automatically from the datasets Hub).
|
| 247 |
+
#
|
| 248 |
+
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
|
| 249 |
+
# 'text' is found. You can easily tweak this behavior (see below).
|
| 250 |
+
#
|
| 251 |
+
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
| 252 |
+
# download the dataset.
|
| 253 |
+
|
| 254 |
+
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
| 255 |
+
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
| 256 |
+
|
| 257 |
+
# Load pretrained model and tokenizer
|
| 258 |
+
#
|
| 259 |
+
# Distributed training:
|
| 260 |
+
# The .from_pretrained methods guarantee that only one local process can concurrently
|
| 261 |
+
# download model & vocab.
|
| 262 |
+
|
| 263 |
+
config_kwargs = {
|
| 264 |
+
"cache_dir": model_args.cache_dir,
|
| 265 |
+
"revision": model_args.model_revision,
|
| 266 |
+
"use_auth_token": True if model_args.use_auth_token else None,
|
| 267 |
+
}
|
| 268 |
+
if model_args.config_name:
|
| 269 |
+
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
|
| 270 |
+
elif model_args.model_name_or_path:
|
| 271 |
+
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
|
| 272 |
+
else:
|
| 273 |
+
config = CONFIG_MAPPING[model_args.model_type]()
|
| 274 |
+
logger.warning("You are instantiating a new config instance from scratch.")
|
| 275 |
+
if model_args.config_overrides is not None:
|
| 276 |
+
logger.info(f"Overriding config: {model_args.config_overrides}")
|
| 277 |
+
config.update_from_string(model_args.config_overrides)
|
| 278 |
+
|
| 279 |
+
tokenizer_kwargs = {
|
| 280 |
+
"cache_dir": model_args.cache_dir,
|
| 281 |
+
"use_fast": model_args.use_fast_tokenizer,
|
| 282 |
+
"revision": model_args.model_revision,
|
| 283 |
+
"use_auth_token": True if model_args.use_auth_token else None,
|
| 284 |
+
}
|
| 285 |
+
if model_args.tokenizer_name:
|
| 286 |
+
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
|
| 287 |
+
elif model_args.model_name_or_path:
|
| 288 |
+
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
|
| 289 |
+
else:
|
| 290 |
+
raise ValueError(
|
| 291 |
+
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
|
| 292 |
+
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
if model_args.model_name_or_path:
|
| 296 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 297 |
+
model_args.model_name_or_path,
|
| 298 |
+
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
| 299 |
+
config=config,
|
| 300 |
+
cache_dir=model_args.cache_dir,
|
| 301 |
+
revision=model_args.model_revision,
|
| 302 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
| 303 |
+
)
|
| 304 |
+
else:
|
| 305 |
+
model = AutoModelForCausalLM.from_config(config)
|
| 306 |
+
n_params = sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
|
| 307 |
+
logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
|
| 308 |
+
|
| 309 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 310 |
+
|
| 311 |
+
train_dataset = load_from_disk('dataset/train2')
|
| 312 |
+
eval_dataset = load_from_disk('dataset/eval2')
|
| 313 |
+
|
| 314 |
+
# Initialize our Trainer
|
| 315 |
+
trainer = Trainer(
|
| 316 |
+
model=model,
|
| 317 |
+
args=training_args,
|
| 318 |
+
train_dataset=train_dataset if training_args.do_train else None,
|
| 319 |
+
eval_dataset=eval_dataset if training_args.do_eval else None,
|
| 320 |
+
tokenizer=tokenizer,
|
| 321 |
+
# Data collator will default to DataCollatorWithPadding, so we change it.
|
| 322 |
+
data_collator=default_data_collator,
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
# Training
|
| 326 |
+
if training_args.do_train:
|
| 327 |
+
checkpoint = None
|
| 328 |
+
if training_args.resume_from_checkpoint is not None:
|
| 329 |
+
checkpoint = training_args.resume_from_checkpoint
|
| 330 |
+
elif last_checkpoint is not None:
|
| 331 |
+
checkpoint = last_checkpoint
|
| 332 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
| 333 |
+
trainer.save_model() # Saves the tokenizer too for easy upload
|
| 334 |
+
|
| 335 |
+
metrics = train_result.metrics
|
| 336 |
+
|
| 337 |
+
max_train_samples = (
|
| 338 |
+
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
|
| 339 |
+
)
|
| 340 |
+
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
| 341 |
+
|
| 342 |
+
trainer.log_metrics("train", metrics)
|
| 343 |
+
trainer.save_metrics("train", metrics)
|
| 344 |
+
trainer.save_state()
|
| 345 |
+
|
| 346 |
+
# Evaluation
|
| 347 |
+
if training_args.do_eval:
|
| 348 |
+
logger.info("*** Evaluate ***")
|
| 349 |
+
|
| 350 |
+
metrics = trainer.evaluate()
|
| 351 |
+
|
| 352 |
+
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
|
| 353 |
+
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
|
| 354 |
+
try:
|
| 355 |
+
perplexity = math.exp(metrics["eval_loss"])
|
| 356 |
+
except OverflowError:
|
| 357 |
+
perplexity = float("inf")
|
| 358 |
+
metrics["perplexity"] = perplexity
|
| 359 |
+
|
| 360 |
+
trainer.log_metrics("eval", metrics)
|
| 361 |
+
trainer.save_metrics("eval", metrics)
|
| 362 |
+
|
| 363 |
+
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
|
| 364 |
+
if data_args.dataset_name is not None:
|
| 365 |
+
kwargs["dataset_tags"] = data_args.dataset_name
|
| 366 |
+
if data_args.dataset_config_name is not None:
|
| 367 |
+
kwargs["dataset_args"] = data_args.dataset_config_name
|
| 368 |
+
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
|
| 369 |
+
else:
|
| 370 |
+
kwargs["dataset"] = data_args.dataset_name
|
| 371 |
+
|
| 372 |
+
if training_args.push_to_hub:
|
| 373 |
+
trainer.push_to_hub(**kwargs)
|
| 374 |
+
else:
|
| 375 |
+
trainer.create_model_card(**kwargs)
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
def _mp_fn(index):
|
| 379 |
+
# For xla_spawn (TPUs)
|
| 380 |
+
main()
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
if __name__ == "__main__":
|
| 384 |
+
main()
|
| 385 |
+
|