Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- ColBERT
|
| 4 |
+
- PyLate
|
| 5 |
+
- sentence-transformers
|
| 6 |
+
- sentence-similarity
|
| 7 |
+
- feature-extraction
|
| 8 |
+
- generated_from_trainer
|
| 9 |
+
- loss:Distillation
|
| 10 |
+
- turkish
|
| 11 |
+
pipeline_tag: sentence-similarity
|
| 12 |
+
library_name: PyLate
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# PyLate
|
| 16 |
+
|
| 17 |
+
This is a [PyLate](https://github.com/lightonai/pylate) model trained. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
|
| 18 |
+
|
| 19 |
+
## Model Details
|
| 20 |
+
|
| 21 |
+
### Model Description
|
| 22 |
+
- **Model Type:** PyLate model
|
| 23 |
+
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
| 24 |
+
- **Document Length:** 8192 tokens
|
| 25 |
+
- **Query Length:** 32 tokens
|
| 26 |
+
- **Output Dimensionality:** 128 tokens
|
| 27 |
+
- **Similarity Function:** MaxSim
|
| 28 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 29 |
+
<!-- - **Language:** Unknown -->
|
| 30 |
+
<!-- - **License:** Unknown -->
|
| 31 |
+
|
| 32 |
+
### Model Sources
|
| 33 |
+
|
| 34 |
+
- **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/)
|
| 35 |
+
- **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate)
|
| 36 |
+
- **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate)
|
| 37 |
+
|
| 38 |
+
### Full Model Architecture
|
| 39 |
+
|
| 40 |
+
```
|
| 41 |
+
ColBERT(
|
| 42 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
|
| 43 |
+
(1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
|
| 44 |
+
)
|
| 45 |
+
```
|
| 46 |
+
# Evaluation
|
| 47 |
+
nDCG and Recall scores of this model(out-of-domain predictions) and other multilingual late interaction retrieval models on [Tr-NanoBEIR](https://huggingface.co/datasets/99eren99/Tr-NanoBEIR).
|
| 48 |
+
<img src="https://huggingface.co/99eren99/TrColBERT-Long/resolve/main/assets/scores.png"
|
| 49 |
+
alt="drawing"/>
|
| 50 |
+
|
| 51 |
+
## Usage
|
| 52 |
+
First install required libraries (Flash Attention 2 supporting GPU is a must for consistency otherwise you need to mask query expansion token in the output layer manually):
|
| 53 |
+
|
| 54 |
+
```bash
|
| 55 |
+
pip install -U einops flash_attn
|
| 56 |
+
pip install -U pylate
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
Then normalize your text ---> lambda x: x.replace("İ", "i").replace("I", "ı").lower()
|
| 60 |
+
|
| 61 |
+
### Retrieval
|
| 62 |
+
|
| 63 |
+
PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.
|
| 64 |
+
|
| 65 |
+
#### Indexing documents
|
| 66 |
+
|
| 67 |
+
First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:
|
| 68 |
+
|
| 69 |
+
```python
|
| 70 |
+
from pylate import indexes, models, retrieve
|
| 71 |
+
|
| 72 |
+
# Step 1: Load the ColBERT model
|
| 73 |
+
document_length = 8192 #[1,8192] for truncating documents
|
| 74 |
+
model = models.ColBERT(
|
| 75 |
+
model_name_or_path="99eren99/TrColbert-Long",document_length=document_length
|
| 76 |
+
)
|
| 77 |
+
try:
|
| 78 |
+
model.tokenizer.model_input_names.remove("token_type_ids")
|
| 79 |
+
except:
|
| 80 |
+
pass
|
| 81 |
+
model.eval()
|
| 82 |
+
model.to("cuda")
|
| 83 |
+
|
| 84 |
+
# Step 2: Initialize the Voyager index
|
| 85 |
+
index = indexes.Voyager(
|
| 86 |
+
index_folder="pylate-index",
|
| 87 |
+
index_name="index",
|
| 88 |
+
override=True, # This overwrites the existing index if any
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
# Step 3: Encode the documents
|
| 92 |
+
documents_ids = ["1", "2", "3"]
|
| 93 |
+
documents = ["document 1 text", "document 2 text", "document 3 text"]
|
| 94 |
+
|
| 95 |
+
documents_embeddings = model.encode(
|
| 96 |
+
documents,
|
| 97 |
+
batch_size=32,
|
| 98 |
+
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
|
| 99 |
+
show_progress_bar=True,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
|
| 103 |
+
index.add_documents(
|
| 104 |
+
documents_ids=documents_ids,
|
| 105 |
+
documents_embeddings=documents_embeddings,
|
| 106 |
+
)
|
| 107 |
+
```
|
| 108 |
+
|
| 109 |
+
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
|
| 110 |
+
|
| 111 |
+
```python
|
| 112 |
+
# To load an index, simply instantiate it with the correct folder/name and without overriding it
|
| 113 |
+
index = indexes.Voyager(
|
| 114 |
+
index_folder="pylate-index",
|
| 115 |
+
index_name="index",
|
| 116 |
+
)
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
#### Retrieving top-k documents for queries
|
| 120 |
+
|
| 121 |
+
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
|
| 122 |
+
To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
|
| 123 |
+
|
| 124 |
+
```python
|
| 125 |
+
# Step 1: Initialize the ColBERT retriever
|
| 126 |
+
retriever = retrieve.ColBERT(index=index)
|
| 127 |
+
|
| 128 |
+
# Step 2: Encode the queries
|
| 129 |
+
queries_embeddings = model.encode(
|
| 130 |
+
["query for document 3", "query for document 1"],
|
| 131 |
+
batch_size=32,
|
| 132 |
+
is_query=True, # Ensure that it is set to True to indicate that these are queries
|
| 133 |
+
show_progress_bar=True,
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
# Step 3: Retrieve top-k documents
|
| 137 |
+
scores = retriever.retrieve(
|
| 138 |
+
queries_embeddings=queries_embeddings,
|
| 139 |
+
k=10, # Retrieve the top 10 matches for each query
|
| 140 |
+
)
|
| 141 |
+
```
|
| 142 |
+
|
| 143 |
+
### Reranking
|
| 144 |
+
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
|
| 145 |
+
|
| 146 |
+
```python
|
| 147 |
+
from pylate import rank, models
|
| 148 |
+
|
| 149 |
+
queries = [
|
| 150 |
+
"query A",
|
| 151 |
+
"query B",
|
| 152 |
+
]
|
| 153 |
+
|
| 154 |
+
documents = [
|
| 155 |
+
["document A", "document B"],
|
| 156 |
+
["document 1", "document C", "document B"],
|
| 157 |
+
]
|
| 158 |
+
|
| 159 |
+
documents_ids = [
|
| 160 |
+
[1, 2],
|
| 161 |
+
[1, 3, 2],
|
| 162 |
+
]
|
| 163 |
+
|
| 164 |
+
model = models.ColBERT(
|
| 165 |
+
model_name_or_path=pylate_model_id,
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
queries_embeddings = model.encode(
|
| 169 |
+
queries,
|
| 170 |
+
is_query=True,
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
documents_embeddings = model.encode(
|
| 174 |
+
documents,
|
| 175 |
+
is_query=False,
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
reranked_documents = rank.rerank(
|
| 179 |
+
documents_ids=documents_ids,
|
| 180 |
+
queries_embeddings=queries_embeddings,
|
| 181 |
+
documents_embeddings=documents_embeddings,
|
| 182 |
+
)
|
| 183 |
+
```
|
| 184 |
+
|
| 185 |
+
<!--
|
| 186 |
+
### Direct Usage (Transformers)
|
| 187 |
+
|
| 188 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 189 |
+
|
| 190 |
+
</details>
|
| 191 |
+
-->
|
| 192 |
+
|
| 193 |
+
<!--
|
| 194 |
+
### Downstream Usage (Sentence Transformers)
|
| 195 |
+
|
| 196 |
+
You can finetune this model on your own dataset.
|
| 197 |
+
|
| 198 |
+
<details><summary>Click to expand</summary>
|
| 199 |
+
|
| 200 |
+
</details>
|
| 201 |
+
-->
|
| 202 |
+
|
| 203 |
+
<!--
|
| 204 |
+
### Out-of-Scope Use
|
| 205 |
+
|
| 206 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 207 |
+
-->
|
| 208 |
+
|
| 209 |
+
<!--
|
| 210 |
+
## Bias, Risks and Limitations
|
| 211 |
+
|
| 212 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 213 |
+
-->
|
| 214 |
+
|
| 215 |
+
<!--
|
| 216 |
+
### Recommendations
|
| 217 |
+
|
| 218 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 219 |
+
-->
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
### Framework Versions
|
| 223 |
+
- Python: 3.10.16
|
| 224 |
+
- Sentence Transformers: 4.0.2
|
| 225 |
+
- PyLate: 1.1.7
|
| 226 |
+
- Transformers: 4.48.2
|
| 227 |
+
- PyTorch: 2.5.1+cu124
|
| 228 |
+
- Accelerate: 1.2.1
|
| 229 |
+
- Datasets: 2.21.0
|
| 230 |
+
- Tokenizers: 0.21.0
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
## Citation
|
| 234 |
+
|
| 235 |
+
### BibTeX
|
| 236 |
+
|
| 237 |
+
#### Sentence Transformers
|
| 238 |
+
```bibtex
|
| 239 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 240 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 241 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 242 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 243 |
+
month = "11",
|
| 244 |
+
year = "2019",
|
| 245 |
+
publisher = "Association for Computational Linguistics",
|
| 246 |
+
url = "https://arxiv.org/abs/1908.10084"
|
| 247 |
+
}
|
| 248 |
+
```
|
| 249 |
+
|
| 250 |
+
#### PyLate
|
| 251 |
+
```bibtex
|
| 252 |
+
@misc{PyLate,
|
| 253 |
+
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
|
| 254 |
+
author={Chaffin, Antoine and Sourty, Raphaël},
|
| 255 |
+
url={https://github.com/lightonai/pylate},
|
| 256 |
+
year={2024}
|
| 257 |
+
}
|
| 258 |
+
```
|
| 259 |
+
|
| 260 |
+
<!--
|
| 261 |
+
## Glossary
|
| 262 |
+
|
| 263 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 264 |
+
-->
|
| 265 |
+
|
| 266 |
+
<!--
|
| 267 |
+
## Model Card Authors
|
| 268 |
+
|
| 269 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 270 |
+
-->
|
| 271 |
+
|
| 272 |
+
<!--
|
| 273 |
+
## Model Card Contact
|
| 274 |
+
|
| 275 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 276 |
+
-->
|